Cryptic Relatedness and fine scale population structure

Learning objectives

- Define fine scale population structure and cryptic relatedness
- How is it identified
- Identity-by-descent
- Rare variation
- Why it can be important for association analyses, especially of rare variants.

Cryptic Population Structure

Lung Cancer Prevalence in Europe

Identity by Decent (IBD): A method to find both distant and recent relationships

IBD length is correlated with historical relationships.

Pairwise genetic relatedness across

Baharian et al. (2016) PLoS Genet.

C

Identity-bydescent as a means to look at fine-scale structure over time

Trujillo AP Chopccas Moches Qeros \triangle Lima Puno Matsig Nahua Uros - Iquitos Cusco - Matzes

IBD on a large scale

a

Construct network from IBD
Join vertex pairs (genotyped samples) if $\mathrm{BD}>12 \mathrm{cM}$ Edge weights are a function of total detected IBD.

C
Identify subsets of the clusters that separate in the spectral embedding. Spoctral embodding is computed from eigon ecomposition of Laplacian matrix. in the piot bolow, we identify stable subsets" (filled oirdles) of the blue and red clusters.

b

Detect network clusters.
Recursively identity disjoint sets that maximize
the modularity of the network. (Here one level
of clustoring hierarchy is shown.)

Annotate each cluster with two kinds of data:

$$
\text { - In all samples, global admixture of } 20 \text { populations (donut charts): }
$$

Gener ations

- For some samples, bith locations of ancestors in pedigroes.
ago

1
0

Eigenvector 2
e
Visualize geographic distribution of ancestral birth locations in each cluster. Map below shows birth locations of ancestors in the Atrican American cluster. Locations are colored by degree of over-representation (odds ratio), and scaled by number of birth location annotations.

Odds ratio
0.1-2

- 2-5
- 5-10
- >10

Number of
pedigree annotations

- 100
- 400
- 900
- 1,600

Han et al. (2017) Nature Comm.

IBD on a large scale

Rare VS Common: Population Structure Simulations

Rare VS Common: Assignment of Ancestry Proportions

Time of Separation $=0$

Time of Separation O'Connor et al. (2014) Mol. Biol. Evol.

Rare VS Common: Which has Greater Information? And When?

Information Gain: how well a variant can distinguish between populations. (Rosenberg et al. 2003)

$$
I_{n}(Q ; J)=\sum_{j=1}^{N}\left(-p_{j} \ln p_{j}+\sum_{i=1}^{K} q_{i} p_{i j} \ln p_{i j}\right)
$$

Expected Information Gain

- Calculate for a specific site count
- Correct for missing data
- Weighted average to calculate across a range of frequency (rare or common)

$E\left(I_{n} \mid C, M\right)=\sum_{m \in M} \sum_{l=0}^{C} r_{l m} \times \sum_{j=1}^{N}\left(-p_{j l m} \ln p_{j l m}+\sum_{i=1}^{K} q_{i} p_{i j l m} \ln p_{i j l m}\right)$
Time of Separation
O'Connor et al. (2014)
Mol. Biol. Evol.

Rare Variants Identify Cryptic Populations

O'Connor et al. (2014)
Mol. Biol. Evol.

Rare Variants Identify Cryptic Populations

What is Their Geographic Ancestry?

O'Connor et al. (2014) Mol. Biol. Evol.

PCA of Global Diversity Including Cryptic Population

O'Connor et al. (2014)
Mol. Biol. Evol.

PCA of Global Diversity Including Cryptic Population

Population Average PCA with More Axes

| - Unknown |
| :--- | :--- |
| - Ashkenazi |
| - Moroccan |
| - Sephardic |
| - Azerbaijan |
| - Bene Israel |
| - Cochin |
| - Ethiopian |
| - Georgia |
| - Iranian |
| - Iraq |
| - Uzbekistan |
| - Yemen |

O'Connor et al. (2014)
Mol. Biol. Evol.

Population Average PCA with More Axes

Cryptic Group has Similar Admixture Proportions to Jewish Groups.

O'Connor et al. (2014)
Mol. Biol. Evol.

Cryptic Group has Similar Admixture Proportions to Jewish Groups.

O'Connor et al. (2014)
Mol. Biol. Evol.

O'Connor et al. (2014) Mol. Biol. Evol.

Genetic Association Studies - Applied

Population Stratification - Concept

b. False positive association

Ethnic Group 1

Population Stratification - Example of spurious association

Population 1
\% with disease: 10\%
\% with variant allele (A*): 20\%

A*	Cas	Cont	20
	2	18	
G	8	72	80
	10	90	100

$$
\mathrm{OR}=(2 * 72) /(8 * 18)=1
$$

Population 2
\% with disease: 40\%
\% with variant allele (A^{*}): 50\%

	Case	Cont.	
A*	20	30	50
G	20	30	50
	40	60	100

$\mathrm{OR}=(20 * 30) /(20 * 30)=1$

A*	Case Cont		70
	22	48	
G	28	102	130
	50	150	200

$$
\begin{aligned}
\mathrm{OR} & =(22 * 102) /(28 * 48) \\
& =1.67
\end{aligned}
$$

Population Stratification - thought question

The problem - poor sample matching.
Cases and controls are not selected from the same source populations.

Population 1
$\%$ with variant allele $\left(A^{*}\right): 20 \%$

Population 2
$\%$ with variant allele (A^{*}): 50\%

Is a scenario like this an issue for continuous traits vs. case-control analysis?

Determining Proportions of Case and Control

$$
\begin{aligned}
& P(i=X)=\begin{array}{l}
\text { The proportion of the subpopulation } i \text { in the } \\
\text { full population. }
\end{array} \\
& P(d=c \mid i=X)=\begin{array}{l}
\text { The probability of subpopulation } i \\
\text { being a case (ie disease risk). }
\end{array} \\
& P(d=c)=\sum_{i=1}^{N} P(d=c \mid i=X) \times P(i=X) \\
& P(i=X \mid d=c)=\frac{P(d=c \mid i=X) \times P(i=X)}{P(d=c)} \\
& \text { O'Connor et al. (2013) PLos One }
\end{aligned}
$$

Two Population Case

O'Connor et al. (2013) PLoS One

Collapsing Rare Variants

Score
Gene Segment

Spurious associations as a function of confounding

General Approaches to handle structure in association analyses

- Stratify by race - carefully match cases and controls.
- Control with family data
- Genomic control
- Control using genetic markers -
- Ancestry informative markers (AIMs)
- Principle components analysis

Genomic Control

- How inflated is this?

Genomic Control

- Assumption 1 - inflation affects the entire distribution of test statistics
- Assumption 2 - Underlying distribution of test statistics is X^{2} distribution
- Take median of observed test statistics
- Divide by expected $=0.4549$
$\lambda=x^{2}$ observed median $/ 0.4549$
- Divide all test statistics by λ

Genomic Control Cont.

- Larger lambda \rightarrow more systematic bias
- High lambda \rightarrow consequence not cause
- Not only admixture (eg. cryptic relatedness)

AIMs and PCs

- General idea - Use genetic markers to measure and account for ancestry differences
- AIMs - fixed markers known to detect population substructure
- PCs - use large scale data (e.g. GWAS) to conduct principle components analysis
- Dimension reduction
- The first principal components summarize most of the variation
- PCs can be used as variable in regression models

Spurious associations as a function of confounding with PC correction

Concluding summary

- Fine-scale population structure is subdivisions of individuals on an ever increasingly granular scale
- Cryptic population structure arises with extended relationships within a cohort, unknown to the investigators.
- Identity-by-descent and sharing of rare variants are a powerful method of identifying recent relationships and can be scaled by time.
- Cryptic relatedness can increase spurious associations for phenotype studies, but should be handled within the models.

