Cryptic Relatedness and fine-scale population structure

Learning objectives

- Define fine-scale population structure and cryptic relatedness
- How is it identified
 - Identity-by-descent
 - Rare variation
 - Estimated Effective Migration Surfaces
- Why it can be important for association analyses, especially of rare variants.

Cryptic Population Structure

"A large number of loci is required to reveal fine-scale population structure using PCA"

Demographic Inference Time Frames

Identity by Decent (IBD): A method to find both distant and recent relationships

IBD length is correlated with historical relationships.

$$E[g|l] \cong \frac{3}{2 * l}$$

Baharian et al. (2016) PLoS Genet.

Pairwise genetic relatedness across

Baharian et al. (2016) PLoS Genet.

C

Identity-bydescent as a
means to look at
fine-scale
structure over
time

IBD can estimate effective population size over time.

IBDNe in Samoa!

Harris et al. (https://papers.ssrn. com/sol3/papers.cf m?abstract_id=3329 885)

IBD on a large scale

IBD on a large scale

Do rare variants help identify recent population structure?

1000 Genomes Project (2012) Nature

Do rare variants help identify recent population structure?

1000 Genomes Project (2012) Nature

Novembre et al. (2012) Science

0.51

Rare VS Common: Population Structure Simulations

Rare VS Common: Assignment of Ancestry Proportions

Rare VS Common: Which has Greater Information? And When?

Information Gain: how well a variant can distinguish between populations. (Rosenberg et al. 2003)

$$I_n(Q;J) = \sum_{j=1}^{N} \left(-p_j \ln p_j + \sum_{i=1}^{K} q_i p_{ij} \ln p_{ij} \right)$$

Expected Information Gain

- Calculate for a specific site count
- Correct for missing data
- Weighted average to calculate across a range of frequency (rare or common)

or common)
$$E(I_n \mid C, M) = \sum_{m \in M} \sum_{l=0}^{C} r_{lm} \times \sum_{j=1}^{N} \left(-p_{jlm} \ln p_{jlm} + \sum_{i=1}^{K} q_i p_{ijlm} \ln p_{ijlm} \right)$$

Rare Variants Identify Cryptic Populations

Common (MAF > 10%)

Rare Variants Identify Cryptic Populations

What is Their Geographic Ancestry?

PCA of Global Diversity Including Cryptic Population

PCA of Global Diversity Including Cryptic Population

Population Average PCA with More Axes

- Unknown
- Ashkenazi
- Moroccan
- Sephardic
- Azerbaijan
- Bene Israel
- Cochin
- Ethiopian
- Georgia
- Iranian
- Iraq
- Uzbekistan
- Yemen

Population Average PCA with More Axes

- Ashkenazi
- Moroccan
- Sephardic

Trans-Omics for Precision Medicine (TOPMed) Cohorts

- N ≅ 55K
- Predominantly African, Latino, and European American
 - Samoa
 - Amish
- All are well characterized for heart, lung, blood, and sleep phenotypes

Rare variant sharing across cohorts

- Allele Count 2 to 100
- Corrected for:
 - sample size
 - Genome-wide heterozygosity

Rare variant sharing across cohorts

- Allele Count 2 to 100
- Corrected for:
 - sample size
 - Genome-wide heterozygosity

Rare variant sharing across cohorts

- Allele Count 2 to 100
- Corrected for:
 - sample size
 - Genome-wide heterozygosity

- Allele Count 2 to 100
- Corrected for:
 - sample size
 - Genome-wide heterozygosity

fineStructure analysis of genome-wide ancestry

- African
- Caucasia
- East Asian
- European

fineStructure analysis of genome-wide ancestry

- African
- Caucasia
- East Asian
- European

fineStructure analysis of genome-wide ancestry

- African
- Caucasia
- East Asian
- European

fineStructure analysis of genome-wide ancestry

- African
- Caucasia
- East Asian
- European

African American's have more homogeneous ancestral proportions

- Calculated Euclidian distance between fineSTRUCTURE proportions
- African American cohorts have the shortest distance and the greatest rare variant sharing

African American's have more homogeneous ancestral proportions

- Calculated Euclidian distance between fineSTRUCTURE proportions
- African American cohorts have the shortest distance and the greatest rare variant sharing

Quick background on Samoa

Harris et al. (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3329885)

Quick background on Samoa

Harris et al. (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3329885)

PCA with all variants can't distinguish the two islands well.

Harris et al. (2020) PNAS

Rare variant Sharing in Samoa

Estimated Effective Migration Surfaces (EEMS)

Assumptions: Stepping Stone Model

- Migration can only occur between adjacent demes
- Migration rate between each deme is assumed to be equal

Kimura and Weiss (1964)

EEMS: Migration and diversity within Peru

EEMS captures long-term migration patterns

Richmond et al. (2015) Molecular Ecology

EEMS in Malaria Parasites of South East Asia

Application to Malaria Parasites in W. Africa

Application to Mosquito in W. Africa

Robustness of Sampling on EEMS

RELATE: a means of finding genealogical local genomic relationships

Modified Li and Stephens HMM

Reconstruct one chromosome as a mosaic of other samples

Store position specific distance matrix containing transformed probabilities of copying from each other sample

Hierarchical clustering and coalescent model-based branch length estimation produce local trees

> Speidel et al. (2019) Nature Genetics

Haplotype data sorted using constructed tree

RELATE of course was tested with simulation!

RELATE tested on 1000 Genomes Data

Concluding summary

- Fine-scale population structure is subdivisions of individuals on an ever increasingly granular scale
- Identity-by-descent and rare variant sharing are a powerful methods of identifying recent relationships and can be scaled by time.
- Cryptic population structure arises with extended relationships within a cohort, unknown to the investigators.
- EEMS can visualize migration patterns on a fine-scale illustrating cryptic structure not observed with other methods

Questions?

