## Cryptic Relatedness and fine-scale population structure

## Learning objectives

- Define fine-scale population structure and cryptic relatedness
- How is it identified
- Identity-by-descent
- Rare variation
- Estimated Effective Migration Surfaces
- Why it can be important for association analyses, especially of rare variants.


## Cryptic Population Structure



## "A large number of loci is required to reveal fine-scale population structure using PCA"




PC2: 0.36\% explained


PC2: 0.17\% explained


PC2: 0.15\% explained

## Demographic Inference Time Frames



## Identity by Decent (IBD): A method to find both distant and recent relationships



## IBD length is correlated with historical relationships.



## Pairwise genetic relatedness across



Baharian et al. (2016) PLoS Genet.

C


Identity-bydescent as a means to look at fine-scale structure over time

Trujillo AP Chopccas Moches Qeros $\triangle$ Lima Puno Matsig Nahua Uros - Iquitos Cusco - Matzes


## Identity-bydescent as a means to look at fine-scale structure over time

## IBD can estimate effective population size over time.

Constant size: SNP array data


Exponential growth: SNP array data


Super-exponential: SNP array data


## IBDNe in Samoa!

Harris et al.
(https://papers.ssrn. com/sol3/papers.cf m?abstract_id=3329 885)


## IBD on a large scale

## a

Construct network from IBD
Join vertex pairs (genotyped samples) if $\mathrm{BD}>12 \mathrm{cM}$ Edge weights are a function of total detected IBD


C
Identify subsets of the clusters that separate in the spectral embedding. Spectral embedding is computed from elgon decomposition of Laplacian matrix. in the pion below, we dent ty $\mathrm{y}^{\prime}$ stable subsets" (filled oirdes) of the blue and red clusters.


## d

Genetations

## b

Detect network clusters.
Recursively identify disjoint sets that maximize
the modularity of the network. (Here one level
of clustering hierarchy is shown.)


Annotate each cluster with two kinds of data: - In all samples, global admixture of 20 populations (donut charts): - For some samples, birth locations of ancestors in pedigrees.
ago
3


Eigenvector 2

## IBD on a large scale



## Do rare variants help identify recent population structure?



1000 Genomes Project (2012) Nature

## Do rare variants help identify recent population structure?



1000 Genomes Project (2012) Nature







Novembre et al. (2012) Science

## Rare VS Common: Population Structure Simulations



# Rare VS Common: Assignment of Ancestry Proportions 



## Rare VS Common: Which has Greater Information? And When?

Information Gain: how well a variant can distinguish between populations. (Rosenberg et al. 2003)

$$
I_{n}(Q ; J)=\sum_{j=1}^{N}\left(-p_{j} \ln p_{j}+\sum_{i=1}^{K} q_{i} p_{i j} \ln p_{i j}\right)
$$

Expected Information Gain

- Calculate for a specific site count
- Correct for missing data
- Weighted average to calculate across a range of frequency (rare or common)

$E\left(I_{n} \mid C, M\right)=\sum_{m \in M} \sum_{l=0}^{C} r_{l m} \times \sum_{j=1}^{N}\left(-p_{j l m} \ln p_{j l m}+\sum_{i=1}^{K} q_{i} p_{i j l m} \ln p_{i j l m}\right)$
Time of Separation
O'Connor et al. (2014)
Mol. Biol. Evol.


## Rare Variants Identify Cryptic Populations



O'Connor et al. (2014)
Mol. Biol. Evol.

## Rare Variants Identify Cryptic Populations



## What is Their Geographic Ancestry?



O'Connor et al. (2014)
Mol. Biol. Evol.

## PCA of Global Diversity Including Cryptic Population



O'Connor et al. (2014)
Mol. Biol. Evol.

## PCA of Global Diversity Including Cryptic Population



## Population Average PCA with More Axes

| - | Unknown |
| :--- | :--- |
| - | Ashkenazi |
| - Moroccan |  |
| - Sephardic |  |
| - Azerbaijan |  |
| - | Bene Israel |
| - Cochin |  |
| - Ethiopian |  |
| - Georgia |  |
| - Iranian |  |
| - Iraq |  |
| - Uzbekistan |  |
| - Yemen |  |

O'Connor et al. (2014)
Mol. Biol. Evol.


## Population Average PCA with More Axes



## Trans-Omics for Precision Medicine (TOPMed) Cohorts

- $N \cong 55 \mathrm{~K}$
- Predominantly African, Latino, and European American
- Samoa
- Amish
- All are well characterized for heart, lung, blood, and sleep phenotypes

Taliun et al. (2019) Bioarxiv


## Rare variant sharing across cohorts

- Allele Count 2 to 100
- Corrected for:
- sample size
- Genome-wide heterozygosity


## Rare variant sharing across cohorts

- Allele Count 2 to 100
- Corrected for:
- sample size
- Genome-wide heterozygosity


## Rare variant sharing across cohorts

- Allele Count 2 to 100
- Corrected for:
- sample size
- Genome-wide heterozygosity


## Rare variant sharing across cohorts

- Allele Count 2 to 100
- Corrected for:
- sample size
- Genome-wide heterozygosity


## fineStructure analysis of genome-wide ancestry



- African
- Caucasia
- East Asian
- European


## fineStructure analysis of genome-wide ancestry

- African
- Caucasia
- East Asian
- European



## fineStructure analysis of genome-wide ancestry

- African
- Caucasia
- East Asian
- European



## European Americans



## fineStructure analysis of genome-wide ancestry



- African
- Caucasia
- East Asian
- European


## African American's

 have more homogeneous ancestral proportions- Calculated Euclidian distance between fineSTRUCTURE proportions
- African American cohorts have the shortest distance and the greatest rare variant sharing



## African American's

 have more homogeneous ancestral proportions- Calculated Euclidian distance between fineSTRUCTURE proportions
- African American cohorts have the shortest distance and the greatest rare variant sharing



## Quick background on Samoa



Harris et al. (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3329885)

## Quick background on Samoa



Harris et al. (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3329885)

## PCA with all variants can't distinguish the two islands well.

Harris et al. (2020) PNAS


## Rare variant Sharing in Samoa



Harris et al. (2020) PNAS

## Estimated Effective Migration Surfaces (EEMS)


b


C



## Assumptions: Stepping Stone Model

- Migration can only occur between adjacent demes
- Migration rate between each deme is assumed to be equal



## EEMS: Migration and diversity within Peru

| Deme | Populations | Deme | Populations | Deme | Populations | Deme Populations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Piapoco | 5 | Lima | 9 | Cusco, Qeros, Quechua | 15 |
| 2 | Iquitos | 6 | Chopccas | 10 | Surui |  |
| 3 | Matzes | 7 | Nahua | $11,12,13$ | Puno, Uros |  |
| 4 | Moches, Truillo | 8 | Matsiguenka | 14 | Bolivian |  |

Harris et al. (2018) PNAS

## EEMS captures long-term migration patterns



Richmond et al. (2015) Molecular Ecology

## EEMS in Malaria Parasites of South East Asia



B


Shetty et al. (2019) Nature Communications

## Application to Malaria Parasites in W. Africa



High

## $\begin{array}{ll}2 & \\ 1 & \\ & \frac{0}{0} \\ 0 & \frac{0}{3}\end{array}$ <br> -1 <br> Low

## Application to Mosquito in W. Africa



High


## Robustness of Sampling on EEMS



## RELATE: a means of finding genealogical local genomic relationships

Modified Li and Stephens HMM
focal SNP


Reconstruct one chromosome as a mosaic of other samples
Store position specific distance matrix containing transformed probabilities of copying from each other sample


Hierarchical clustering and coalescent model-based branch length estimation produce local trees

Speidel et al. (2019) Nature Genetics


Haplotype data sorted using constructed tree

## RELATE of course was tested with simulation!


$\pm$ Relate

- Relate excluding MCMC - ARGweaver

RENT


Speidel et al. (2019) Nature Genetics


* Relate excluding MCMC


True pairwise TMRCA
$\begin{array}{llllllll}\text { Density } \\ & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{0}\end{array}$




## RELATE tested on 1000 Genomes Data






- GBR-GBR - GBR-YRI - YRI-YRI


Speidel et al. (2019) Nature Genetics



## Concluding summary

- Fine-scale population structure is subdivisions of individuals on an ever increasingly granular scale
- Identity-by-descent and rare variant sharing are a powerful methods of identifying recent relationships and can be scaled by time.
- Cryptic population structure arises with extended relationships within a cohort, unknown to the investigators.
- EEMS can visualize migration patterns on a fine-scale illustrating cryptic structure not observed with other methods


## Questions?



