Pop Gen meets Quant Gen
and other open questions
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Heritability and Human Height

Studies of heritability
ask questions such as
how much genetic
factors play a role in
differences in
height between
people.This is not
the same as asking
how much
genetic factors
influence height
in any one

erson.. L
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An estimated 80% of variation In
height driven Is driven by genetics
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But GWAS explain only 20% of the
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GWAS have the potential to explain
00% of the variation in height
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Challenges For Studying Complex:

The case of the missing heritabilit

Maher, Nature (2008).



MAJOR PROBLEM

e There are no complex traits in which we know:
e The number of causal variants
e The frequencies of all the causal variants
e The effect sizes of all the causal variants
e The fitness effect of all the causal variants

e We need a thorough simulation study where we can vary
all of these parameters and see how they effect our answer!



Possible Origins Of Missing Heritability

Common variants of weak effect

Incomplete linkage to causal alleles/ multiple causal alleles in locus
GxG / GXE Interactions
Rare variants

Structural variation
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FROM GWAS TO DEEP SEQUENCING

Genome-wide association studies (GWAS) seek to identify
common variants that contribute to common disease

Successfully identified many candidate disease-associated
genes

Challenges:
 (Generally have low relative risk

 Explain only a small proportion of the phenotypic variance

 Provides candidate loci, but causal variant is rarely typed

Implication:
« Predictive power of GWAS is minimal...
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Frequency

“Missing” heritability - calculating variance

accounted for by GWAS

2000 3000 4000

1000

Distribution of Very Important Phenotype

VIP value (arbitrary units)

Suppose k variants are found to be
associated with VIP...

1
Contribution from = 2 .
each SNP U = 2Z ZE(l ZE)

Total variance L
from GWAS V.(P) = E :Uk
k

Compare to GWAS ‘/;WAS(P) < h2 X V(P)

12 Lawrence Uricchio



Where is the “missing” heritability?

2" Standard Neutral Model
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POPULATION GENETICS

Why would cases have an excess of rare non-synonymous
variants in disease-associated genes?

e Recent neutral mutations that have not had time to spread

* Deleterious mutations restricted to low frequency

Population genetic analyses are ideally suited to distinguish
these cases.
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EVOLUTIONARY MODELS OF
COMPLEX DISEASE

Disease
propensity

Disease

Direct relationship between disease and fitness
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EVOLUTIONARY MODELS OF
COMPLEX DISEASE

Disease
propensity
Disease
Other
Phenotype

Pleiotropy: SNP impacts multiple phenotypes

Uricchio et al., Genome Research (2016)



THE MODEL OF EYRE-WALKER (2010)

e The phenotypic effect size has a direct
relationship to selection coefficient of causal
mutations:

z=05"(1+¢)
e Where:
ec ~ N(0, 62)
¢ = random sign (trait increasing / decreasing)
¢ § = selection coefficient
o7 = measures how the mean absolute effect of
a mutation on the trait increases with the

strength of selection
17 Eyre-Walker, PNAS (2010)



THE MODEL OF SIMONS ET AL (2014)

e The phenotypic effect size may have a direct
relationship to selection coefficient of causal

mutations:

S with probability 0
<g X
Sy with probability (1 — IO)

e Where:
*p = Probability that the trait effect is

proportional to the selection coefficient:

Pleiotropy!!
*¢ = selection coefficient
*¢. = random selection coefficient

18 Simons et al, Nat Genet (2014)



THE MODEL OF URICCHIO ET AL (2016)

O|Sp|T with probability (1 — p)

T : .
e A hybrid of the two: z4 { OIS|"  with probabiy 9

e Where:

¢ = random sign (trait increasing/decreasing)

eT = measures how the mean absolute effect of a
mutation on the trait increases with the strength
of selection

ep = Probability that the trait effect is proportional
to the selection coefficient: Pleiotropy!!

*s = selection coefficient

*s- = random selection coetficient

Uricchio et al, Genome Research (2016)



EVOLUTIONARY MODELS OF
COMPLEX DISEASE

Disease
propensity
Disease
Other
Phenotype

*

o correlation(effect size, fitness)
o p- (Simons et al, 2014)

transforms fithess effect to
phenotype (Eyre-Walker, 2010)

Pleiotropy: SNP impacts multiple phenotypes

Uricchio et al., Genome Research (2016)



Why should we think about evolution”

— Trait optimum

Selection

pressure  mmmmm C—

towards an optimum

Phenotype distribution
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Stabilizing selection

/ Trait optimum

Selection

pressure —

towards an optimum
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Phenotype distribution
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Stabilizing selection

/ Trait optimum

Selection
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Phenotype distribution
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Stabilizing selection

/ Trait optimum

e New mutations
deleterious

Selection

) (o e Larger effect
pressure

. mutations are more
towards an optimum )
deleterious

» Effect sizes may not
be linear in selection
strength

e Want to allow for
pleiotropy

Phenotype distribution
24



Human-specific demography and Selection

Fitness effects in non-coding DNA:

Growth model: Gutenkunst et al (2009) Torgerson et al (2009)
Explosive growth: Tennessen et al (2012) |
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NEUTRAL MODEL: MOST VARIANCE
EXPLAINED BY COMMON ALLELES

Standard Neutral Model
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Genetic architecture is altered by selection and

demography
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Genetic architecture is altered by selection and

demography
28

, Grow

Vol VA1

T T T T
5e-04 5e-03 5e-02 5e-01

derived allele frequency,

logqo(x) effects
p=1

0=0.99
p=0.9

p=0.8

=0
P Uricchio, et al. Genome Res 26, 863-873 (20106).

SRRNE




Genetic architecture is altered by selection and

demography
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Genetic architecture is altered by selection and
demography

AFR, Growth AFR, Accelerated growth
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Demography and selection matter!

As populations expand and contract, or strength of selection
changes, the frequency spectrum responds.

This can and should impact the genetic architecture of traits!
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Demography and selection matter!

Demography and selection also impacts the number of
causal variants!
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Open Questions

 What does does the genetic architecture of a
complex trait really look like”

 How many causal variants are there?
* Proportion of effects from rare/common alleles?
* Additive vs epistatic interactions”

* Pleiotropy?

33
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S=EUVALIS (S

e Large-scale RNA sequencing + WGS

4 European populations
360 individuals

low coverage WGS + high coverage
exome: Phase 3.

RNA-seq: median depth 58.3M reads

e (ene expression:
log2 transtformed, median centered,
and quantile normalized.

e 10,077 unique genes.
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Our sample size is

small, but can we
learn anything about
the genetic basis of
complex traits from
these 10k genes?

Let’s analyze
heritability of gene
expression due to cis
variation (within 1Mb
of gene)
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HUMAN HEIGHT AND BMI

n = 21,620 Individuals
Low MAF explains >50% of heritability
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CONCLUSIONS

» Patterns of genetic variation within and between
populations are shaped by their evolutionary history.

* Demography: Growth/decline, migration/admixture

 Natural selection

 [hese same evolutionary forces shape the genetic
architecture of complex traits!

» Evolutionary forces that increase the incidence of rare
variants, also increase the role of rare variants in
complex traits!



