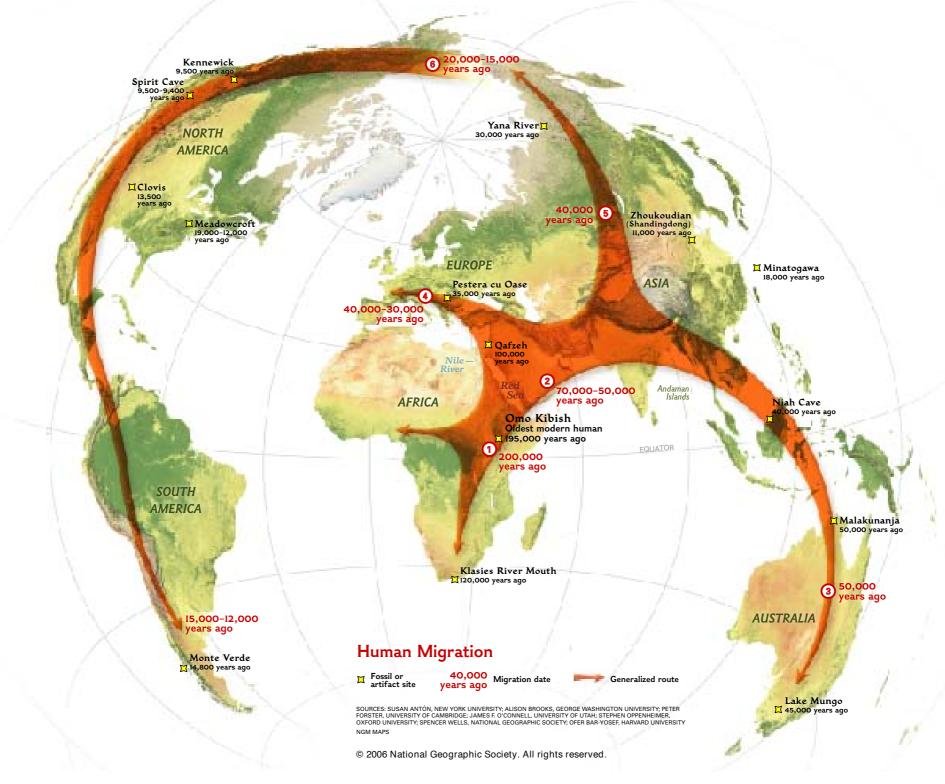
Pop Gen meets Quant Gen and other open questions

Ryan D. Hernandez

 $\label{lem:decomposition} \textbf{\textit{Department of Bioengineering and Therapeutic Sciences}} \text{ a joint department of the UCSF Schools of Pharmacy and Medicine}$

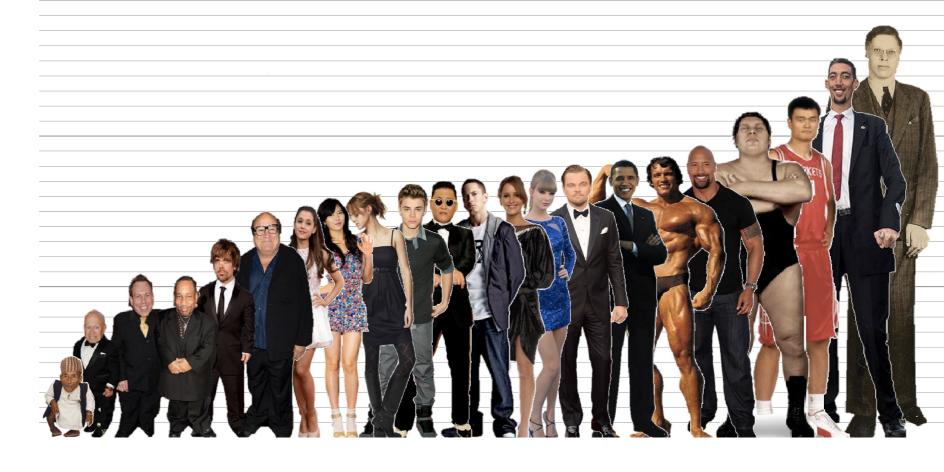
Modern Human Genomics

Human Colonization of the World

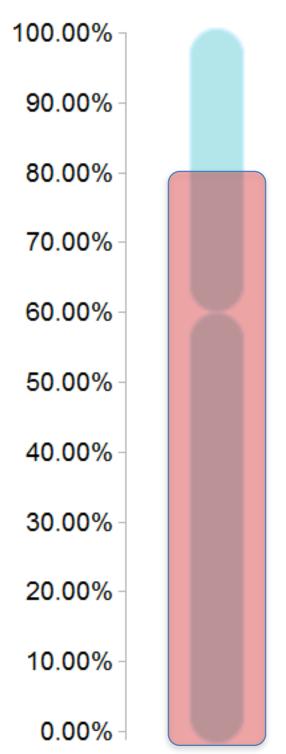


Heritability and Human Height

Studies of heritability ask questions such as how much genetic factors play a role in differences in height between people. This is not the same as asking how much genetic factors influence height in any one



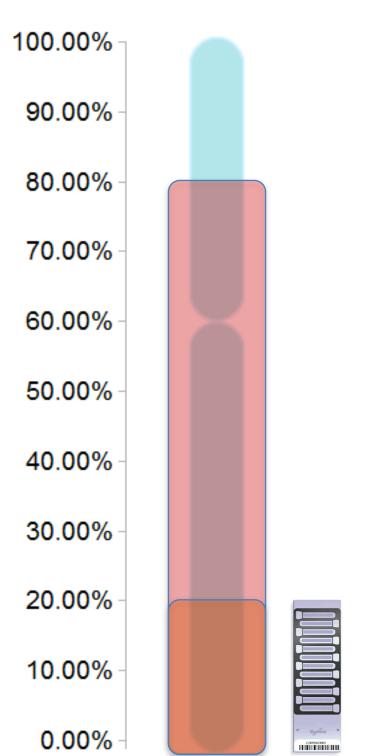
An estimated 80% of variation in height driven is driven by genetics



Large twin study

Silventoinen et al, 2003 Twin Research http://i.ytimg.com/vi/E0Aeks_id6c/maxresdefault.jpg

But GWAS explain only 20% of the variation in height



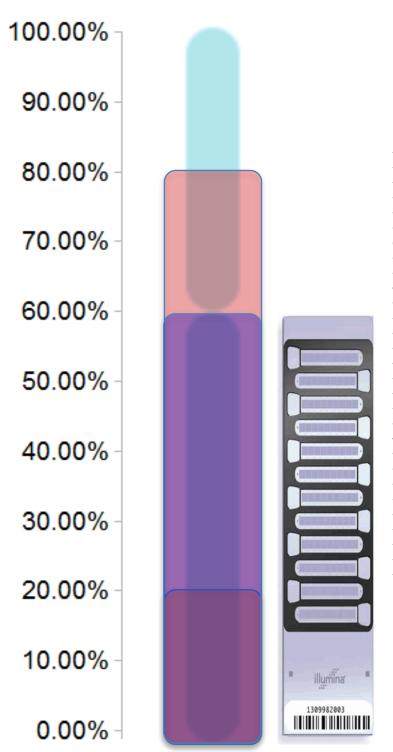
The narrow-sense heritability h_{GWAS}: explained by summing the effects of GWAS identified SNPs.



250,000 subjects

Wood et al, 2014 Nat. Genet. i.ytimg.com/vi/E0Aeks_id6c/maxresdefault.jpg

GWAS have the potential to explain 60% of the variation in height



 h_g^2 : The narrow-sense heritability explained by all genotyped SNPs.

250,000 subjects

Wood et al, 2014 Nat. Genet. i.ytimg.com/vi/E0Aeks_id6c/maxresdefault.jpg

Challenges For Studying Complex

The case of the missing heritability Maher, Nature (2008).

MAJOR PROBLEM

- There are no complex traits in which we know:
 - The number of causal variants
 - The frequencies of all the causal variants
 - The effect sizes of all the causal variants
 - The fitness effect of all the causal variants
- We need a thorough simulation study where we can vary all of these parameters and see how they effect our answer!

Possible Origins Of Missing Heritability

Candidates	

Common variants of weak effect

Incomplete linkage to causal alleles/multiple causal alleles in locus

GxG / GxE Interactions

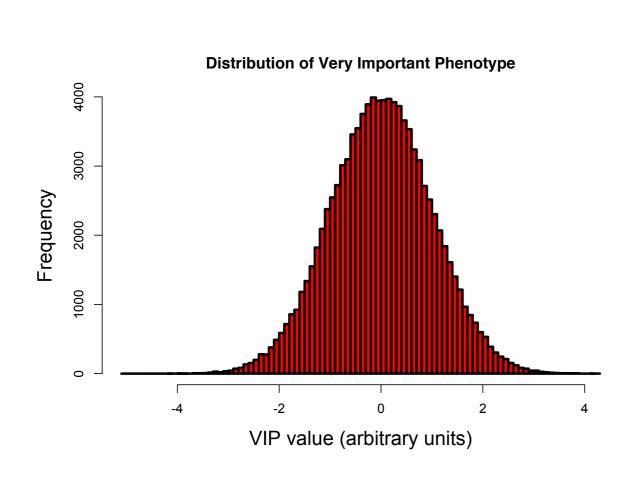
Rare variants

Structural variation

FROM GWAS TO DEEP SEQUENCING

- Genome-wide association studies (GWAS) seek to identify common variants that contribute to common disease
- Successfully identified many candidate disease-associated genes
- Challenges:
 - Generally have low relative risk
 - Explain only a small proportion of the phenotypic variance
 - Provides candidate loci, but causal variant is rarely typed
- Implication:
 - Predictive power of GWAS is minimal...

"Missing" heritability - calculating variance accounted for by GWAS



Suppose k variants are found to be associated with VIP...

Contribution from each SNP

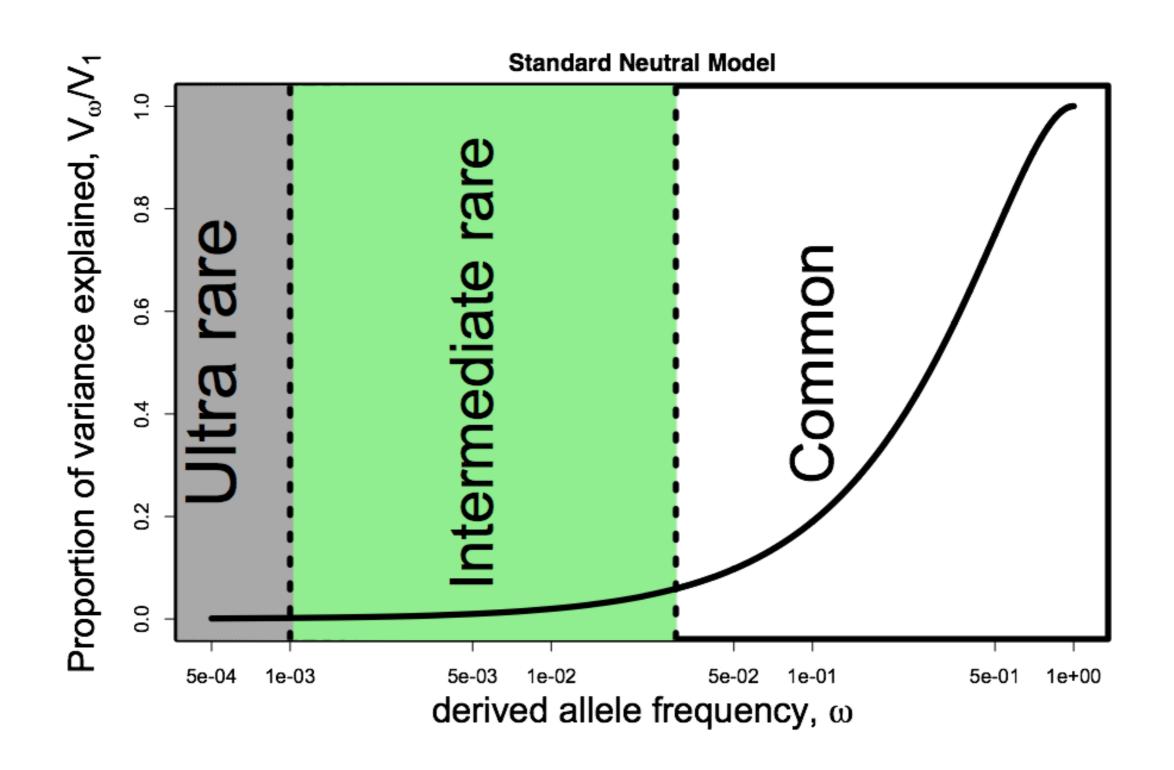
$$v = \frac{1}{2}z^2x(1-x)$$

Total variance from GWAS

$$V_{\scriptscriptstyle ext{\tiny GWAS}}(P) = \sum_k v_k$$

Compare to GWAS
$$V_{\mbox{\tiny GWAS}}(P) < h^2 \times V(P)$$

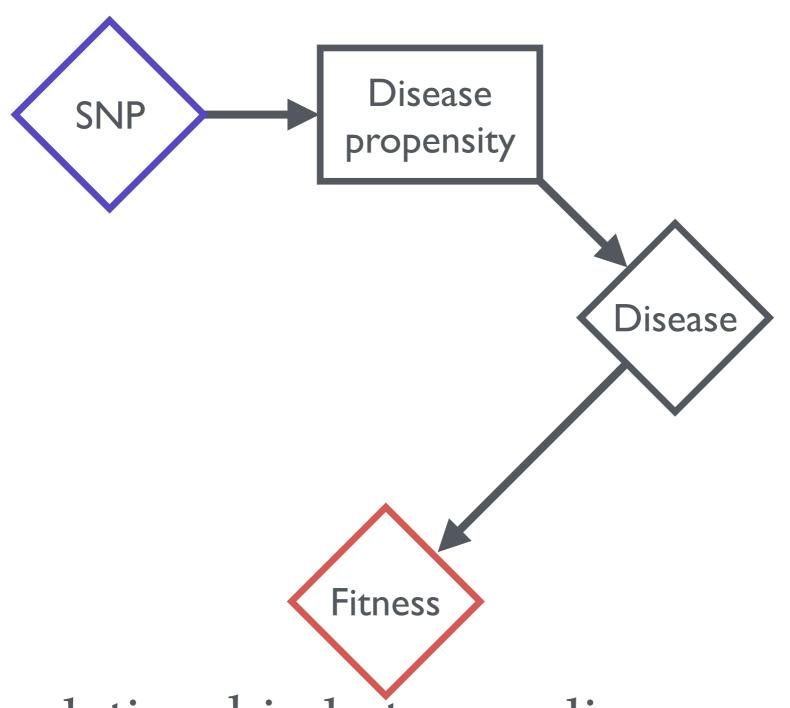
Where is the "missing" heritability?



POPULATION GENETICS

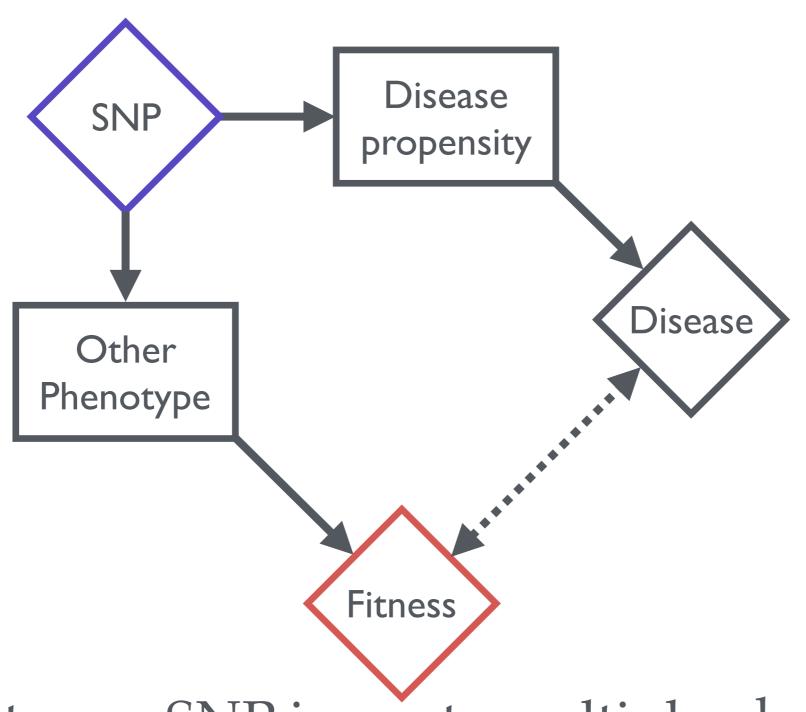
- Why would cases have an excess of rare non-synonymous variants in disease-associated genes?
 - Recent neutral mutations that have not had time to spread
 - Deleterious mutations restricted to low frequency
- Population genetic analyses are ideally suited to distinguish these cases.

EVOLUTIONARY MODELS OF COMPLEX DISEASE



Direct relationship between disease and fitness

EVOLUTIONARY MODELS OF COMPLEX DISEASE



Pleiotropy: SNP impacts multiple phenotypes

THE MODEL OF EYRE-WALKER (2010)

• The phenotypic effect size has a direct relationship to selection coefficient of causal mutations:

$$z = \delta S^{\tau} (1 + \epsilon)$$

- Where:
 - $\varepsilon \sim N(0, \sigma^2)$
 - • δ = random sign (trait increasing / decreasing)
 - •S = selection coefficient
 - • τ = measures how the mean absolute effect of a mutation on the trait increases with the strength of selection

THE MODEL OF SIMONS ET AL (2014)

• The phenotypic effect size **may** have a direct relationship to selection coefficient of causal mutations:

$$z_{s} \propto \left\{egin{array}{l} s & ext{ with probability }
ho \ s_{r} & ext{ with probability } (1-
ho) \end{array}
ight.$$

- Where:
 - ρ = Probability that the trait effect is proportional to the selection coefficient:
 Pleiotropy!!
 - •s = selection coefficient
 - • s_r = random selection coefficient

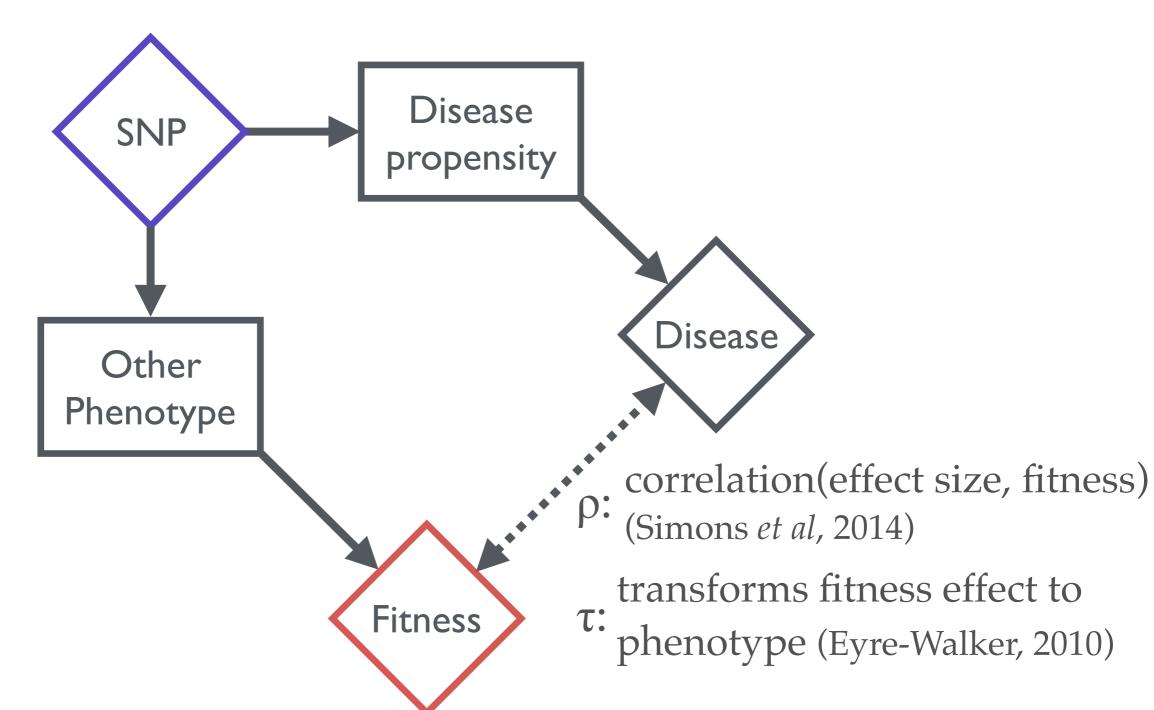
THE MODEL OF URICCHIO ET AL (2016)

• A hybrid of the two:
$$z_s \propto \begin{cases} \delta |s|^{\tau} & \text{with probability } \rho \\ \delta |s_r|^{\tau} & \text{with probability } (1-\rho) \end{cases}$$

• Where:

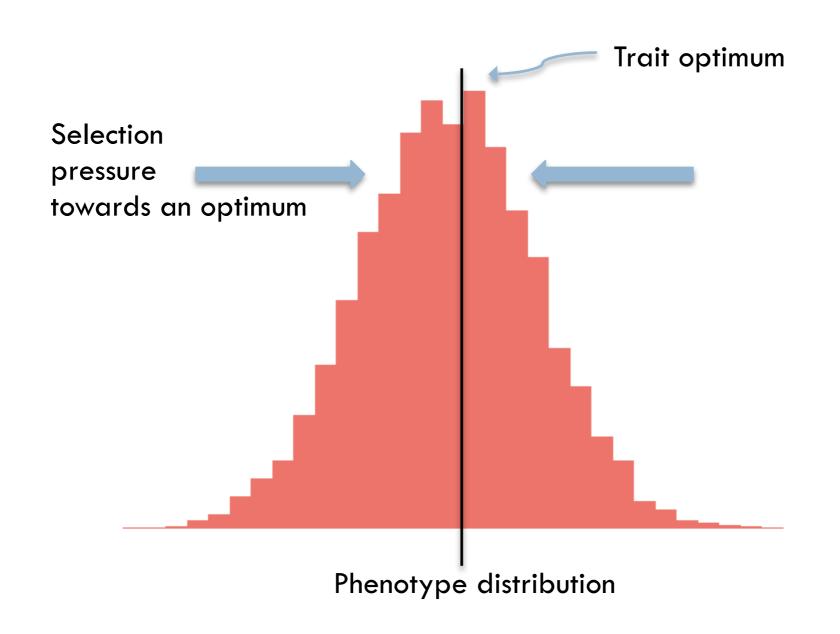
- • δ = random sign (trait increasing / decreasing)
- $\bullet \tau$ = measures how the mean absolute effect of a mutation on the trait increases with the strength of selection
- p = Probability that the trait effect is proportional to the selection coefficient: Pleiotropy!!
- •s = selection coefficient
- • s_r = random selection coefficient

EVOLUTIONARY MODELS OF COMPLEX DISEASE

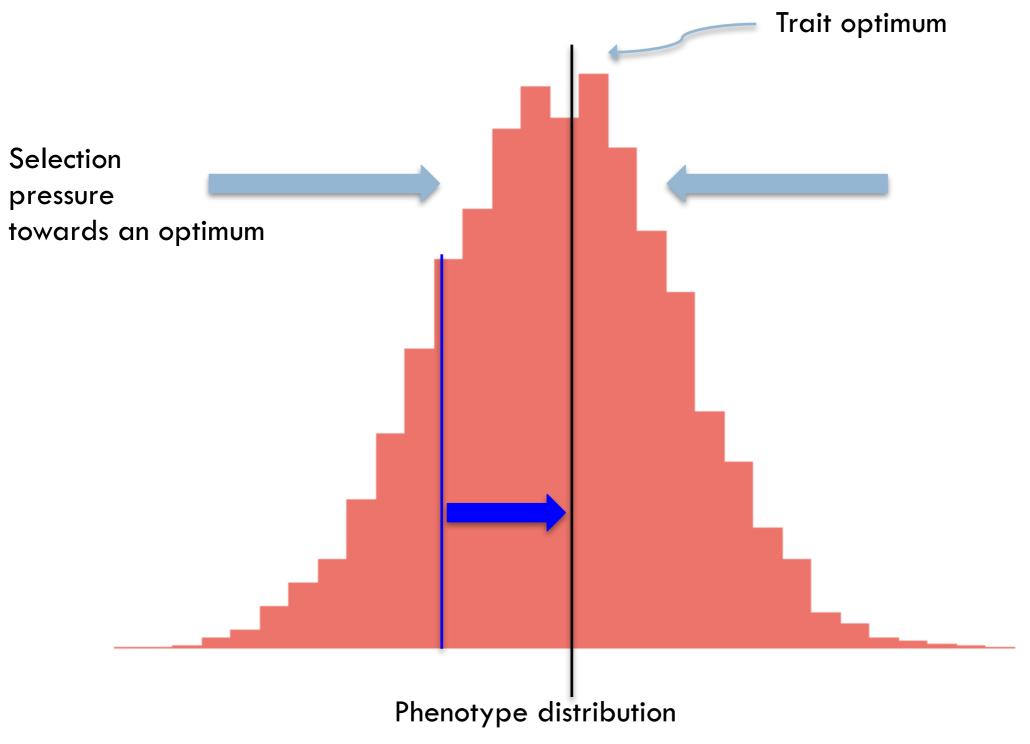


Pleiotropy: SNP impacts multiple phenotypes

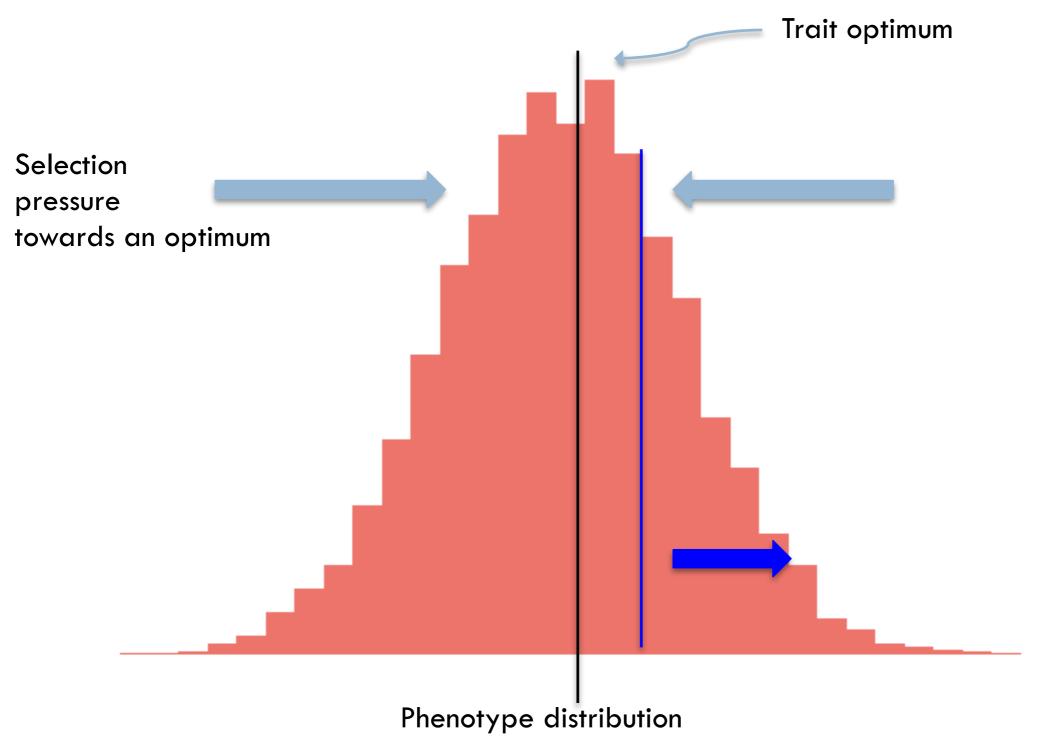
Why should we think about evolution?



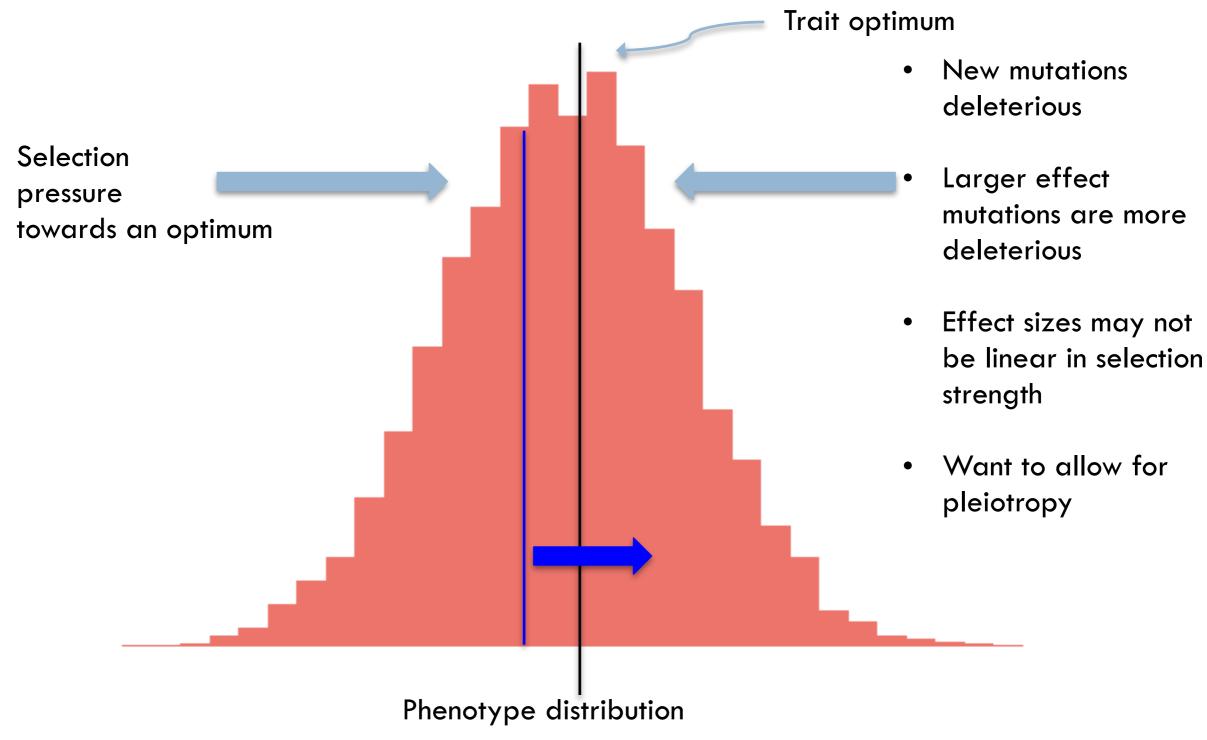
Stabilizing selection



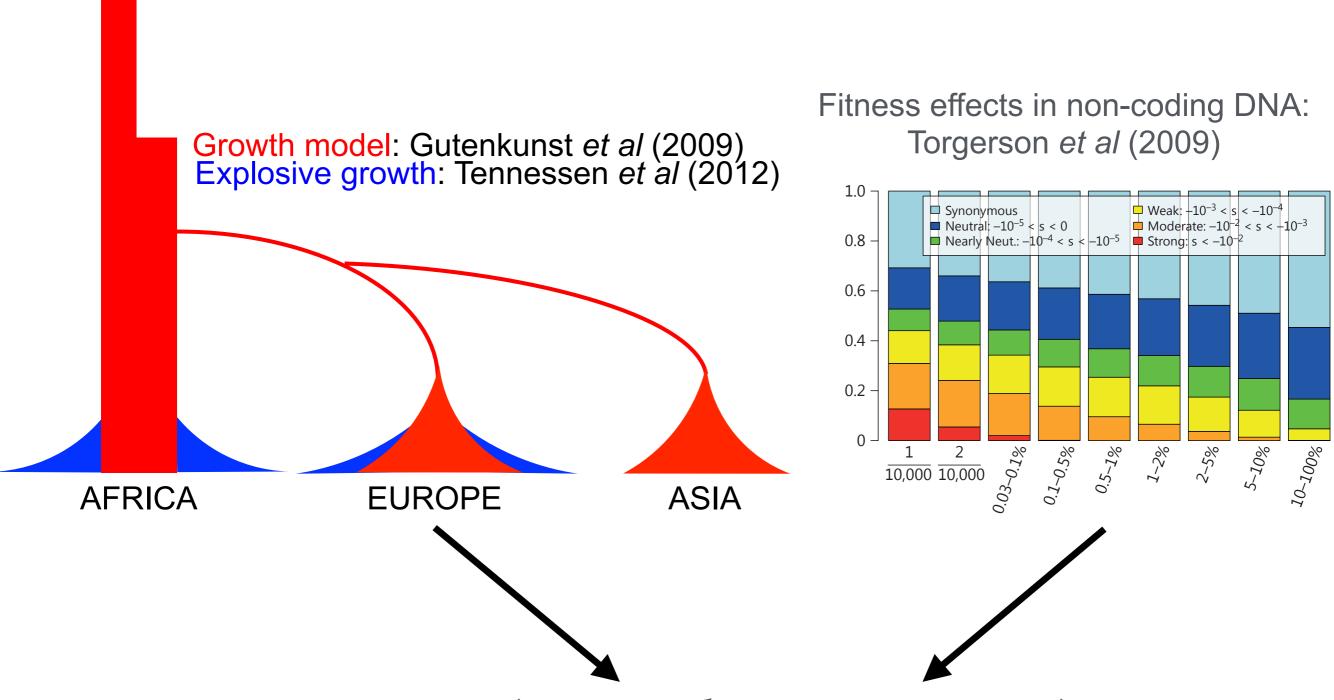
Stabilizing selection



Stabilizing selection

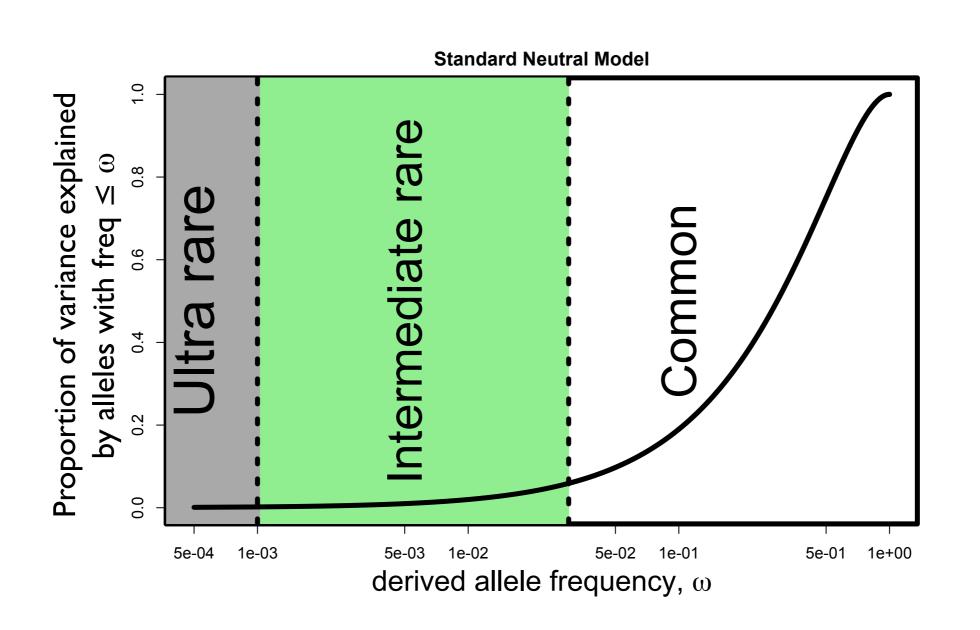


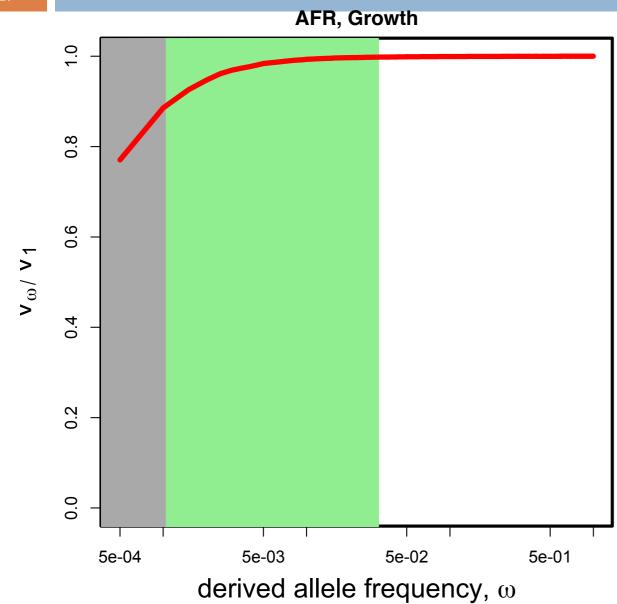
Human-specific demography and Selection

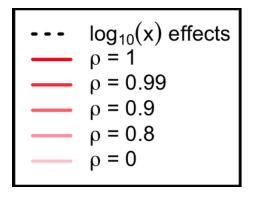


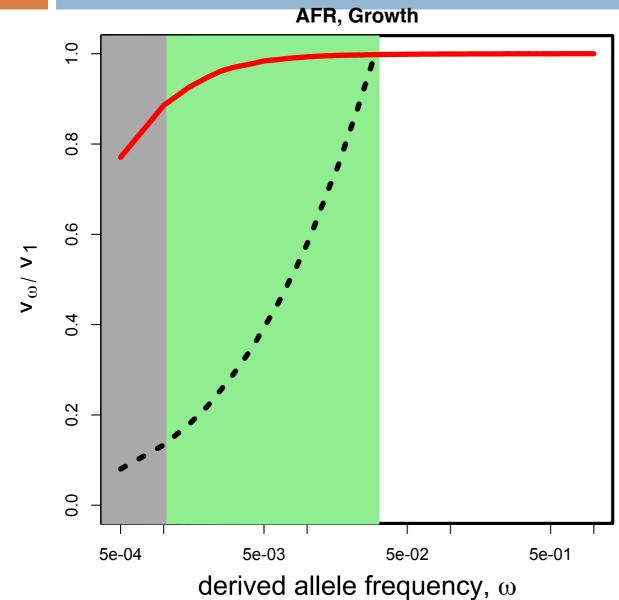
effect size = f(demography, natural selection)

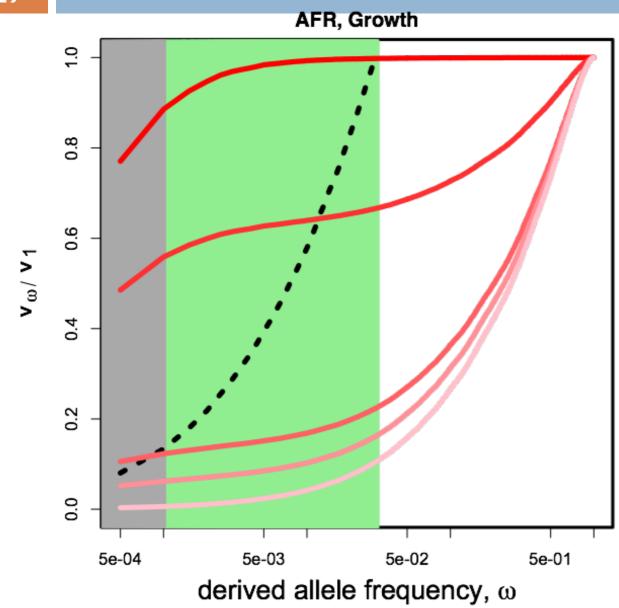
NEUTRAL MODEL: MOST VARIANCE EXPLAINED BY COMMON ALLELES



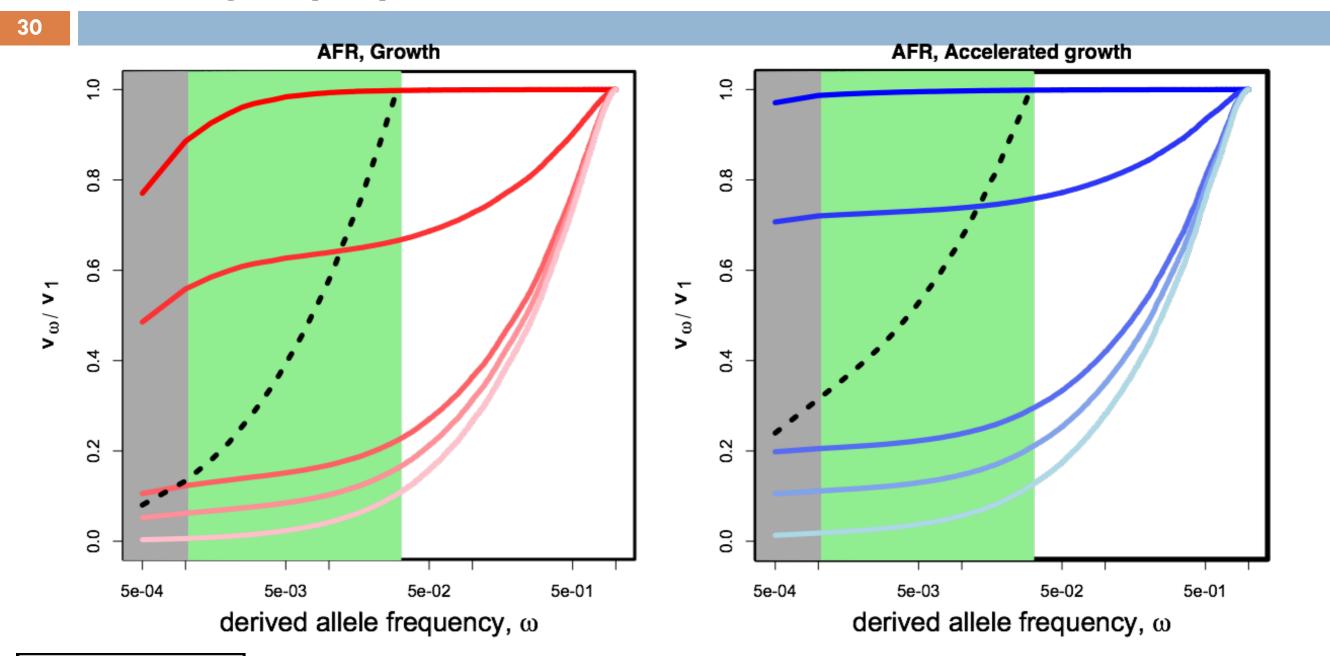


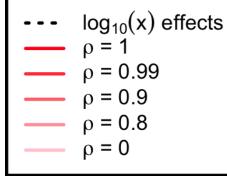






$$\begin{array}{ll} --- & \log_{10}(x) \text{ effects} \\ \hline --- & \rho = 1 \\ \hline --- & \rho = 0.99 \\ \hline --- & \rho = 0.9 \\ \hline --- & \rho = 0.8 \\ \hline --- & \rho = 0 \end{array}$$

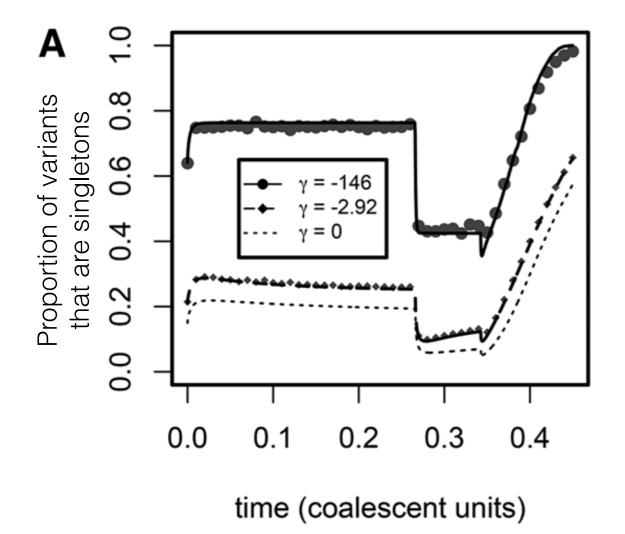


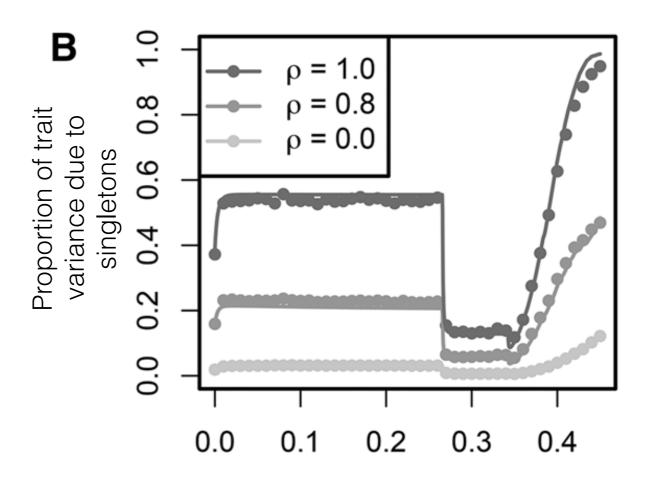


Implication: in some cases, largest effect alleles are very rare, so we may not detect them with GWAS!

Demography and selection matter!

- As populations expand and contract, or strength of selection changes, the frequency spectrum responds.
- This can and should impact the genetic architecture of traits!

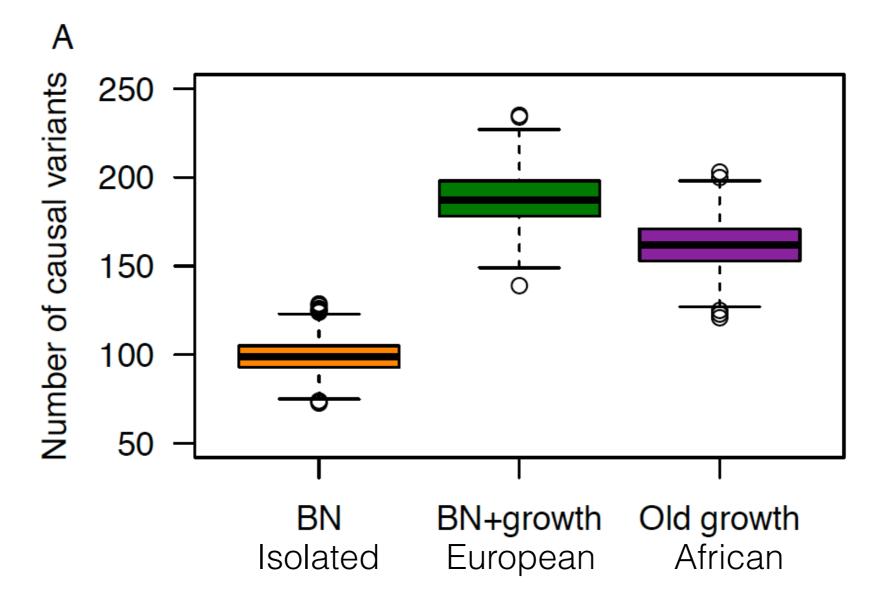




time (coalescent units)
Uricchio, et al. Genome Res 26, 863-873 (2016).

Demography and selection matter!

Demography and selection also impacts the number of causal variants!



Open Questions

- What does does the genetic architecture of a complex trait really look like?
 - How many causal variants are there?
 - Proportion of effects from rare/common alleles?
 - Additive vs epistatic interactions?
 - Pleiotropy?

A Deep Catalog of Human Genetic Variation

- Large-scale RNA sequencing + WGS
 - 4 European populations
 - 360 individuals
 - low coverage WGS + high coverage exome: Phase 3.
 - RNA-seq: median depth 58.3M reads
 - Gene expression: log2 transformed, median centered, and quantile normalized.
 - 10,077 unique genes.

YRI

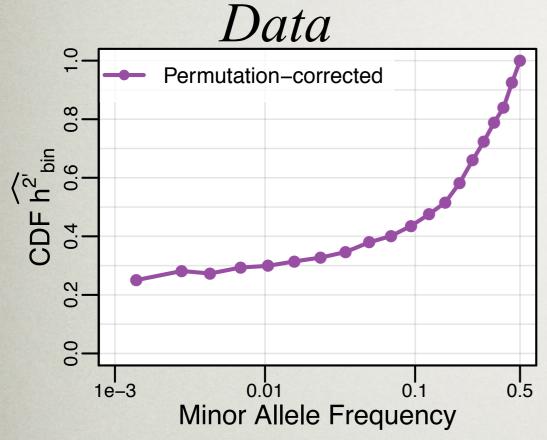
- Large-scale RNA sequencing + WGS
 - 4 European populations
 - 360 individuals
 - low coverage WGS + high coverage exome: Phase 3.
 - RNA-seq: median depth 58.3M reads
 - Gene expression: log2 transformed, median centered, and quantile normalized.
 - 10,077 unique genes.

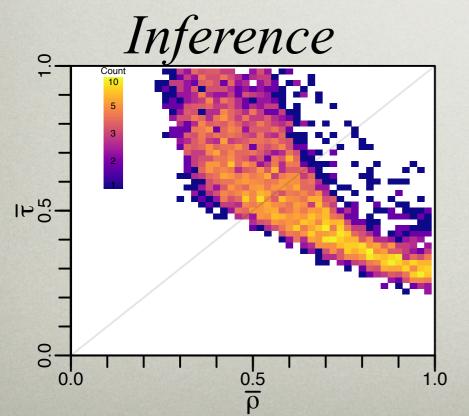
- Our sample size is small, but can we learn anything about the genetic basis of complex traits from these 10k genes?
- Let's analyze heritability of gene expression due to cis variation (within 1Mb of gene)

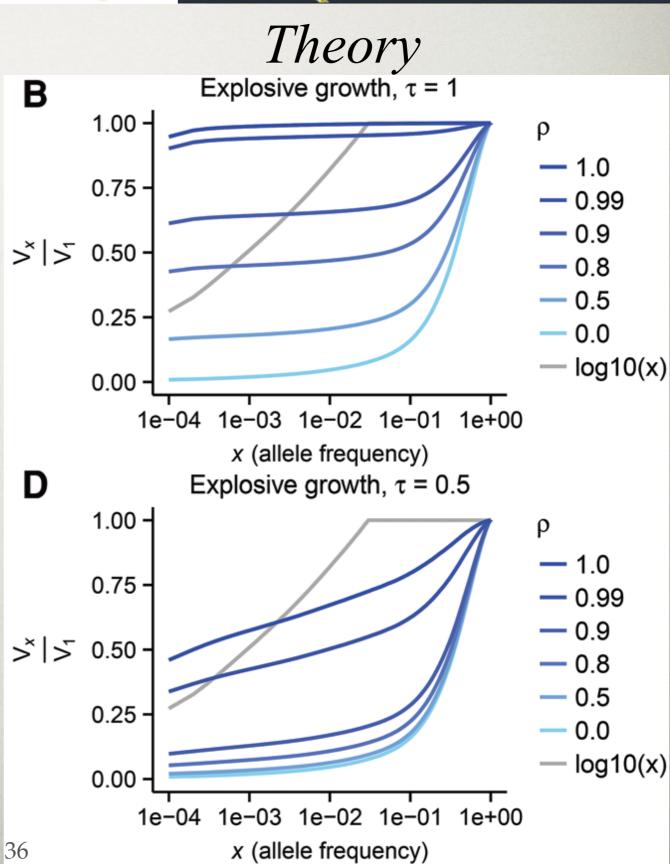
Estimating parameters

1000 Genomes

A Deep Catalog of Human Genetic Variation

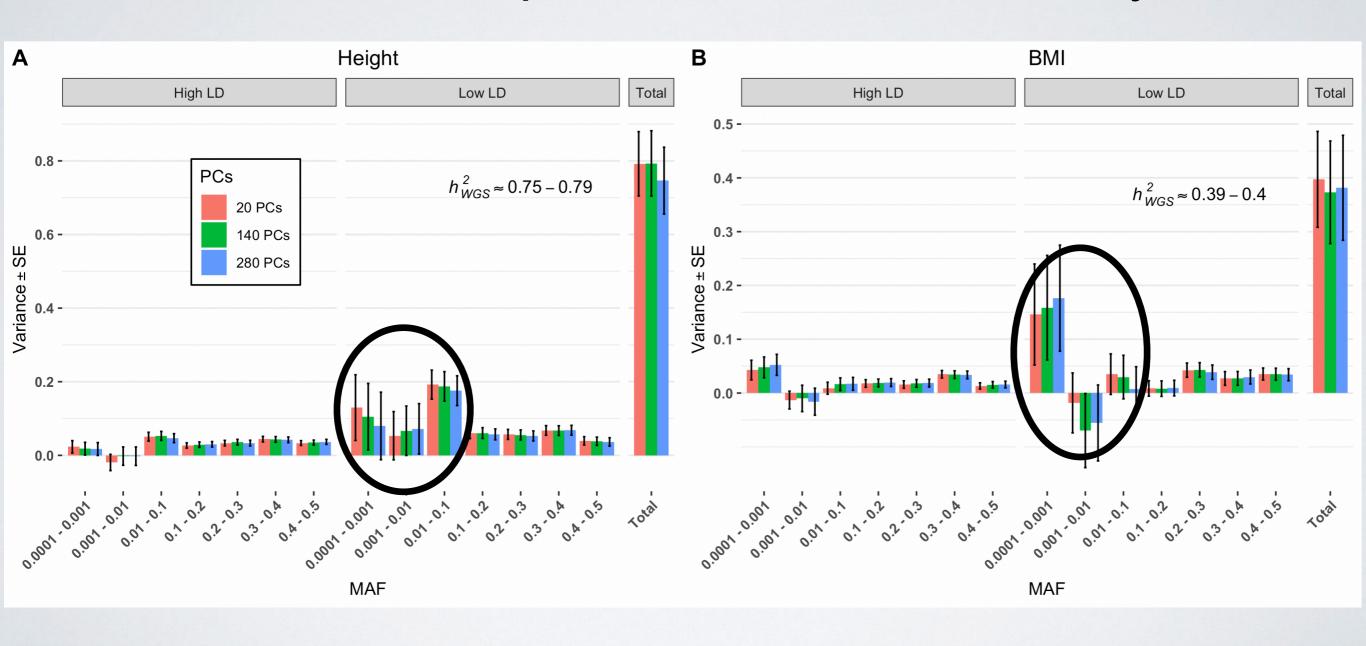






HUMAN HEIGHT AND BMI

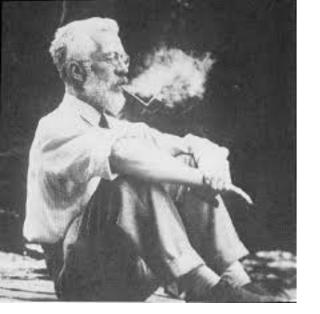
n = 21,620 Individuals Low MAF explains >50% of heritability



Simulating Genetic Architectures and Inferring Heritability

Goals

- To learn what heritability is
- To learn how to calculate it from unrelated samples
- To learn how to simulate phenotypes & evaluate performance of the test



What is heritability?

 Phenotype(φ) = Genotypes(G) + Environment(ε)

$$\sigma_{\varphi}^2 = \sigma_G^2 + \sigma_{\varepsilon}^2$$

$$\sigma_G^2 = \sigma_A^2 + \sigma_D^2 + \sigma_I^2$$

Narrow Sense:
$$h^2 = \frac{\sigma_A^2}{\sigma_{\varphi}^2}$$
 Broad Sense: $H^2 = \frac{\sigma_G^2}{\sigma_{\varphi}^2}$

How do we estimate h²?

- We will focus on Haseman-Elston (HE) regression
- Very simply:
 - Let p be the covariance in phenotypes across all individuals
 - Let g be the covariance in genotypes across all individuals
 - h^2 = the correlation between p and g!!

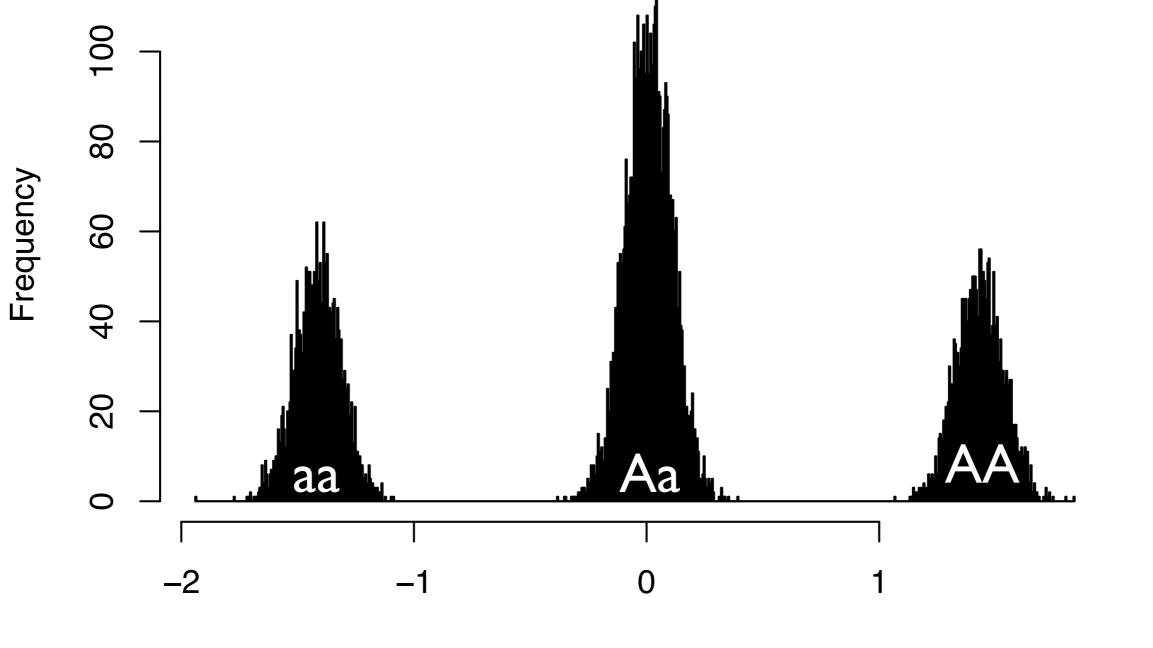
$$\sigma_{\varphi}^{2} = \sigma_{G}^{2} + \sigma_{\varepsilon}^{2}$$

$$\sigma_{G}^{2} = \sigma_{A}^{2} + \sigma_{D}^{2} + \sigma_{I}^{2}$$

- The basic model of phenotypes we will assume is an additive model
- We will assume that environmental noise is $\sigma_{\epsilon^2} \sim N(0, \sigma^2)$

The genetic effect depends on causal variation!

With 1 causal locus and little environmental noise:



- The genetic effect depends on causal variation!
- How much environmental noise is there?
- It depends on your desired level of h²!

- We are going to do the simulations in R!!
- Open terminal/command prompt and type:
 - Rscript HEplay.R

- If Rscript does not work on your computer, you can open R, and move to HEplay directory and type:
 - source("HEplay.R")

It will produce output like this:

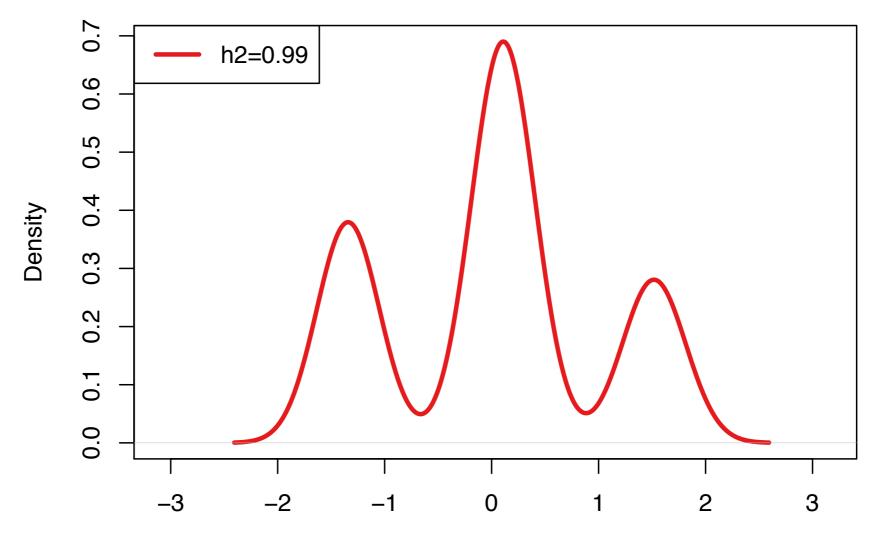
```
rhernandez$ Rscript HEplay.R
Read 7570 items
Read 2725200 items
0.4468355 (mean = 0.4468355)
0.59926 \text{ (mean = } 0.5230477)
0.6873345 \text{ (mean = } 0.57781)
0.3375272 \text{ (mean = } 0.5177393)
0.4301956 \text{ (mean = } 0.5002305)
0.5716429 \text{ (mean = } 0.5121326)
0.8160635 \text{ (mean = } 0.5555513)
0.6663577 \text{ (mean = } 0.5694021)
0.3248046 (mean = 0.5422246)
0.584494 \text{ (mean = } 0.5464515)
0.4031187 \text{ (mean = } 0.5334213)
0.6347714 (mean = 0.5418671)
0.3799034 \text{ (mean = } 0.5294084)
0.3614569 \text{ (mean = } 0.5174118)
0.4317423 (mean = 0.5117005)
0.6364826 \text{ (mean} = 0.5194994)
0.5425433 (mean = 0.5208549)
0.5204382 \text{ (mean = } 0.5208318)
0.6647941 \text{ (mean = } 0.5284088)
0.6268889 \text{ (mean = } 0.5333328)
0.5361605 \text{ (mean} = 0.5334674)
0.5609872 \text{ (mean = } 0.5347183)
0.650662 \text{ (mean = } 0.5397593)
0.5030965 \text{ (mean = } 0.5382317)
0.4885729  (mean = 0.5362454)
True h2 = 0.5
mean(estimated h2) +- 2SE = 0.5362454 +- 0.04996943
Relative Bias = 0.07249074
                                                         46
```

It will produce output like this:

```
rhernandez$ Rscript HEplay.R
Read 7570 items
Read 2725200 items
0.4468355 (mean = 0.4468355)
0.59926 \text{ (mean} = 0.5230477)
0.6873345 \text{ (mean = } 0.57781)
0.3375272 \text{ (mean = } 0.5177393)
0.4301956 \text{ (mean = } 0.5002305)
0.5716429 \text{ (mean = } 0.5121326)
0.8160635 \text{ (mean = } 0.5555513)
0.6663577 \text{ (mean = } 0.5694021)
0.3248046 (mean = 0.5422246)
0.584494 \text{ (mean = } 0.5464515)
0.4031187 \text{ (mean = } 0.5334213)
0.6347714 (mean = 0.5418671)
0.3799034 \text{ (mean = } 0.5294084)
0.3614569 \text{ (mean = } 0.5174118)
0.4317423 (mean = 0.5117005)
0.6364826 \text{ (mean} = 0.5194994)
0.5425433 (mean = 0.5208549)
0.5204382 \text{ (mean = } 0.5208318)
0.6647941 \text{ (mean = } 0.5284088)
0.6268889 \text{ (mean = } 0.5333328)
0.5361605 \text{ (mean} = 0.5334674)
0.5609872 \text{ (mean = } 0.5347183)
0.650662 \text{ (mean = } 0.5397593)
0.5030965 \text{ (mean} = 0.5382317)
0.4885729  (mean = 0.5362454)
True h2 = 0.5
mean(estimated h2) +- 2SE = 0.5362454 +- 0.04996943
Relative Bias = 0.07249074
                                                         47
```

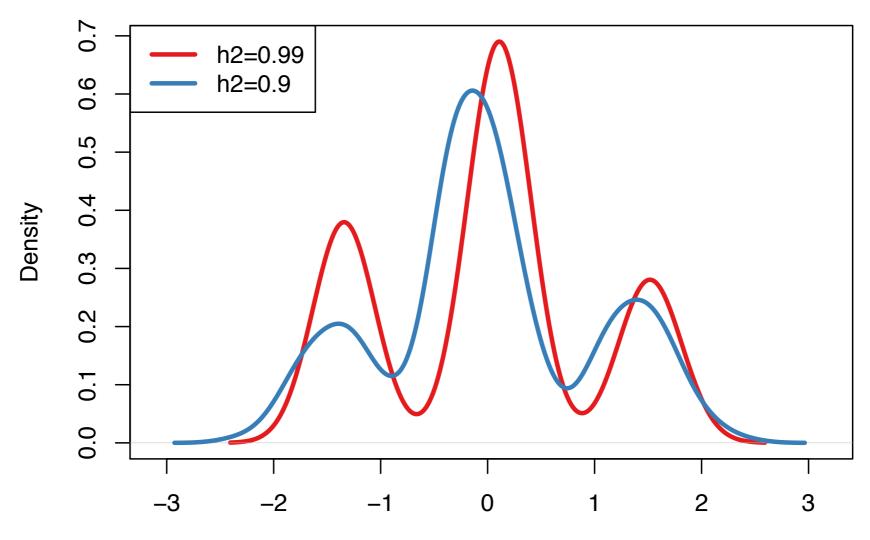
Who got the largest/ smallest value?

- Simplest model:
 - There is 1 causal SNP.
 - Reference allele has no effect, but alternate allele has "some non-zero effect size".



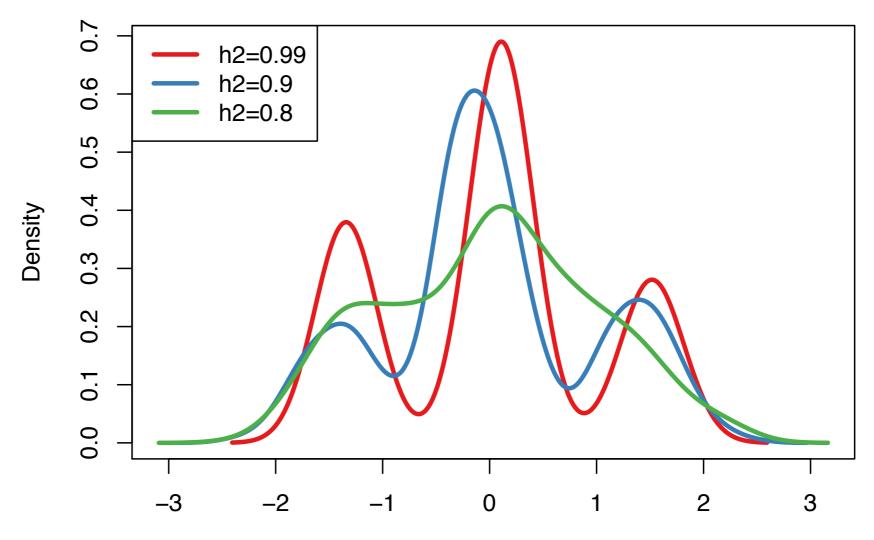
Normalized Phenotype

- Simplest model:
 - There is 1 causal SNP.
 - Reference allele has no effect, but alternate allele has "some non-zero effect size".



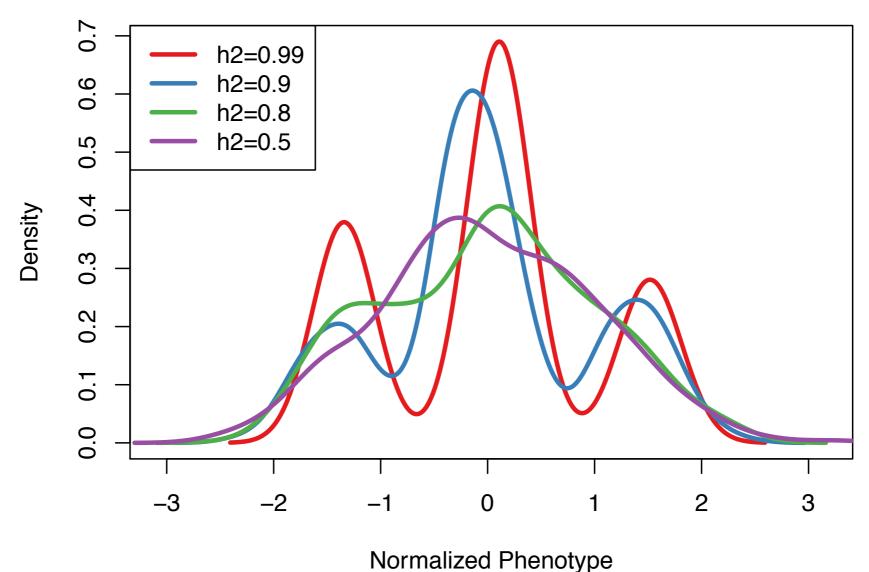
Normalized Phenotype

- Simplest model:
 - There is 1 causal SNP.
 - Reference allele has no effect, but alternate allele has "some non-zero effect size".

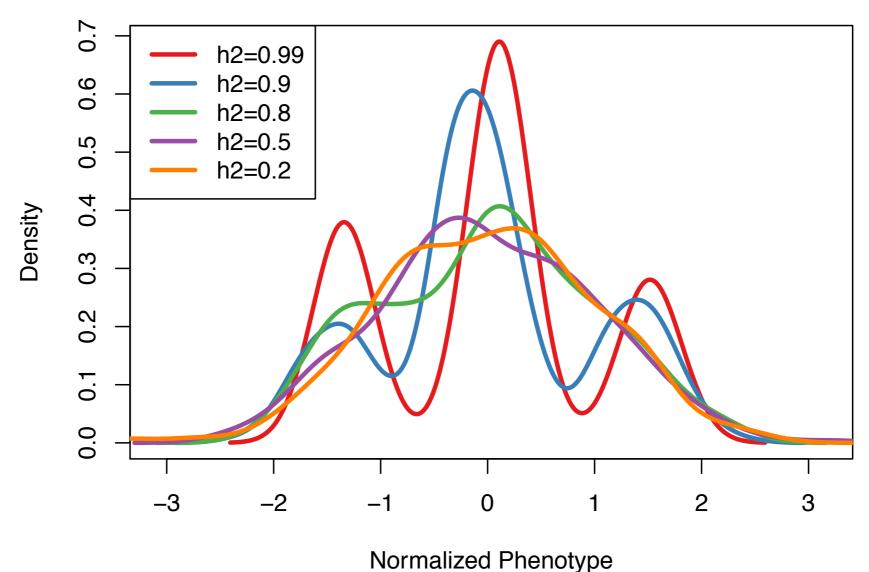


Normalized Phenotype

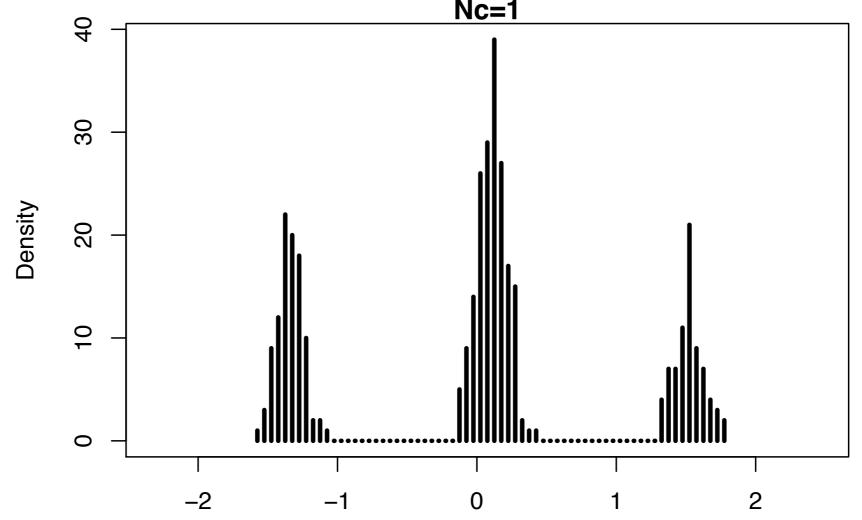
- Simplest model:
 - There is 1 causal SNP.
 - Reference allele has no effect, but alternate allele has "some non-zero effect size".



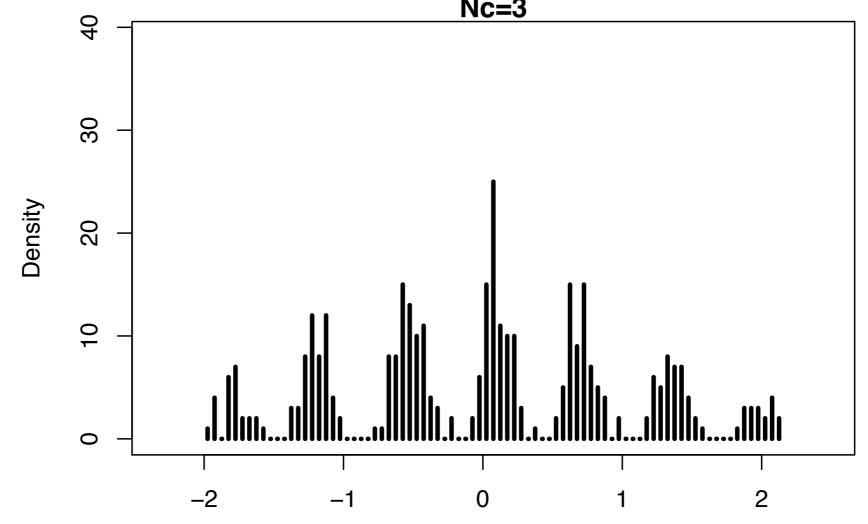
- Simplest model:
 - There is 1 causal SNP.
 - Reference allele has no effect, but alternate allele has "some non-zero effect size".



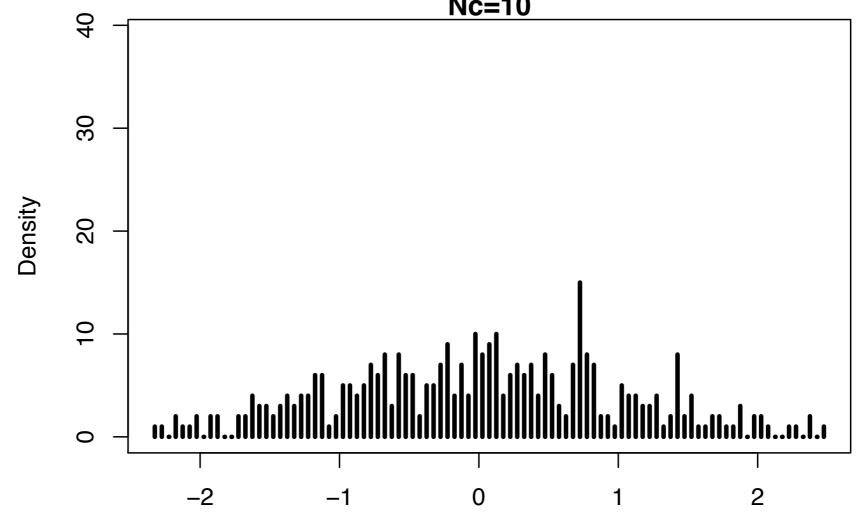
- Less simple model:
 - There are Nc causal SNPs (h²=0.99).
 - Reference alleles have no effect, but alternate alleles have the same "non-zero effect size".



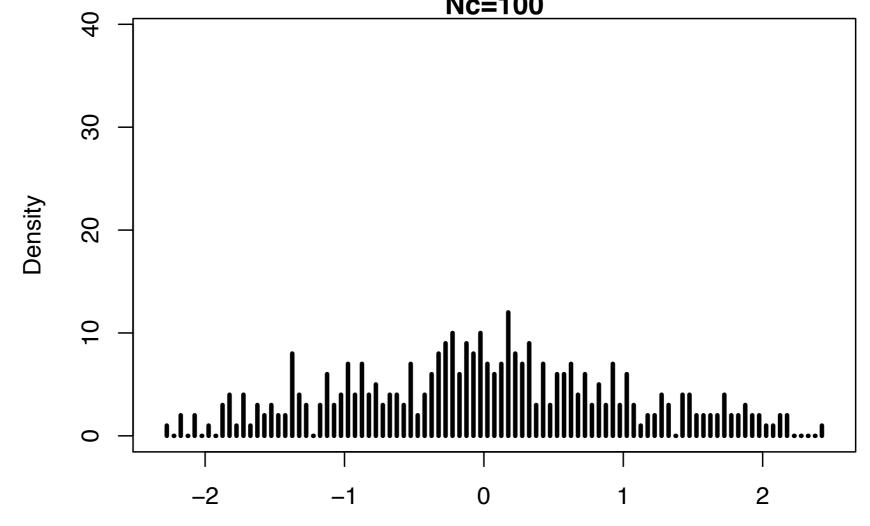
- Less simple model:
 - There are Nc causal SNPs (h²=0.99).
 - Reference alleles have no effect, but alternate alleles have the same "non-zero effect size".



- Less simple model:
 - There are Nc causal SNPs (h²=0.99).
 - Reference alleles have no effect, but alternate alleles have the same "non-zero effect size".

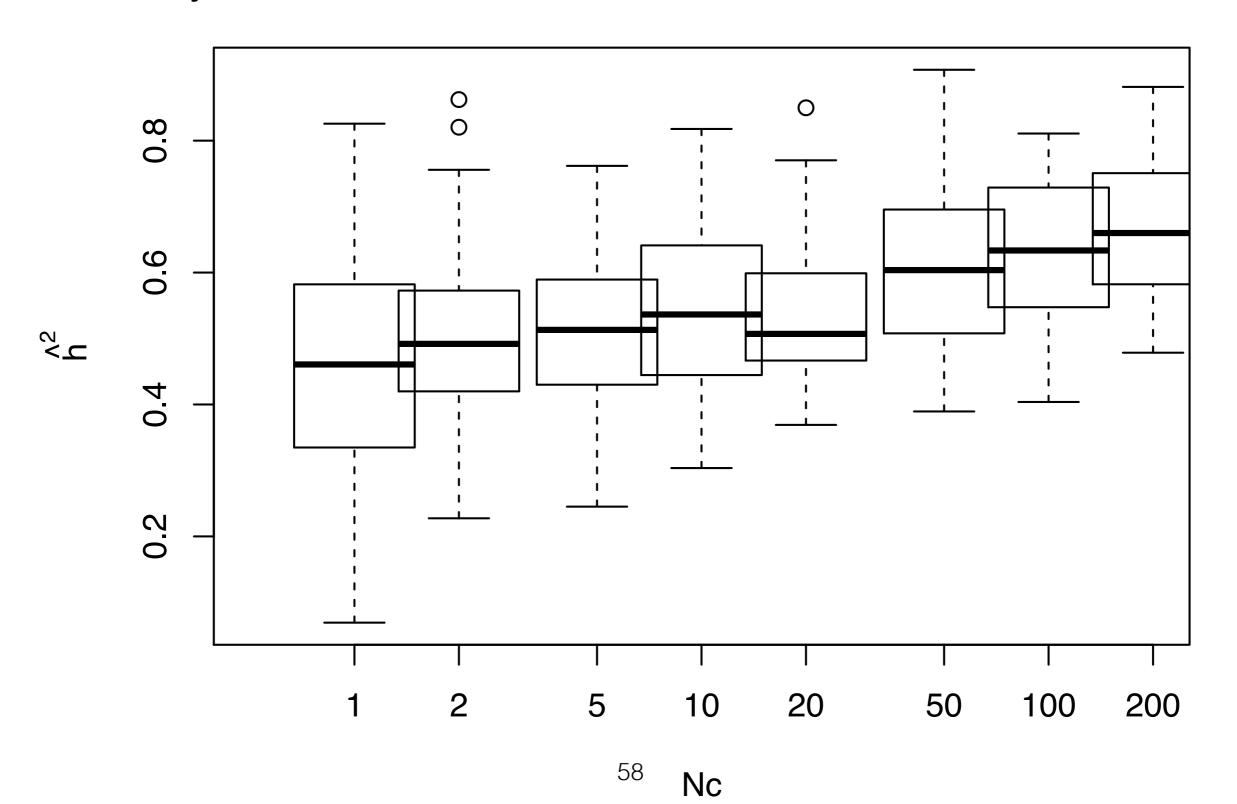


- Less simple model:
 - There are Nc causal SNPs (h²=0.99).
 - Reference alleles have no effect, but alternate alleles have the same "non-zero effect size".

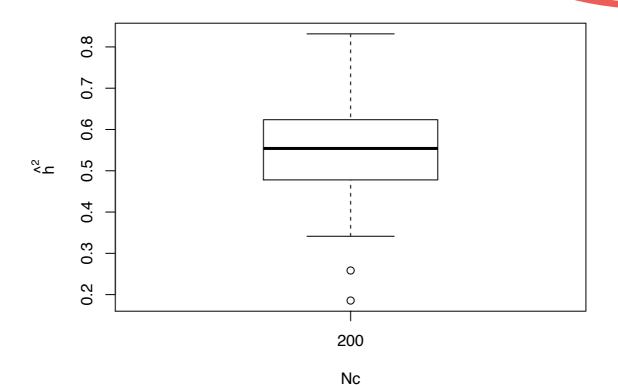


- We are going to do the simulations in R!!
- Pick your favorite natural number (x).
- type:
 - Rscript HEplay.R Nc=X
- Who picked the smallest/largest number?
- Who got the smallest/largest mean(estimated h2)?

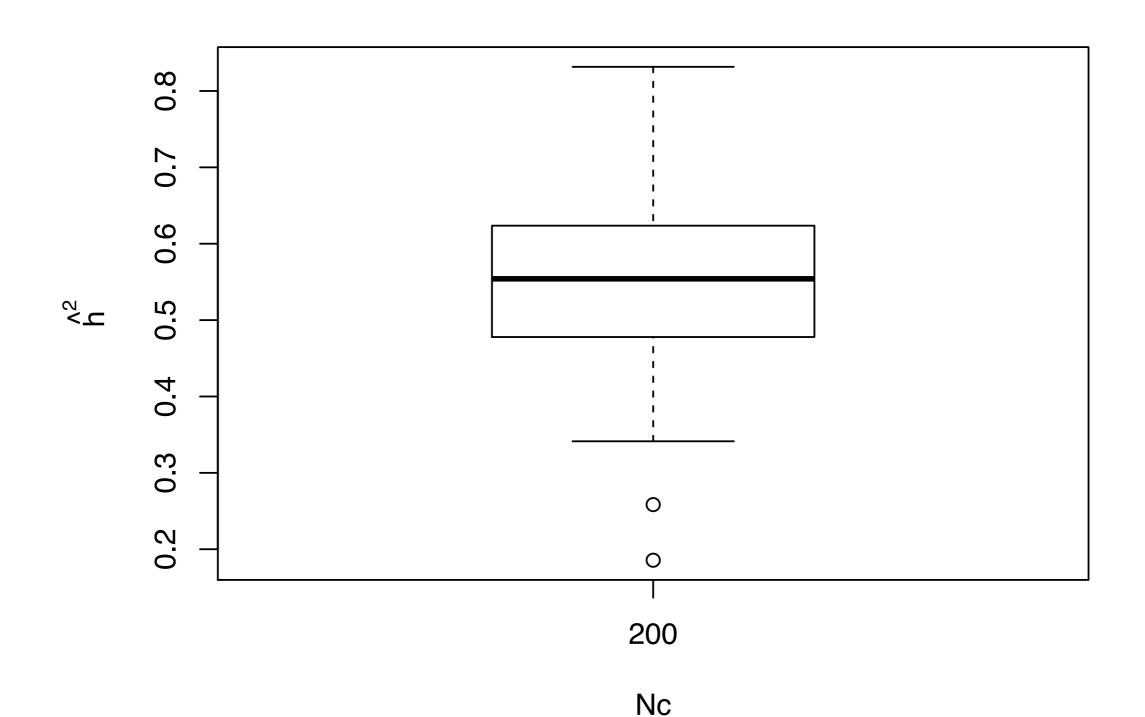
Are your results consistent with this?



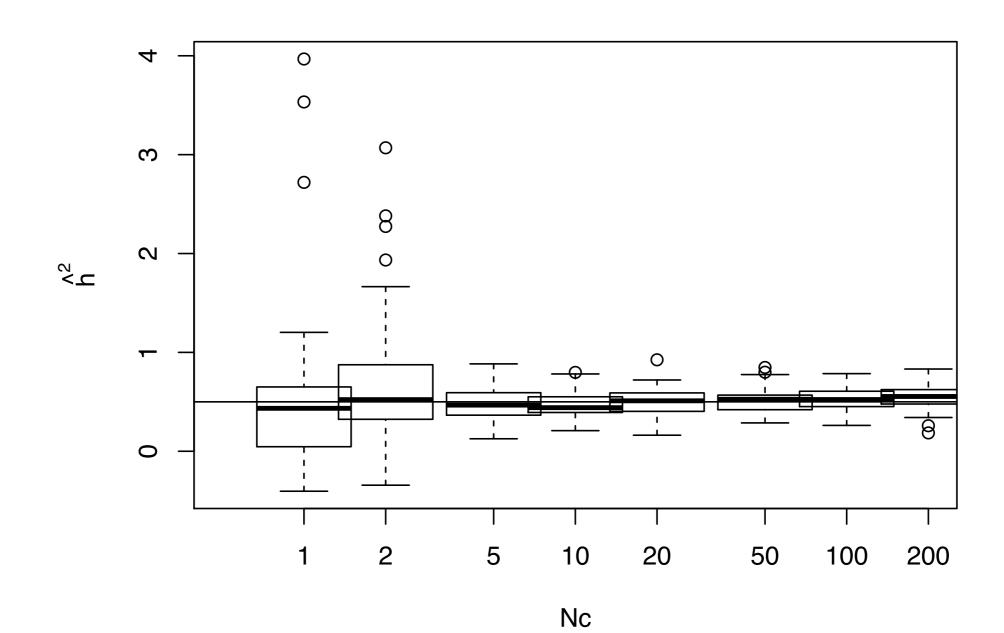
- I've actually tricked you!
- By default, HEplay.R throws away all variants with MAF<0.05.
- You can change this in the simulation by typing:
 - Rscript HEplay.R Nc=X minMAF=0



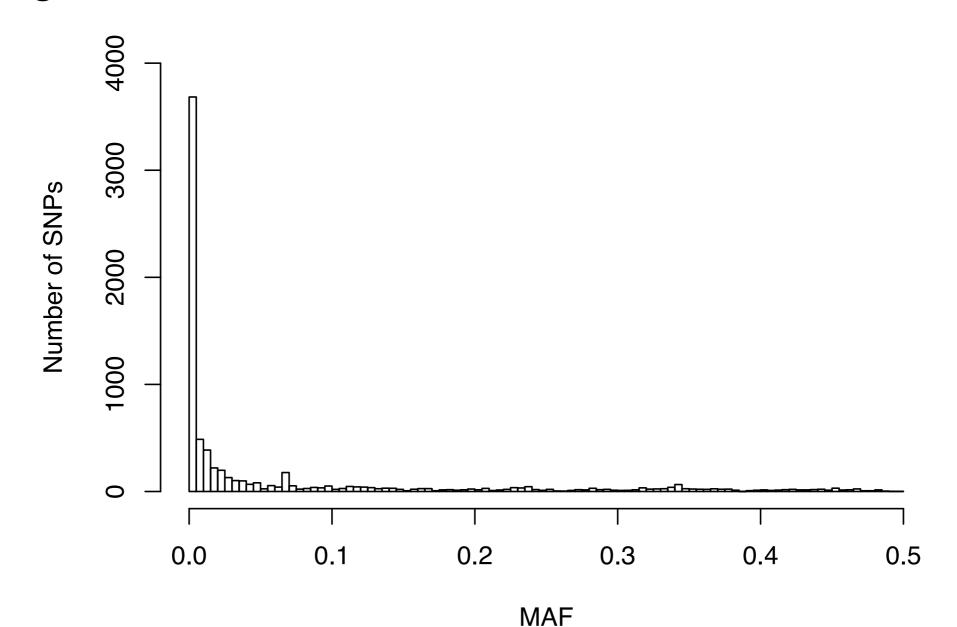
• Rscript HEplay.R Nc=X minMAF=0



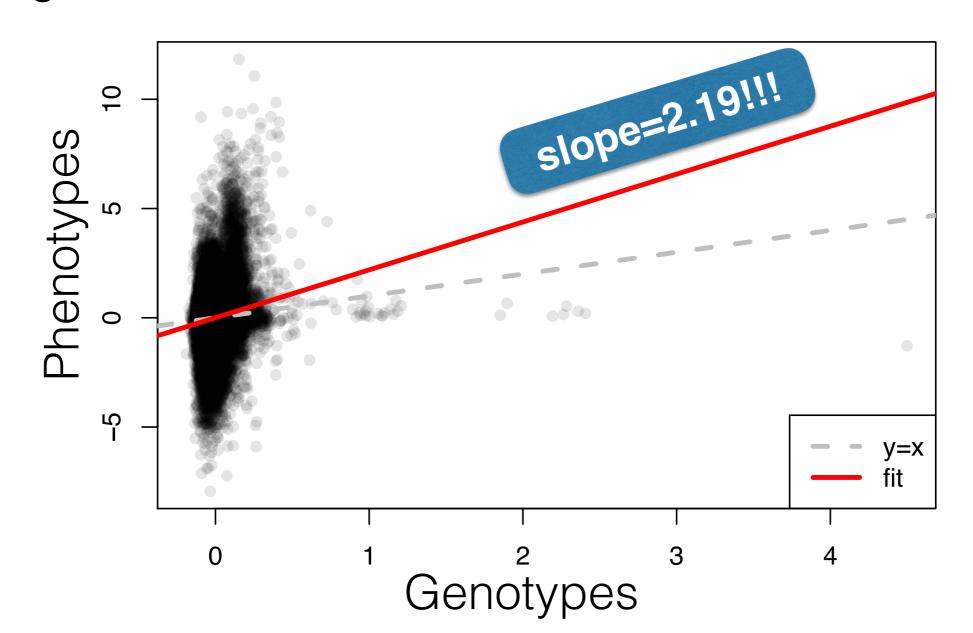
- Who gets the largest/smallest estimate of h² now?
- There is another problem!!



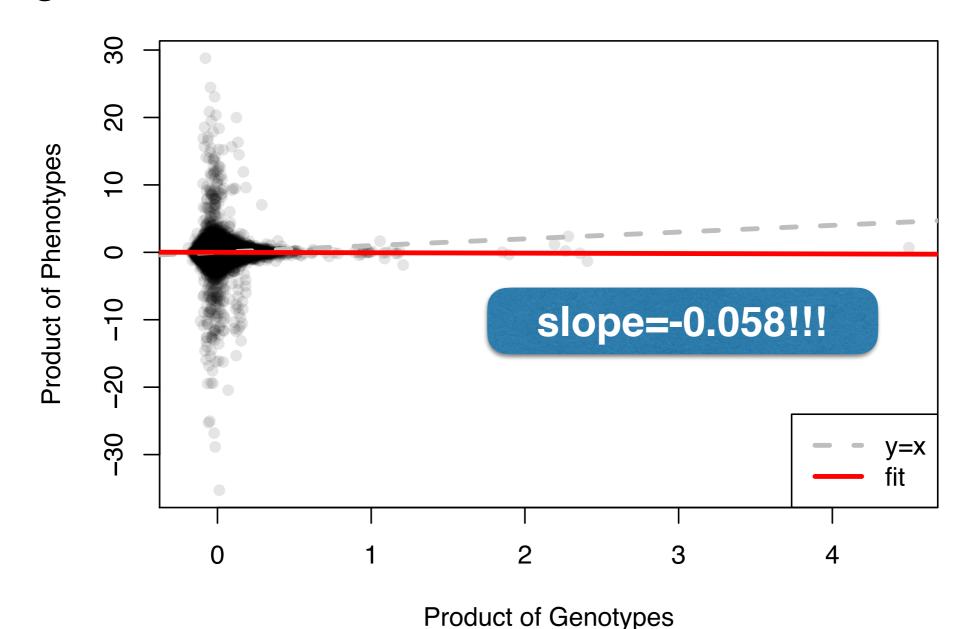
- Here is the MAF distribution
- What happens if Nc=1 and your causal variant is a singleton?!



- Here is the MAF distribution
- What happens if Nc=1 and your causal variant is a singleton?!

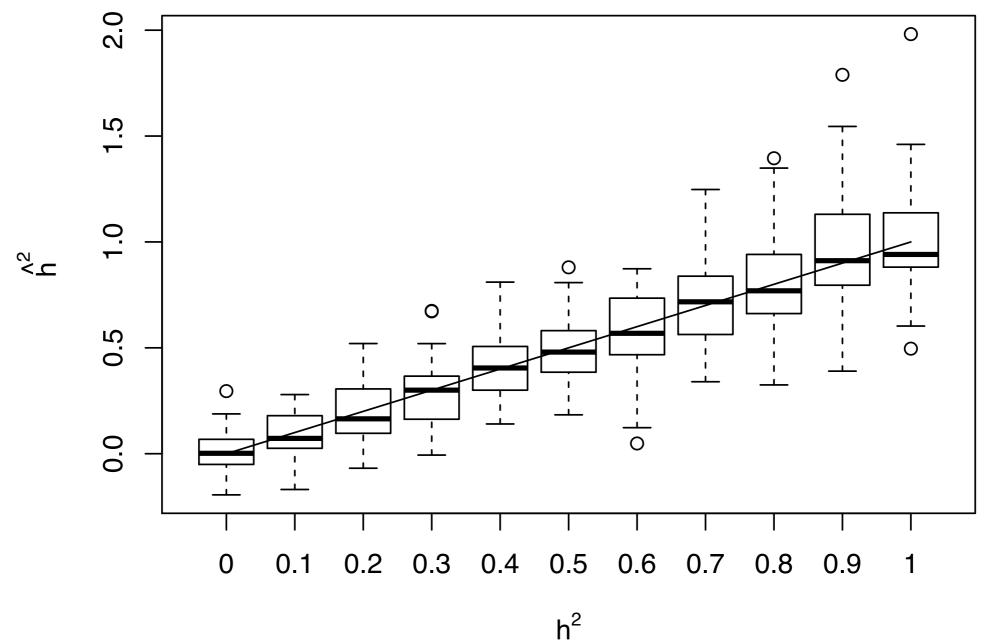


- Here is the MAF distribution
- What happens if Nc=1 and your causal variant is a singleton?!



- Fortunately, most real traits are polygenic, so the algorithm works well.
- Pick your favorite value for h² between 0 and 1.
- Type:
 - Rscript HEplay.R minMAF=0 h2=\$h2

- Who picked the smallest/largest value of h2?
- Did you also get the smallest/largest mean(est(h2))?



· Type:

•Rscript HEplay.R h

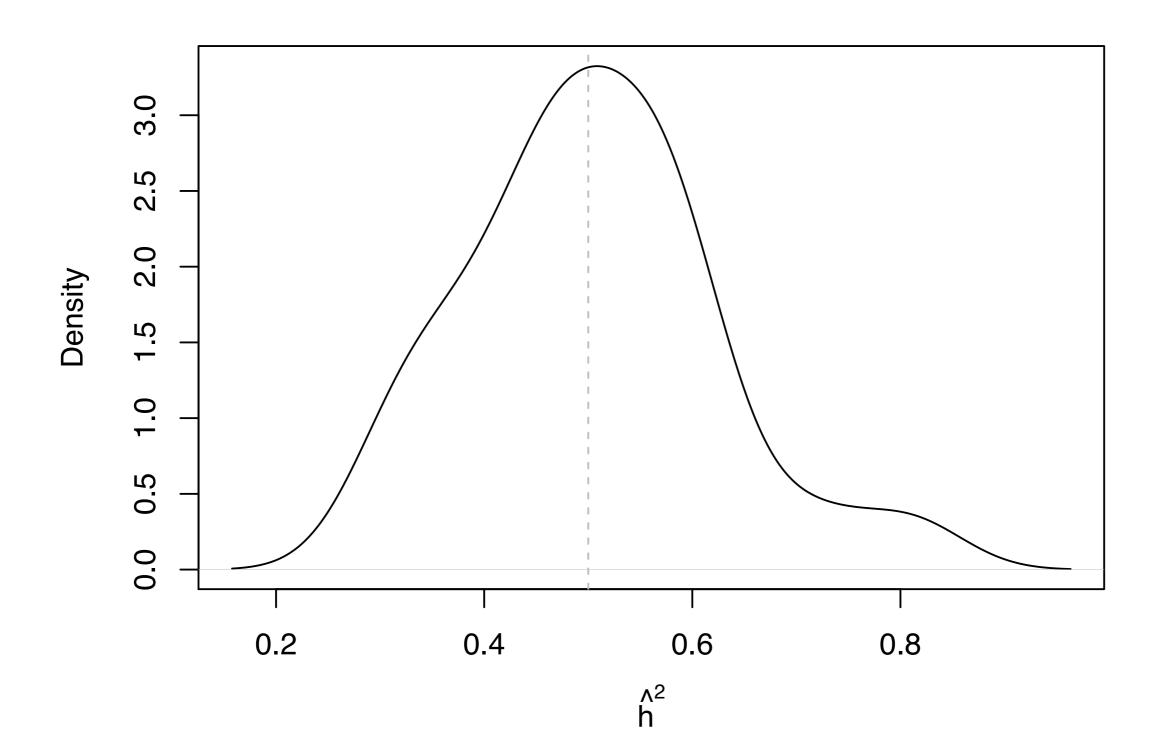
```
rhernandez$ Rscript h2sim.R h
Options include:
   help (h)
        Prints out this help menu. For options below, default values are in parentheses.
   GENE=<gene>
        Note that only APOL1 is provided
   h2 = < h2 >
        Include any value of h2 between [0, 1]. (0.5)
   minMAF=<minMAF>
        Minimum MAF for variants included in analysis (i.e., exclude all variants with MAF < minMAF (0.05)
   INDIR=<input directory>
        Input directory for data file (.)
   Kbins=<K>
        The number of GRM bins you want to analyze (20)
   NSIMS=<NSIMS>
        Total number of simulations to run (25)
   CM = < CM >
        Model 1-3 for choosing causal variants (1)
   Nc=<Nc>
        The number of causal variants for analysis (10)
   K=<K>
        The number of frequency bins to choose causal variants from when CM=2 (1)
   fT = \langle fT \rangle
        Frequency threshold for defining rare variants when CM=3 (0)
```

 There are many ways to play with this code to learn about how assumptions regarding the genetic model of a complex trait impact our inference of heritability.

Type:

- Rscript HEplay.R PLOT=1
- This will create a file with the ugly name:
- ls h2hat_h2=0.5_minMAF=0.05_Kbins=20_CM=1_Nc=10_K=1_fT=0_fR=0_BM=1_fB= 0.05.pdf

 Once it is transferred, open it, and it should look something like this:



- This script allows you to randomly drawn causal variants using 3 models using the option
 - Rscript HEplay.R CM=<CM> [options]
- So far, we have only used default: CM=1
 - Sample Nc SNPs randomly from the set of all SNPs with MAF >= minMAF.

0.4

0.5

- By default, minMAF=0.05, but we already talked about changing this.
- Preferentially samples rare causal variants.

0.3

0.2

70

Number of SNPs

4000

3000

2000

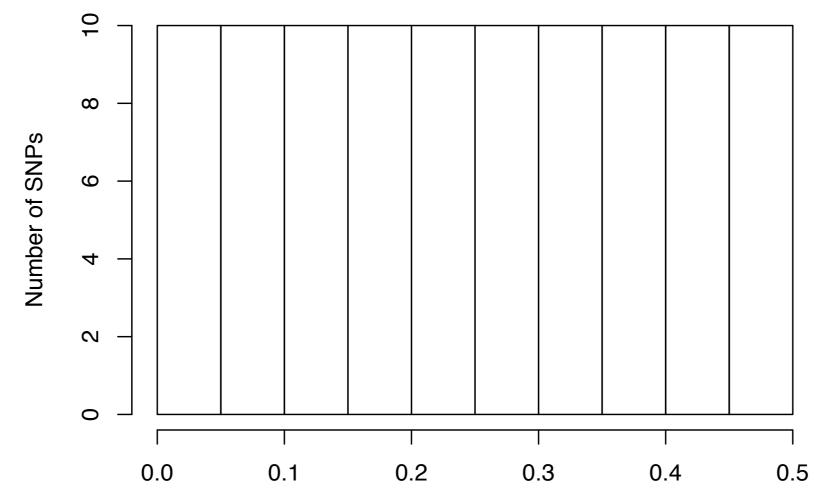
1000

0.0

0.1

- This script allows you to randomly drawn causal variants using 3 models using the option
 - Rscript HEplay.R CM=<CM> [options]
- CM=2 K=<K>
 - Randomly samples causal SNPs from K different bins.
 - For example, K=2 would choose Nc/2 SNPs from (0,0.25) and Nc/2 SNPs from (0.25, 0.5)

- This script allows you to randomly drawn causal variants using 3 models using the option
 - Rscript HEplay.R CM=<CM> [options]
- CM=2 K=10 Nc=100



MAF

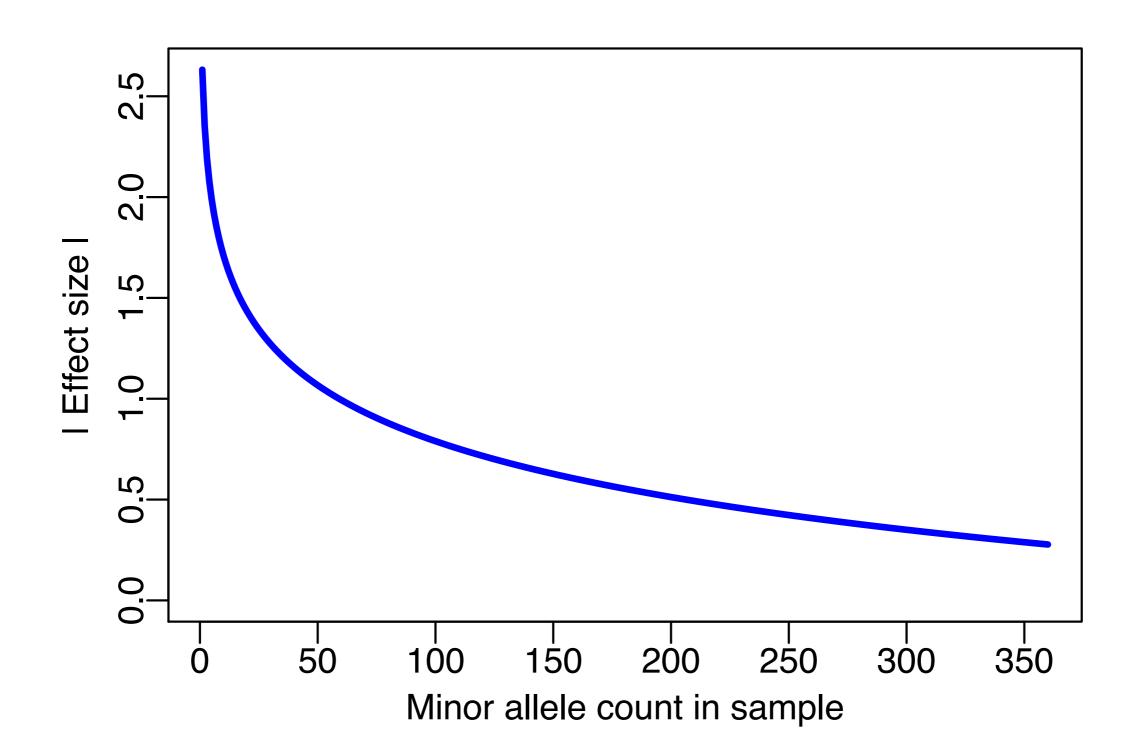
- This script allows you to randomly drawn causal variants using 3 models using the option
 - Rscript HEplay.R CM=<CM> [options]
- CM=3 fT=<fT> fR=<fR>
 - Specify a frequency threshold (fT) for defining a rare causal variant.
 - Specify the fraction of causal variants that are rare (fR).
 - What would this do?
 - CM=3 fT=0.01 fR=0.5

- Now that we have sampled causal variants, we need to specify their effect size.
- There are two ways to do this, specified using:
- BM=<BM> [options]
- So far, we have been using the default:
 - BM=1 fB=0.05
- This sets all effect sizes to be the same at 5%.
 - That is, each additional causal variant than an individual carries increases their phenotype by 5%

- Now that we have sampled causal variants, we need to specify their effect size.
- There are two ways to do this, specified using:
- BM=<BM> [options]
- We can also make effect size a function of allele frequency:
 - BM=2
- A causal allele with frequency x will have effect size:

•
$$-0.4*log_{10}(x)$$

 Under BM=2 model, the effect size function looks like this:



Play!

- You can now combine these options to create interesting genetic models of complex traits!
- Here are a couple of examples (what do they do?):
 - Rscript HEplay.R CM=2 K=10 minMAF=0 BM=2
 - Rscript HEplay.R CM=3 fT=0.01 fR=0.9 minMAF=0
 - Rscript HEplay.R CM=3 fT=0.01 fR=0.9 minMAF=0 BM=2
- Whoever creates the model with the largest bias wins!