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Heritability and Human Height
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Studies of heritability 
ask questions such as 
how much genetic 
factors play a role in 
differences in height 
between people. 
This is not the same 
as asking how much 
genetic factors 
influence height in 
any one person.

https://en.wikipedia.org/wiki/Heritability
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An estimated 80% of variation in 
height driven is driven by genetics

5
Silventoinen et al, 2003 Twin Research
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But GWAS explain only 20% of the 
variation in height

6
Wood et al, 2014 Nat. Genet.
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hGWAS
2 :

The narrow-sense heritability 
explained by summing the 
effects of GWAS identified SNPs.

250,000 subjects
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GWAS have the potential to explain 
60% of the variation in height
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€ 

hg
2 : The narrow-sense heritability 

explained by all genotyped SNPs.

250,000 subjects
Wood et al, 2014 Nat. Genet.
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Challenges For Studying Complex 
Diseases

• Sit
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I
f you want to predict 
how tall your children 
might one day be, a 
good bet would be to 

look in the mirror, and at 
your mate. Studies going 
back almost a century have 
estimated that height is 80–90% heritable. So 
if 29 centimetres separate the tallest 5% of a 
population from the shortest, then genetics 
would account for as many as 27 of them1.

This year, three groups of researchers2–4 
scoured the genomes of huge populations 
(the largest study4 looked at more than 30,000 
people) for genetic variants associated with the 
height differences. More than 40 turned up. 

But there was a problem: the variants had  
tiny effects. Altogether, they accounted for 
little more than 5% of height’s heritability — 
just 6 centimetres by the calculations above. 

Even though these genome-wide association 
studies (GWAS) turned up dozens of variants, 
they did “very little of the prediction that you 
would do just by asking people how tall their 
parents are”, says Joel Hirschhorn at the Broad 
Institute in Cambridge, Massachusetts, who 
led one of the studies3. 

Height isn’t the only trait in which genes 
have gone missing, nor is it the most impor-
tant. Studies looking at similarities between 
identical and fraternal twins estimate herit-
ability at more than 90% for autism5 and more 
than 80% for schizophrenia6. And genetics 
makes a major contribution to disorders such 
as obesity, diabetes and heart disease. GWAS, 
one of the most celebrated techniques of the 
past five years, promised to deliver many of 
the genes involved (see ‘Where’s the reward?’, 
page 20). And to some extent they have, iden-
tifying more than 400 genetic variants that 

contribute to a variety of traits and common 
diseases. But even when dozens of genes have 
been linked to a trait, both the individual 
and cumulative effects are disappointingly 
small and nowhere near enough to explain 
earlier estimates of heritability. “It is the big 
topic in the genetics of common disease right 
now,” says Francis Collins, former head of the 
National Human Genome Research Insti-
tute (NHGRI) in Bethesda, Maryland. The 
unexpected results left researchers at a point 
“where we all had to scratch our heads and 
say, ‘Huh?’”, he says.

Although flummoxed by this missing herit-
ability, geneticists remain optimistic that they 
can find more of it. “These are very early days, 
and there are things that are doable in the next 
year or two that may well explain another size-
able chunk of heritability,” says Hirschhorn. So 
where might it be hiding?

When scientists opened up the human genome, they expected to find the genetic components of 
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on 
six places where the missing loot could be stashed away.

The case of the missing heritability
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Maher, Nature (2008).



SDS replicates signature of 
selection on height
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significant associations between SDS and GWAS
effect sizes (Fig. 4C). Because large-scale family
studies are not available for most traits, we used
LD score regression to verify these correlations
(24, 25). This method uses the property that the
covariance between two correlated polygenic
signals should increase with the amount of LD
if they share an underlying genetic basis, but
should be nearly independent of LD for spu-
rious associations resulting from stratification
(13). Indeed for height, LD score regression is
highly significant (P = 3 × 10−17, family data; P =
2 × 10−11, meta-analysis; Fig. 4B and fig. S22B).
Notably, most of the other significant traits are
also nominally significant by this stringent test
and persist in multiple genomic contexts (Fig.
4C and figs. S24 to S27).
Although height has the strongest signal,

we also see signals for increased infant head
circumference and birth weight, and increases
in female hip size; as well as on variants un-
derlying metabolic traits; male-specific signal
for decreased BMI; and in favor of later sexual
maturation in women, but not in men. Multiple
regression analysis indicates that none of the
examined traits, including height, uniquely un-
derlies the top associations (fig. S28) (13). Al-
though these signals are highly intriguing, and
somematch known phenotypes of modern Britons
(13), the confounding role—if any—of population

structure in contributing to these signals remains
to be fully determined.
In this study, we have introduced amethod for

inferring very recent changes in allele frequen-
cies that is widely applicable across humanpopu-
lations and other species. We found that human
adaptation continued well into historical times,
with polygenic adaptation being an important
force shaping both genotypic and phenotypic
variation.
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Fig. 4. Signals of polygenic adaptation. (A) Mean
tSDS of SNPs, where tSDS > 0 implies increased
frequency of the “tall” allele in a recent family-
based study (20). The x axis is ordered from least
significant SNPs (P ~ 1) to most significant (P ~ 0),
and SNPs are placed into bins of 1000 consecu-
tive SNPs for easier visualization. (B) Covariance of
height Z score and SDS, as a function of LD score,
provides evidence that selection on height is truly
polygenic (P = 2 × 10−11; LD score regression).
(C) QQ-plot testing for a correlation between GWAS
Z score and tSDS for 43 traits. tSDS > 0 implies
increased frequency of the “trait-increasing” allele.
Significant traits that are also nominally significant
by LD score regression (P < 0.05, one-sided test)
are labeled.

RESEARCH | REPORTS

on July 16, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 



10

Major Problem

• There are no complex traits in which we know:

• The number of causal variants

• The frequencies of all the causal variants
• The effect sizes of all the causal variants

• The fitness effect of all the causal variants

• We need a thorough simulation study where we can vary 
all of these parameters and see how they effect our answer!



Candidates

Common variants of weak effect

Incomplete linkage to causal alleles/multiple causal alleles in locus

GxG / GxE Interactions

Rare variants

Structural variation

Possible Origins Of Missing Heritability
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• Genome-wide association studies (GWAS) seek to identify 
common variants that contribute to common disease 

• Successfully identified many candidate disease-associated 
genes 

• Challenges: 
• Generally have low relative risk 
• Explain only a small proportion of the phenotypic variance 

• Provides candidate loci, but causal variant is rarely typed 

• Implication: 
• Predictive power of GWAS is minimal…

12

From GWAS To Deep Sequencing
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“Missing” heritability - calculating variance 
accounted for by GWAS

Distribution of Very Important Phenotype
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Where is the “missing” heritability?
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• Why would cases have an excess of rare non-synonymous 
variants in disease-associated genes?  

• Recent neutral mutations that have not had time to spread  

• Deleterious mutations restricted to low frequency  

• Population genetic analyses are ideally suited to distinguish 
these cases.

Population Genetics



Evolutionary Models Of 
Complex Disease

Direct relationship between disease and fitness

SNP Disease
propensity

Disease

Fitness



Evolutionary Models Of 
Complex Disease

Other
Phenotype

SNP Disease
propensity

Disease

Fitness

Pleiotropy: SNP impacts multiple phenotypes
Uricchio et al., Genome Research (2016)



The Model Of Eyre-Walker (2010)

•The phenotypic effect size has a direct 
relationship to selection coefficient of causal 
mutations:  

•Where:
•ε ~ N(0, σ2) 
•δ = random sign (trait increasing/decreasing)
•S = selection coefficient
•τ = measures how the mean absolute effect of 
a mutation on the trait increases with the 
strength of selection 

Eyre-Walker, PNAS (2010)

z = �S⌧ (1 + ✏)



The Model Of Eyre-Walker (2010)

•As τ decreases, common alleles play a larger 
role in the phenotype because the effect sizes of 
weakly deleterious alleles in- crease relative to 
strongly deleterious alleles. 

Eyre-Walker, PNAS (2010)

DðS; !S; βÞ ¼ ðβ=!SÞβSβ− 1e− βs=!s

ΓðβÞ
[2]

where β is the shape parameter and !S is the mean strength
of selection.
If we assume free recombination and that the effects of muta-

tions combine additively, then we can write down an expression
for the additive genetic variance contributed by mutations as a
function of their frequency in the population, x, as:

V ðxÞ

¼ 2Neu
Z ∞

−∞

Z ∞

0
DðS;!S; βÞNðε; 0; σÞHðS; xÞUðzðS; τ; εÞ; xÞdSdε

[3]

where Nðε; 0; σÞ is the distribution of ε,

HðS; xÞ ¼ 2

 
1− eSð1− xÞ

xð1− xÞð1− eSÞ

!
[4]

and

Uðz; xÞ ¼ 2xð1− xÞz2 [5]

H(S,x) is the time that a new mutation of selective strength S
spends at a frequency x (17) and U(z,x) is the variance in the trait
contributed by a mutation of effect z at frequency x. Eq. 3 takes
into account mutation, selection, and genetic drift. It can solved
to yield the following:

V ðxÞ ¼ θ
ΓðβÞ

 
β
!S

!β

ð1þ σ2ÞΓð2τ þ βÞ

 

Zeta

 

2τ þ β; xþ β
!S

!

−Zeta

 

2τ þ β;
!Sþ β
!S

!!

[6]

where Zeta is the Hurwitz Zeta function and θ is 4Neu. It is useful
to know, for plotting Eq. 6, the density of the variance as a func-
tion of log10 of the allele frequency; this is V ′ðyÞ ¼ vevyV ðevyÞ,
where y is log10(x) and v is loge(10).
The total additive genetic variance in the trait is:

VT ¼
Z 1

0
V ðxÞdx

which simplifies to:

VT ¼ θ
ΓðβÞ

 
β
!S

!β

ð1þ σ2ÞΓð2τ þ βÞ

 !
Zeta

!
2τ þ β− 1; β

!S

"
−Zeta

!
2τ þ β− 1;

!Sþβ
!S

""

ð2τ þ β− 1Þ

−Zeta

 
2τ þ β;

!Sþ β
!S

!!
[7]

It is evident on inspection of Eqs. 6 and 7 that V(x) / VT is inde-
pendent of θ and σ. A Mathematica notebook of these equations
is available from the author’s Web site (www.lifesci.susx.ac.uk/
home/Adam_Eyre-Walker/).

Results
In ourmodel we assume thatmutations have effects on both fitness
and a trait of interest, such as the chance of developing diabetes.
The effects of the mutation on fitness and the trait are correlated,
and this correlation can vary from very strong, when the trait is
fitness, to very weak, when the effects are independent of one
another. Let us start by considering the case in which the trait is
fitness itself (i.e., δ=+1, τ= 1, and σ= 0), and as a starting point
let us consider the distribution of fitness effects (DFE) to be that
inferred for new amino acid mutations in humans [β = 0.20, !S =
3000 (18); see also refs. 19 and 20]. It is apparent that, under this
distribution, the vast majority of the variance, and hence herit-
ability, in fitness is contributed by mutations that are very rare in
the population; 96% of the variance is contributed by mutations

Fig. 1. The relationship between trait and fitness, assuming the distribution of fitness is a Γ-distribution (β = 0.20 and !S = 3,000) for different values of t and σ.

Eyre-Walker PNAS | January 26, 2010 | vol. 107 | suppl. 1 | 1753



The Model Of Simons Et Al (2014)

•The phenotypic effect size may have a direct 
relationship to selection coefficient of causal 
mutations:  

•Where:
•ρ = Probability that the trait effect is 
proportional to the selection coefficient: 
Pleiotropy!!

•s = selection coefficient
•sr = random selection coefficient

Simons et al, Nat Genet (2014)



The Model Of Uricchio Et Al (2016)

•A hybrid of the two:  

•Where:
•δ = random sign (trait increasing/decreasing)
•τ = measures how the mean absolute effect of a 
mutation on the trait increases with the strength 
of selection 

•ρ = Probability that the trait effect is proportional 
to the selection coefficient: Pleiotropy!!

•s = selection coefficient
•sr = random selection coefficient

Uricchio et al, Genome Research (2016)



Evolutionary Models Of 
Complex Disease

Other
Phenotype

SNP Disease
propensity

Disease

Fitness

Pleiotropy: SNP impacts multiple phenotypes

ρ:  correlation(effect size, fitness) 
(Simons et al, 2014)

τ:  transforms fitness effect to 
phenotype (Eyre-Walker, 2010)

Uricchio et al., Genome Research (2016)



Why should we think about evolution?
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Phenotype distribution

Trait optimum

Selection 
pressure  
towards an optimum



Stabilizing selection

24

Phenotype distribution

Trait optimum

Selection 
pressure  
towards an optimum
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Phenotype distribution

Trait optimum

Selection 
pressure  
towards an optimum

Stabilizing selection
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Phenotype distribution

Trait optimum

Selection 
pressure  
towards an optimum

Stabilizing selection
• New mutations 

deleterious 

• Larger effect 
mutations are more 
deleterious 

• Effect sizes may not 
be linear in selection 
strength 

• Want to allow for 
pleiotropy 



A model for selection & effect size
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Human-specific demography and Selection

Growth model: Gutenkunst et al (2009) 
Explosive growth: Tennessen et al (2012)

AFRICA EUROPE ASIA

 Maher   /Uricchio   /Torgerson   /Hernandez   

 

Hum Hered 2012;74:118–128
DOI: 10.1159/000346826
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  Consistent with previous observations  [13] , we find 
for these simulations that essentially all non-synonymous 
variants that have frequency <1% will have a negligible 
probability of being old enough to be shared across con-
tinents without requiring high rates of migration (i.e. they 
have arisen since the founding-of-Europe bottleneck). 
This has profound implications for studying the genetics 
of complex traits across populations, since if rare variants 
are a predominant source of the heritability of complex 
traits, then we will be unlikely to replicate many associa-
tions across populations. However, we find that even for 
those mutations that are incredibly rare (e.g. private to a 
single chromosome out of 10,000), there can still be a sur-
prisingly broad range of ages, with 9% of these variants 
being greater than 3,000 years old. 

  The Age Distribution of Deleterious versus
Neutral Variants 
 Identifying methods for distinguishing variants with 

strong effects from those with weak effects is critically 
important. A classic result in population genetics suggests 
that for variants at the same population frequency, delete-
rious alleles will on average be younger than neutral al-
leles (i.e. mutant alleles driven by natural selection will 
have arisen more recently in the past  [33] ). This result 
suggests that if we were able to accurately estimate the 
ages of mutations across the genome, then we would be 
able to distinguish deleterious alleles from neutral ones at 
the same frequency. To evaluate this hypothesis, we rely 
on simulations where the true age of an allele is known. 

  In  figure 5  we show the average age of variants in four 
fitness effect classes across a range of allele frequencies. 
Note that synonymous variants are neutral, and non-syn-
onymous variants are only exposed to deleterious fitness 
effects so only the absolute value of the selection coeffi-
cient is shown. We find no distinction in the average age 
of variants that are synonymous, nearly neutral, or even 
weakly deleterious for any frequency range. In contrast, 
there is a clear reduction in the average age of the most 
deleterious variants for common alleles (>1%), and a 
moderate reduction in age for the low-frequency variants 
(0.5–1%) and singleton class ( fig. 5 ).

  Since strongly deleterious alleles are on average young-
er than neutral alleles for low-frequency and common 
variants, we next set out to characterize the distribution 
of ages for these two categories.  Figure 6  shows the aver-
age age for neutral (s > –10 –5 ) and strongly deleterious
(s < –10 –2 ) mutations as a function of allele frequency. 
Each curve is contained in an envelope representing the 
90% quantile range of all variants observed at that fre-
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Neutral model: most variance 
explained by common alleles
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Genetic architecture is altered by selection and 
demography

Implication: in some cases, largest effect alleles are 
very rare, so we may not detect them with GWAS!

Uricchio, et al. Genome Res 26, 863-873 (2016).



Demography and selection matter!

As populations expand and contract, or strength of selection 
changes, the frequency spectrum responds. 
This can and should impact the genetic architecture of traits!

dependent on the joint distribution of effect sizes and allele fre-
quencies and not only the mean burden of deleterious alleles.

Here, we propose a novel model of complex traits that unifies
previously studied models (Eyre-Walker 2010; Lohmueller 2014b;
Simons et al. 2014) into a single framework. We use simulation
and numerical algorithms to investigate a wide variety of human
demographic and selection parameters for European and African
populations and study the role of rare variants in complex
phenotypes. We then use simulations and human RNA-seq data
to ask whether the changes in genetic architecture driven by hu-
man selection and demography have implications for the statisti-
cal discovery of causal rare variants and consider the ramifications
of our findings for studies of genetic architecture in human
populations.

Results

An evolutionary model of complex phenotypes
We develop a phenotype model that explicitly captures the rela-
tionship between selection strength and effect size by unifying
the models proposed in Eyre-Walker (2010) and Simons et al.
(2014) (Methods). The parameters of our model capture both plei-
otropy (through r) and the functional relationship between selec-
tion and effect size (through t and d). Variant alleles with fitness
consequence s will have effect size zs as follows:

zs =
d|s|t with probability r
d|sr |t otherwise

{
(1)

The d and t parameters were proposed by Eyre-Walker (2010) and
allow the marginal distribution of effects to differ from the mar-
ginal distribution of selection coefficients. The r parameter is a
generalization of the p parameter proposed by Simons et al.
(2014) and allows for the introduction of pleiotropy without al-
tering the overall marginal distribution of effects. With probabil-
ity r, the effect size zs of a site with selection coefficient s is
chosen to be d|s|t. Otherwise, zs is determined by a random sam-
ple (sr) from the marginal distribution of selection coefficients. d
is −1 or 1 with equal probability, allowing for trait-increasing and
decreasing alleles.

From an evolutionary perspective, this model captures the
idea that phenotypes under direct selection will have a tight corre-

lation between selection strength and the absolute value of effect
size (i.e., high r and high modularity of the causal genetic varia-
tion), but the marginal distribution of effects may grow faster or
slower than the distribution of selection coefficients (i.e., t can
be a value greater than or less than 1). Due to pleiotropic effects,
some sites may have large selection coefficients but small effects
on the phenotype (i.e., decreasing r allows increased emphasis
on pleiotropy). Both trait-increasing and trait-decreasing alleles
are equally deleterious and equally probable, as might be expected
for traits under stabilizing selection. A pictorial representation of
the model is given in Supplemental Figure S1 (for further details,
see Methods).

Selection and demography impact the genetic architecture
of complex traits
Recent studies of deleterious alleles and complex demography
have often focused primarily on genetic load rather than genetic
architecture. In order to gain intuition about how the parameters
of our model and evolutionary events impact time-dependent ge-
netic architecture, we first studied our phenotype model under
simplified conditions. We let t = 1 and specify two categories of
selected sites: one strong (s = −10−2, 2Ns = −146) and one weak
(s = −2× 10−4, 2Ns = −2.92). Because this model has two selec-
tion coefficients, it will also have only two effect sizes, as mediated
by the parameter r. It has been shown that deleterious allele load
is not sensitive to demography under this model (Simons et al.
2014), but our interest is in understanding the implications for
trait architecture.

We start by calculating the site frequency spectrum (SFS) as a
function of time using a rescaling-based numerical solver (for a
brief discussion of rescaling, see Hoggart et al. 2007) and stochastic
simulations (Hernandez 2008). In a model of European demo-
graphic history (Methods; Gravel et al. 2011), our numerical cal-
culations predict that the proportion of variable sites that are
singletons (denoted c) is strongly impacted by demographic
events (Fig. 1A, solid lines), and that the nonequilibrium predic-
tions made under the model are in agreement with results from
stochastic forward simulations (Fig. 1A, points). As expected, ex-
pansion events increase c, whereas contractions decrease c.

In Figure 1B, we plot the proportion of the trait’s genetic
variance that is explained by singletons,Vc/V1, which is ameasure

of the genetic architecture of the trait (V1 is
the variance explained by all alleles under
frequency 1, and hence represents the total
genetic variance in the trait). We find that
Vc/V1 is strongly impacted by demographic
events and the relationship between selec-
tion and effect sizes. Expansions increase
the role of rare variants in the trait, whereas
contractions have the opposite effect. Sus-
tained exponential growth results in a
drastic increase in the role of rare alleles.
Note that this time-dependent behavior
for exponential expansion is qualitatively
different from the stepwise ancestral ex-
pansion event at time 0, which results in
an abrupt increase in the proportion of
trait variance explained by rare alleles and
a fast relaxation to a new equilibrium. Im-
portantly, when r = 1 and causal loci are
completely modular, sustained exponential

Figure 1. Time-dependence of singleton variants under a European growth model (Gravel et al.
2011). (A) The proportion of variable sites that are singletons (c). (B) The proportion of the genetic
variance in a complex trait that is due to singletons. A sample of n = 500 chromosomes was used for
each panel. The solid, dashed, and dotted lines show the results of our numerical algorithm, whereas
the points are the results of stochastic forward simulations. Each point represents themean across 100
simulations. The demographicmodel consists of an expansion event at time 0, successive bottlenecks
at times 0.27 and 0.34, and sustained exponential growth after the last bottleneck (see Methods,
“Calculating the impact of demographic events on genetic architecture” for completemodel details).
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dependent on the joint distribution of effect sizes and allele fre-
quencies and not only the mean burden of deleterious alleles.

Here, we propose a novel model of complex traits that unifies
previously studied models (Eyre-Walker 2010; Lohmueller 2014b;
Simons et al. 2014) into a single framework. We use simulation
and numerical algorithms to investigate a wide variety of human
demographic and selection parameters for European and African
populations and study the role of rare variants in complex
phenotypes. We then use simulations and human RNA-seq data
to ask whether the changes in genetic architecture driven by hu-
man selection and demography have implications for the statisti-
cal discovery of causal rare variants and consider the ramifications
of our findings for studies of genetic architecture in human
populations.

Results

An evolutionary model of complex phenotypes
We develop a phenotype model that explicitly captures the rela-
tionship between selection strength and effect size by unifying
the models proposed in Eyre-Walker (2010) and Simons et al.
(2014) (Methods). The parameters of our model capture both plei-
otropy (through r) and the functional relationship between selec-
tion and effect size (through t and d). Variant alleles with fitness
consequence s will have effect size zs as follows:

zs =
d|s|t with probability r
d|sr |t otherwise

{
(1)

The d and t parameters were proposed by Eyre-Walker (2010) and
allow the marginal distribution of effects to differ from the mar-
ginal distribution of selection coefficients. The r parameter is a
generalization of the p parameter proposed by Simons et al.
(2014) and allows for the introduction of pleiotropy without al-
tering the overall marginal distribution of effects. With probabil-
ity r, the effect size zs of a site with selection coefficient s is
chosen to be d|s|t. Otherwise, zs is determined by a random sam-
ple (sr) from the marginal distribution of selection coefficients. d
is −1 or 1 with equal probability, allowing for trait-increasing and
decreasing alleles.

From an evolutionary perspective, this model captures the
idea that phenotypes under direct selection will have a tight corre-

lation between selection strength and the absolute value of effect
size (i.e., high r and high modularity of the causal genetic varia-
tion), but the marginal distribution of effects may grow faster or
slower than the distribution of selection coefficients (i.e., t can
be a value greater than or less than 1). Due to pleiotropic effects,
some sites may have large selection coefficients but small effects
on the phenotype (i.e., decreasing r allows increased emphasis
on pleiotropy). Both trait-increasing and trait-decreasing alleles
are equally deleterious and equally probable, as might be expected
for traits under stabilizing selection. A pictorial representation of
the model is given in Supplemental Figure S1 (for further details,
see Methods).

Selection and demography impact the genetic architecture
of complex traits
Recent studies of deleterious alleles and complex demography
have often focused primarily on genetic load rather than genetic
architecture. In order to gain intuition about how the parameters
of our model and evolutionary events impact time-dependent ge-
netic architecture, we first studied our phenotype model under
simplified conditions. We let t = 1 and specify two categories of
selected sites: one strong (s = −10−2, 2Ns = −146) and one weak
(s = −2× 10−4, 2Ns = −2.92). Because this model has two selec-
tion coefficients, it will also have only two effect sizes, as mediated
by the parameter r. It has been shown that deleterious allele load
is not sensitive to demography under this model (Simons et al.
2014), but our interest is in understanding the implications for
trait architecture.

We start by calculating the site frequency spectrum (SFS) as a
function of time using a rescaling-based numerical solver (for a
brief discussion of rescaling, see Hoggart et al. 2007) and stochastic
simulations (Hernandez 2008). In a model of European demo-
graphic history (Methods; Gravel et al. 2011), our numerical cal-
culations predict that the proportion of variable sites that are
singletons (denoted c) is strongly impacted by demographic
events (Fig. 1A, solid lines), and that the nonequilibrium predic-
tions made under the model are in agreement with results from
stochastic forward simulations (Fig. 1A, points). As expected, ex-
pansion events increase c, whereas contractions decrease c.

In Figure 1B, we plot the proportion of the trait’s genetic
variance that is explained by singletons,Vc/V1, which is ameasure

of the genetic architecture of the trait (V1 is
the variance explained by all alleles under
frequency 1, and hence represents the total
genetic variance in the trait). We find that
Vc/V1 is strongly impacted by demographic
events and the relationship between selec-
tion and effect sizes. Expansions increase
the role of rare variants in the trait, whereas
contractions have the opposite effect. Sus-
tained exponential growth results in a
drastic increase in the role of rare alleles.
Note that this time-dependent behavior
for exponential expansion is qualitatively
different from the stepwise ancestral ex-
pansion event at time 0, which results in
an abrupt increase in the proportion of
trait variance explained by rare alleles and
a fast relaxation to a new equilibrium. Im-
portantly, when r = 1 and causal loci are
completely modular, sustained exponential

Figure 1. Time-dependence of singleton variants under a European growth model (Gravel et al.
2011). (A) The proportion of variable sites that are singletons (c). (B) The proportion of the genetic
variance in a complex trait that is due to singletons. A sample of n = 500 chromosomes was used for
each panel. The solid, dashed, and dotted lines show the results of our numerical algorithm, whereas
the points are the results of stochastic forward simulations. Each point represents themean across 100
simulations. The demographicmodel consists of an expansion event at time 0, successive bottlenecks
at times 0.27 and 0.34, and sustained exponential growth after the last bottleneck (see Methods,
“Calculating the impact of demographic events on genetic architecture” for completemodel details).
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Demography and selection matter!

Demography and selection also impacts the number of 
causal variants!

AfricanEuropeanIsolated
Lohmueller, PLoS Genet (2014).



Demography and selection matter!

Demography and selection themselves do not impact the 
heritability of traits!

AfricanEuropeanIsolated



The phenotypic legacy of admixture 
between modern humans and Neandertals 

• We discussed admixture 

• Non-African individuals have ~1-4% Neanderthal 
ancestry in their genomes. 

• What is it doing? 

• Analysis: 1000 electronic health record (EHR)–
derived phenotypes in ~28,000 adults of European 
ancestry

37 Simonti, et al., Science (2016)



The phenotypic legacy of admixture 
between modern humans and Neandertals 
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not been established, because of the difficulty of
confidently identifying Neandertal-derived DNA
and the expense of performing tests for trait as-
sociation between individuals with and without
Neandertal ancestry at specific sites.
We addressed these challenges by integrating

the phenotype data present in electronic health
records (EHRs) with high-resolution maps of
Neandertal haplotypes across individual human
genomes (Fig. 1A). We performed a large-scale
assessment of the functional effects of DNA in-
herited fromNeandertals on health-related traits
in modern populations of European ancestry. In
particular, we analyzed genotype and phenotype
data from the Electronic Medical Records and
Genomics (eMERGE) Network, a consortium
that unites EHR systems linked to patient ge-
netic data from nine sites across the United
States (10). EHRs contain quantitative and qual-
itative data on individuals’ traits; however, algo-
rithmsare required toderive consistent phenotypes

appropriate for use in genetic association test-
ing from these records. For the majority of our
analyses, we used a set of 1689 hierarchically
related phenotypes (including 1087 leaf pheno-
types) defined from the use of International
Classification of Diseases (ICD-9) billing codes
in the EHRs (11). We analyzed a set of 28,416
adults of European ancestry from across the
eMERGE sites who had been genotyped on
genome-wide arrays and had sufficient EHR
data to define phenotypes. These individuals
naturally fell into separate discovery and repli-
cation cohorts on the basis of their inclusion in
the eMERGE Network Phase 1 (E1; N = 13,686
individuals) or Phase 2 (E2; N = 14,730 individ-
uals) data releases (12).
To identify Neandertal alleles in the genotyp-

ing data available from eMERGE, we used a re-
cent genome-wide map of ~6000 Neandertal
haplotypes inferred by computing the S* statistic
(13) and refining putative introgressed haplotypes

by comparing sequenced individuals from the
1000 Genomes (1KG) Project (14) with the Altai
Neandertal genome (3, 6). We defined ~135,000
high-confidence “Neandertal single-nucleotide
polymorphisms (SNPs)” among the introgressed
haplotypes by filtering out SNPs whose frequency
significantly differed from the overall Neander-
tal haplotype frequency and removing haplotypes
with fewer than four likely Neandertal-derived
SNPs (11). This filtering was necessary to re-
move variants unlikely to derive fromNeandertal
admixture.
Neandertal variants have been hypothesized

to influence many phenotypes in AMHs, in-
cluding lipid metabolism, immunity, depression,
digestion, hair, and skin, on the basis of the en-
richment of Neandertal variants in regions of
the genome relevant to these traits (3, 5, 6, 9).
Accordingly, we first tested these hypotheses
using genome-wide complex trait analysis (GCTA)
to estimate the phenotypic risk explained by

738 12 FEBRUARY 2016 • VOL 351 ISSUE 6274 sciencemag.org SCIENCE

Fig. 1. Analysis of EHRs reveals clinical effects of Neandertal alleles
in modern humans. (A) Thousands of Neandertal alleles were identified in
~28,000 individuals of European ancestry across the eMERGE Network. We
derived phenotypes for each individual from data in their EHRs. (B) To test
Neandertal alleles in aggregate for phenotype associations, we computed
the genetic similarity of all pairs of individuals over 1495 genotyped Neandertal
loci and their phenotypic similarity over 46 EHR-derived traits. (C) We esti-
mated the overall variance in risk explained by Neandertal alleles using mixed
linearmodels in GCTA (15) and found that Neandertal alleles explain significant
variance in several traits (Table 1). (D) To test individual Neandertal alleles for

trait associations, we performed a discovery meta-analysis across eMERGE E1
sites with sufficient data.We then ran a replication meta-analysis over the in-
dependent eMERGE E2 cohort.This approach identified and replicated several
associations (Table 2).The example forest plot illustrates the association of
Neandertal SNP rs3917862 with hypercoagulable state in each site with
>=20 cases for the separate discovery and replication analyses. (E) rs3917862
is located in an intron of P-selectin (SELP), a gene that mediates leukocyte
action at injuries in the early stages of inflammation. The Neandertal allele is
significantly associated (linear regression, P = 0.005) with increased expres-
sion of SELP in tibial artery data from GTEx.
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1495 genotyped common (minor allele frequency
> 1%) Neandertal SNPs for a set of 46 high-
prevalence phenotypes from the hypothesized
categories, using age, sex, and eMERGE site as
covariates (Fig. 1, B and C) (15). Neandertal SNPs
explained a significant [likelihood ratio test; false
discovery rate (FDR) < 0.05 over all phenotype
tests] percent of the risk in three traits in the E1
discovery cohort (Table 1): depression (2.03%,
P = 0.0036), myocardial infarction (1.39%, P =
0.0026), and corns and callosities (1.26%, P =
0.01). Neandertal SNPs also explained a nom-
inally significant (P < 0.1) percent of risk for
nine additional traits, including actinic and
seborrheic keratosis, coronary atherosclerosis,
and obesity (Table 1).
Of the 12 nominally significant associations,

8 were replicated in the independent E2 data
set, including actinic keratosis (P = 0.0059),
mood disorders (P = 0.018), depression (P =

0.020), obesity (P = 0.030), and seborrheic kera-
tosis (P = 0.045) at P < 0.1 (Table 1; likelihood
ratio test). We also tested whether the percent
of phenotypic variance explained by Neander-
tal SNPs remained significant in the context
of non-Neandertal SNPs by including an addi-
tional genetic relationship matrix (GRM) com-
puted from non-Neandertal SNPs across the
rest of the human genome in the mixed linear
model (11). Depression (P = 0.031), mood dis-
orders (P = 0.029), and actinic keratosis (P =
0.036) were replicated with these stricter criteria
in the independent E2 cohort.
These analyses establish the influence of Nean-

dertal SNPs in concert on the variance in these
traits. We estimated individual effects for each
SNP by the best linear unbiased predictions
(BLUPs); this indicated that a similar number
of Neandertal SNPs increased and decreased risk
for each associated phenotype (table S1) (11). To

gain insight into the loci driving these associa-
tions, we analyzed the genomic distribution of
the 10% of SNPs with the highest and lowest
BLUPs for actinic keratosis and depression. We
found enrichment (FDR < 0.05; hypergeometric
test) for many functional annotations: most no-
tably, keratinocyte differentiation and several im-
mune functions for actinic keratosis and regions
involved in neurological diseases, cell migration,
and circadian clock genes for depression (fig. S1
and table S2) (11).
The significant replicated association of Nean-

dertal SNPs with mood disorders, in particular
depression, is intriguing because Neandertal al-
leles are enriched near genes associated with
long-term depression (5), and human-Neandertal
DNA and methylation differences have been hy-
pothesized to influence neurological and psy-
chiatric phenotypes (16, 17). Depression risk in
modern human populations is influenced by sun-
light exposure (18), which differs between high
and low latitudes, and we found enrichment of
circadian clock genes near the Neandertal alleles
that contribute most to this association (11). The
replicated nominal association of Neandertal
SNPs with actinic keratosis (precancerous scaly
skin lesions) further links introgressed alleles in
AMHs to a phenotype directly related to sun
exposure. It also suggests that the signatures of
adaptive introgression and strong enrichment of
Neandertal alleles near genes associated with
keratin filament formation (5) and keratinocytes
(6) reflect the influence of Neandertal alleles on a
modern human phenotype. However, further ge-
netic analyses are necessary to resolve the differ-
ences in the strength of this association between
E1 and E2. These results establish the impact of
Neandertal DNA on diseases in AMHs that in-
volve traits potentially influenced by environ-
mental differences experienced by non-African
populations.
GCTA quantifies the overall influence of Ne-

andertal SNPs together on traits in AMHs. To
identify individual Neandertal loci associatedwith
AMH phenotypes and potentially discover addi-
tional biological systems influenced by Neander-
tal admixture, we performed a phenome-wide
association study (PheWAS) of these 1495 Nean-
dertal SNPs with 1152 EHR-derived phenotypes
with at least 20 cases in at least one site (Fig. 1D).
PheWAS allows for large-scale characterization
of the effects of variants of interest (19). We
carried out twometa-analyses across the eMERGE
Network sites: one over the discovery cohort
and one over the replication cohort. We focus
on themeta-analyses here (Table 2 and table S3),
but a pooled analysis using the eMERGE site as
a covariate produced largely consistent results
(table S4).
Four Neandertal SNP–phenotype associations

passed a locus-wise Bonferroni corrected signif-
icance threshold (P = 3.3 × 10–5) in the E1 meta-
analysis and were replicated (P < 0.05) with the
same direction of effect in the independent E2
meta-analysis (Table 2). The strongest signal was
a Neandertal SNP (rs3917862, 6.5% European
(EUR) 1KG frequency) in an intron of P-selectin
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Table 2. Individual Neandertal SNPs with significant replicating phenotype associations. Four
locus-wise Bonferroni significant Neandertal SNP–phenotype associations replicated (with a fixed
effect P < 0.05 and consistent direction of effect). Nominally significant replicating results can be
found in table S3 and in the PheWAS Catalog (https://phewas.mc.vanderbilt.edu/neanderthal). Chr,
chromosome.

Discovery Replication

Phenotype
Chr:position

(hg19)
SNP

Flanking
gene(s)

Odds
ratio

P
Odds
ratio

P

Hypercoagulable
state

1:169593113 rs3917862 SELP 3.32 9.9 × 10−7 3.00 5.0 × 10–10

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Protein-calorie
malnutrition

1:234099819 rs12049593 SLC35F3 1.77 2.0 × 10−6 1.63 5.5 × 10−5

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Symptoms involving
urinary system

11:3867350 rs11030043 RHOG, STIM1 1.76 7.4 × 10−6 1.65 4.3 × 10−2

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Tobacco use
disorder

3:10962315 rs901033 SLC6A11 2.19 1.7 × 10−5 1.75 7.9 × 10−4

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Table 1. Neandertal alleles explain risk for human clinical traits.The eight traits for which Neandertal
alleles explained a nominally significant proportion of variance in risk in both the E1 discovery and E2
replication analyses are listed (GCTA, P < 0.1). The depression association remained significant after
controlling the false discovery rate at 5%. The Neandertal associations with actinic keratosis, mood
disorders, and depression were also maintained in a two-GRM model that considered the risk explained
by non-Neandertal variants. Phenotypes are sorted by their E2 P value.

Phenotype
Discovery (E1) Replication (E2)

Replication
(E2; two-GRM)

Risk explained P Risk explained P Risk explained P

Actinic keratosis 0.64% 0.066 3.37% 0.0059 2.49% 0.036
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Mood disorders 1.11% 0.0091 0.75% 0.018 0.68% 0.029
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Depression 2.03% 0.0023 1.15% 0.020 1.06% 0.031
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Obesity 0.59% 0.048 1.23% 0.030 0.39% 0.27
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Seborrheic keratosis 0.77% 0.038 0.61% 0.045 0.41% 0.13
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Overweight 0.60% 0.037 0.53% 0.052 0.23% 0.24
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Acute upper respiratory infections 0.70% 0.043 0.56% 0.062 0.34% 0.18
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Coronary atherosclerosis 0.68% 0.04 0.42% 0.098 0.34% 0.15
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...
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1495 genotyped common (minor allele frequency
> 1%) Neandertal SNPs for a set of 46 high-
prevalence phenotypes from the hypothesized
categories, using age, sex, and eMERGE site as
covariates (Fig. 1, B and C) (15). Neandertal SNPs
explained a significant [likelihood ratio test; false
discovery rate (FDR) < 0.05 over all phenotype
tests] percent of the risk in three traits in the E1
discovery cohort (Table 1): depression (2.03%,
P = 0.0036), myocardial infarction (1.39%, P =
0.0026), and corns and callosities (1.26%, P =
0.01). Neandertal SNPs also explained a nom-
inally significant (P < 0.1) percent of risk for
nine additional traits, including actinic and
seborrheic keratosis, coronary atherosclerosis,
and obesity (Table 1).
Of the 12 nominally significant associations,

8 were replicated in the independent E2 data
set, including actinic keratosis (P = 0.0059),
mood disorders (P = 0.018), depression (P =

0.020), obesity (P = 0.030), and seborrheic kera-
tosis (P = 0.045) at P < 0.1 (Table 1; likelihood
ratio test). We also tested whether the percent
of phenotypic variance explained by Neander-
tal SNPs remained significant in the context
of non-Neandertal SNPs by including an addi-
tional genetic relationship matrix (GRM) com-
puted from non-Neandertal SNPs across the
rest of the human genome in the mixed linear
model (11). Depression (P = 0.031), mood dis-
orders (P = 0.029), and actinic keratosis (P =
0.036) were replicated with these stricter criteria
in the independent E2 cohort.
These analyses establish the influence of Nean-

dertal SNPs in concert on the variance in these
traits. We estimated individual effects for each
SNP by the best linear unbiased predictions
(BLUPs); this indicated that a similar number
of Neandertal SNPs increased and decreased risk
for each associated phenotype (table S1) (11). To

gain insight into the loci driving these associa-
tions, we analyzed the genomic distribution of
the 10% of SNPs with the highest and lowest
BLUPs for actinic keratosis and depression. We
found enrichment (FDR < 0.05; hypergeometric
test) for many functional annotations: most no-
tably, keratinocyte differentiation and several im-
mune functions for actinic keratosis and regions
involved in neurological diseases, cell migration,
and circadian clock genes for depression (fig. S1
and table S2) (11).
The significant replicated association of Nean-

dertal SNPs with mood disorders, in particular
depression, is intriguing because Neandertal al-
leles are enriched near genes associated with
long-term depression (5), and human-Neandertal
DNA and methylation differences have been hy-
pothesized to influence neurological and psy-
chiatric phenotypes (16, 17). Depression risk in
modern human populations is influenced by sun-
light exposure (18), which differs between high
and low latitudes, and we found enrichment of
circadian clock genes near the Neandertal alleles
that contribute most to this association (11). The
replicated nominal association of Neandertal
SNPs with actinic keratosis (precancerous scaly
skin lesions) further links introgressed alleles in
AMHs to a phenotype directly related to sun
exposure. It also suggests that the signatures of
adaptive introgression and strong enrichment of
Neandertal alleles near genes associated with
keratin filament formation (5) and keratinocytes
(6) reflect the influence of Neandertal alleles on a
modern human phenotype. However, further ge-
netic analyses are necessary to resolve the differ-
ences in the strength of this association between
E1 and E2. These results establish the impact of
Neandertal DNA on diseases in AMHs that in-
volve traits potentially influenced by environ-
mental differences experienced by non-African
populations.
GCTA quantifies the overall influence of Ne-

andertal SNPs together on traits in AMHs. To
identify individual Neandertal loci associatedwith
AMH phenotypes and potentially discover addi-
tional biological systems influenced by Neander-
tal admixture, we performed a phenome-wide
association study (PheWAS) of these 1495 Nean-
dertal SNPs with 1152 EHR-derived phenotypes
with at least 20 cases in at least one site (Fig. 1D).
PheWAS allows for large-scale characterization
of the effects of variants of interest (19). We
carried out twometa-analyses across the eMERGE
Network sites: one over the discovery cohort
and one over the replication cohort. We focus
on themeta-analyses here (Table 2 and table S3),
but a pooled analysis using the eMERGE site as
a covariate produced largely consistent results
(table S4).
Four Neandertal SNP–phenotype associations

passed a locus-wise Bonferroni corrected signif-
icance threshold (P = 3.3 × 10–5) in the E1 meta-
analysis and were replicated (P < 0.05) with the
same direction of effect in the independent E2
meta-analysis (Table 2). The strongest signal was
a Neandertal SNP (rs3917862, 6.5% European
(EUR) 1KG frequency) in an intron of P-selectin
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Table 2. Individual Neandertal SNPs with significant replicating phenotype associations. Four
locus-wise Bonferroni significant Neandertal SNP–phenotype associations replicated (with a fixed
effect P < 0.05 and consistent direction of effect). Nominally significant replicating results can be
found in table S3 and in the PheWAS Catalog (https://phewas.mc.vanderbilt.edu/neanderthal). Chr,
chromosome.

Discovery Replication

Phenotype
Chr:position

(hg19)
SNP

Flanking
gene(s)

Odds
ratio

P
Odds
ratio

P

Hypercoagulable
state

1:169593113 rs3917862 SELP 3.32 9.9 × 10−7 3.00 5.0 × 10–10

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Protein-calorie
malnutrition

1:234099819 rs12049593 SLC35F3 1.77 2.0 × 10−6 1.63 5.5 × 10−5

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Symptoms involving
urinary system

11:3867350 rs11030043 RHOG, STIM1 1.76 7.4 × 10−6 1.65 4.3 × 10−2

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Tobacco use
disorder

3:10962315 rs901033 SLC6A11 2.19 1.7 × 10−5 1.75 7.9 × 10−4

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Table 1. Neandertal alleles explain risk for human clinical traits.The eight traits for which Neandertal
alleles explained a nominally significant proportion of variance in risk in both the E1 discovery and E2
replication analyses are listed (GCTA, P < 0.1). The depression association remained significant after
controlling the false discovery rate at 5%. The Neandertal associations with actinic keratosis, mood
disorders, and depression were also maintained in a two-GRM model that considered the risk explained
by non-Neandertal variants. Phenotypes are sorted by their E2 P value.

Phenotype
Discovery (E1) Replication (E2)

Replication
(E2; two-GRM)

Risk explained P Risk explained P Risk explained P

Actinic keratosis 0.64% 0.066 3.37% 0.0059 2.49% 0.036
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Mood disorders 1.11% 0.0091 0.75% 0.018 0.68% 0.029
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Depression 2.03% 0.0023 1.15% 0.020 1.06% 0.031
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Obesity 0.59% 0.048 1.23% 0.030 0.39% 0.27
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Seborrheic keratosis 0.77% 0.038 0.61% 0.045 0.41% 0.13
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Overweight 0.60% 0.037 0.53% 0.052 0.23% 0.24
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Acute upper respiratory infections 0.70% 0.043 0.56% 0.062 0.34% 0.18
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Coronary atherosclerosis 0.68% 0.04 0.42% 0.098 0.34% 0.15
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

RESEARCH | REPORTS

on July 18, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 



Open Questions
• What does does the genetic architecture of a 

complex trait really look like? 

• How many causal variants are there? 

• Proportion of effects from rare/common alleles? 

• Additive vs epistatic interactions? 

• Pleiotropy?
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