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Human Colonization of the World
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Heritability and Human Height

Studies of heritability
ask questions such as
how much genetic
factors play a role in
differences in height
between people.
This is not the same
as asking how much
genetic factors
influence height in
any one person.

https://en.wikipedia.org/wiki/Heritability httgt/ /i.ytimg.com /vi/E0Aeks_id6c/maxresdefault.jpg
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An estimated 80% of variation In
heignht driven Is driven by genetics
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But GWAS explain only 20% of the
variation in height

The narrow-sense heritability
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GWAS have the potential to explain
00% of the variation in height

100.00% hz . The narrow-sense heritability
g ° explained by all genotyped SNPs.

90.00%
80.00% e

70.00%

60.00% ~

50.00% . {?

40.00% | ?4 |/

30.00% & AW *

20.00% P AR RN R

10.00% 250,000 subjects

0.00% NI Wood et al, 2014 Nat. Genet.

i.ytimg.com/vi/EOAeks id6c/maxresdefault.jpg



http://i.ytimg.com/vi/E0Aeks_id6c/maxresdefault.jpg

Challenges For Studying Complex

The case of the missing heritability '

Maher, Nature (2008).
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MAJOR PROBLEM

e There are no complex traits in which we know:

¢ The number of causal variants

* The frequencies of all the causal variants
e The effect sizes of all the causal variants
e The fitness effect of all the causal variants

e We need a thorough simulation study where we can vary
all of these parameters and see how they effect our answer!

10



Possible Origins Of Missing Heritability

Common variants of weak effect

Incomplete linkage to causal alleles/ multiple causal alleles in locus

GxG / GxE Interactions

Rare variants

Structural variation

11



FROM GWAS TO DEEP SEQUENCING

Genome-wide association studies (GWAS) seek to identity
common variants that contribute to common disease

Successfully identified many candidate disease-associated
genes

Challenges:
 (Generally have low relative risk

 Explain only a small proportion of the phenotypic variance

 Provides candidate loci, but causal variant is rarely typed

Implication:
 Predictive power of GWAS is minimal...

12



Frequency

“Missing” heritability - calculating variance

accounted for by GWAS

2000 3000 4000

1000

Distribution of Very Important Phenotype

VIP value (arbitrary units)

Suppose k variants are found to be
associated with VIP...

Contribution from

2
each SNP U= 52 £U(l o 'CE)

Total variance o
from GWAS V..(P) = Z Uk
k

Compare to GWAS ‘/GWAS(P) < h2 X V(P)

13 Lawrence Uricchio



Where is the “missing” heritability?

2" Standard Neutral Model
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POPULATION GENETICS

Why would cases have an excess of rare non-synonymous
variants in disease-associated genes?

e Recent neutral mutations that have not had time to spread

* Deleterious mutations restricted to low frequency

Population genetic analyses are ideally suited to distinguish
these cases.

15



EVOLUTIONARY MODELS OF
COMPLEX DISEASE

Disease
propensity

Disease

Direct relationship between disease and fitness



EVOLUTIONARY MODELS OF
COMPLEX DISEASE

Disease
propensity
Disease
Other
Phenotype

Pleiotropy: SNP impacts multiple phenotypes

Uricchio et al.,, Genome Research (2016)



THE MODEL OF EYRE-WALKER (2010)

e The phenotypic effect size has a direct
relationship to selection coefficient of causal
mutations:

z=05"(1+4 ¢)
e Where:
*c ~ N(0, 6?%)
¢ = random sign (trait increasing / decreasing)
¢ § = selection coeftficient
o7 = measures how the mean absolute effect of
a mutation on the trait increases with the

strength of selection
Eyre-Walker, PNAS (2010)



THE MODEL OF EYRE-WALKER (2010)

* As 1 decreases, common alleles play a larger

role in the phenotype because the effect sizes of
weakly deleterious alleles in- crease relative to
strongly deleterious alleles.

=1, small o : Y 1=1/2, small o

Trait effect

T L THT I TS R - - —

Strength of selection (5)

Eyre-Walker, PNAS (2010)



THE MODEL OF SIMONS ET AL (2014)

e The phenotypic effect size may have a direct
relationship to selection coefficient of causal
mutations:

S with probability 0
Zg X
Sy with probability (1 — ,0)

e Where:

*p = Probability that the trait effect is
proportional to the selection coefficient:
Pleiotropy!!

*s = selection coetficient

*s, = random selection coetficient

Simons et al, Nat Genet (2014)



THE MODEL OF URICCHIO ET AL (2016)

5 SrrlT with probability (]. — 10)

T . .
e A hybrid of the two: 2z, { Ols]”  whth pobatity p

e Where:

¢ = random sign (trait increasing / decreasing)

e7 = measures how the mean absolute effect of a
mutation on the trait increases with the strength
of selection

*p = Probability that the trait effect is proportional
to the selection coefficient: Pleiotropy!!

*s = selection coeftficient

*s, = random selection coetficient

Uricchio et al, Genome Research (2016)



EVOLUTIONARY MODELS OF
COMPLEX DISEASE

Disease
propensity
Disease
Other
Phenotype

*

o correlation(effect size, fitness)
K p- (Simons et al, 2014)

- transforms fitness effect to
" phenotype (Eyre-Walker, 2010)

Pleiotropy: SNP impacts multiple phenotypes

Uricchio et al.,, Genome Research (2016)



Why should we think about evolution”

— Trait optimum

Selection

pressure  mmmmm C—

towards an optimum

Phenotype distribution
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Stabilizing selection

— Trait optimum

Selection

pressure C—

towards an optimum

Phenotype distribution
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Stabilizing selection

/ Trait optimum

Selection

pressure —

towards an optimum

(e

Phenotype distribution
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Stabilizing selection

/ Trait optimum

e New mutations
deleterious

Selection

) (e ¢ Larger effect
pressure

. mutations are more
towards an optimum )
deleterious

e Effect sizes may not
be linear in selection
strength

e Want to allow for
pleiotropy

Phenotype distribution
26



A model for selection & effect size
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Human-specific demography and Selection

Fitness effects in non-coding DNA:

Growth model: Gutenkunst et al (2009) Torgerson et al (2009)
Explosive growth: Tennessen et al (2012)
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28 Uricchio, et al. Genome Res 26, 863-873 (2016).



NEUTRAL MODEL: MOST VARIANCE
EXPLAINED BY COMMON ALLELES

Standard Neutral Model
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Genetic architecture is altered by selection and

demography
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Genetic architecture is altered by selection and

demography
_
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Genetic architecture is altered by selection and

demography

10

Vo/ V1
0.6 0.8

0.4

0.2

0.0

5e-04 5e-03 5e-02 5e-01
derived allele frequency, w

logo(x) effects
p=1

p =0.99
p=0.9

p=0.8

p=0

Uricchio, et al. Genome Res 26, 863-873 (20106).




Genetic architecture is altered by selection and
demography

AFR, Growth AFR, Accelerated growth
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Demography and selection matter!

As populations expand and contract, or strength of selection
changes, the frequency spectrum responds.

This can and should impact the genetic architecture of traits!
B
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Demography and selection matter!

Demography and selection also impacts the number of
causal variants!
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Demography and selection matter!

Demography and selection themselves do not impact the
heritability of traitsl!
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The phenotypic legacy of admixture
between modern humans and Neandertals

e \We discussed admixture

e Non-African individuals have ~1-4% Neanderthal
ancestry in their genomes.

 What is it doing?

* Analysis: 1000 electronic health record (EHR)—
derived phenotypes in ~28,000 adults of European
ancestry

37 Simonti, et al., Science (2016)



The phenotypic legacy of admixture
between modern humans and Neandertals

A D
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The phenotypic legacy of admixture
between modern humans and Neandertals

Replication

Discovery (E1) Replication (E2)

Phenotype (E2; two-GRM)

Risk explained P Risk explained P Risk explained P
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disorder

39 Simonti, et al., Science (2016)



Open Questions

* What does does the genetic architecture of a
complex trait really look like”

* How many causal variants are there”
* Proportion of effects from rare/common alleles?
* Additive vs epistatic interactions?

* Pleiotropy?
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