
Lecture 6: Handling Missing Data
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Outline for lecture

I Review of concepts regarding impact of missing data
I Approaches to analysis in presence of missing data

I Approaches to avoid
I Recommended approaches

I Misconceptions about missing data
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Overview: Impact of Missing data

I Introduction of bias

I Loss of precision

I Lack of internal and face validity, particularly if a large amount of
data are missing
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Key Questions

I What are some ways that missing data can cause bias in a study
analysis?

I How do we preserve intent-to-treat principle with missing data?

I What are the differences between these types of missing data:
MCAR, MAR, MNAR?

I What are the methods of analysis to handle missing data and the
assumptions they rely on to be appropriate?
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Common Causes of Missing Data

I Dropout

I Loss to follow-up
I Noncompliance with measurement procedure

- Missed visit
- Refused procedure/skipped questions or surveys

I Error
- Test not done
- Test done improperly
- Results lost

I Deliberate exclusion from analysis
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THE BIG WORRY ABOUT MISSING DATA

I Missingness may be associated with outcome and confound
analysis

I We don’t know the form of this association
- Any fix we apply relies on untestable assumptions

I Nevertheless, if we fail to account for the (true) association, we
may bias our results
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ANTURANE REINFARCTION TRIAL (ART)
Temple and Pledger (1980)

I Randomized, double-blind, placebo-controlled trial in post-MI
subjects

I Primary endpoint: mortality
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REASONS FOR INELIGIBILITY

I 1/3 - time since MI: < 25 days or > 35 days

I 1/3 - enzymes not elevated

I 1/3 - other: age, enlarged heart, prolonged hospitalization, .. . .

I Number ineligible about the same in each treatment group (38 vs
33)

But....
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ANTURANE MORTALITY RESULTS
Temple & Pledger (1980) NEJM, p. 1488
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FDA CONCERNS

I Apparently haphazard application of “eligibility” criteria by
adjudication group

I Some deaths excluded on drug arm were very similar to deaths
not excluded on placebo arm

I Overall, cause of death classification deemed very unreliable

I No pre-specified plan to exclude any randomized subjects from
analysis

I No issue of deliberate bias; adjudicators were blinded to
treatment arm
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HISTORICAL IMPORTANCE OF ART

I Anturane example established the ITT principle
- Account for all participants randomized
- Account for all events during follow up

I Extremely influential in FDA approach to review
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INTENT-TO-TREAT (ITT) PRINCIPLE

All randomized patients should be included in the (primary)
analysis, in their assigned treatment groups
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A PERENNIAL PROBLEM: NONCOMPLIANCE

I There will always be noncompliant subjects in clinical trials

I There will always be people who don’t use medical treatment as
prescribed

I Conflict between the question we may WANT to ask, and the
question we CAN ask
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DIFFERENT QUESTIONS

I Is this treatment safe and effective when used as directed in a
well-defined population?

I Is this drug safe and effective when prescribed for its generally
intended purpose by practicing physicians?
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PRAGMATIC VS EXPLANATORY

I “Explanatory” question: is the product safe and effective when
used appropriately in carefully defined population

- Scientific question, what pharmaceutical companies and FDA are
trying to establish

- Evaluation of treatment product (treatment efficacy)

I “Pragmatic” question: if we put this product out there, what are
the benefits and what are the risks?

- Public health perspective
- Evaluation of treatment policy (treatment effectiveness)
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Estimands, Estimates, and Estimators
Little and Lewis (2021)

I Estimand- a target quantity; ie, what the study aspires to
measure

I Estimator -a formula or algorithm used to estimate the target
quantity from the clinical trial data

I Estimate - the numeric value obtained when the estimator is
applied to the actual data from the trial.

Another good reference: https://www.fda.gov/regulatory-
information/search-fda-guidance-documents/e9r1-statistical-principles-
clinical-trials-addendum-estimands-and-sensitivity-analysis-clinical
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ITT and the Causal Estimand

I The ITT analysis addresses the treatment policy estimand–
difference between randomized groups, regardless of
compliance

I Some argue may ITT analysis may not be estimating the ideal
causal estimand

- When analyze outcome regardless of compliance, not getting at
”pure” treatment effect

I An estimand evaluating the causal treatment effect can be much
more difficult to estimate

- Have to address missing data
- May involve a “Hypothetical” outcome

I See Olarte Parra et al. (2021) for nice discussion of alternative
estimands in clinical trials.
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So why cant we just exclude those who did not take
the treatment?

I Better outcomes in those who follow prescribed regimen could
be due to the fact that they actually took the treatment

I Could be the reverse: those who are better prognostically may
be more likely to be good adherers
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CLASSIC EXAMPLE

I Coronary Drug Project (CDP)
- Large RCT conducted by NIH in 1970’s
- Compared several treatments to placebo
- Goal: improve survival in patients at high risk of death from heart

disease

I Results disappointing

I Investigators recognized that many subjects did not fully comply
with treatment protocol
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CDP: Five-Year Mortality by Treatment Arm
Coronary Drug Project Research Group (1975)
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CDP: Five-Year Mortality by Adherence to Clofibrate
Coronary Drug Project Research Group, JAMA, 1975
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CDP: Five-Year Mortality by Adherence to Clofibrate
and Placebo
Coronary Drug Project Research Group, JAMA, 1975
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Implication of ITT for Study Design and Analysis

I Implication for design: collect all required data on all patients,
regardless of compliance

- Keep on study even if off treatment

I Implication for analysis: Need to model the missingness
- Common approaches: Have to impute either the probability that

each participant would have compete data or impute the missing
outcome or do an analysis that adjusts for the confounding
introduced by missingness

- To be successful, need to observe the variables associated with
missingness

- This is hard. Thus, avoid missing data
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HANDLING MISSING VALUES IN ANALYSIS
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Common test statistics for primary analysis of
treatment effect in RCT with parallel arms

I A simple unadjusted two group (or k-group) test
I Continuous outcome: t-test (assuming unequal variance) is a

common choice
I Note non-parametric tests like Wilcoxon Rank sum test will be more

robust, particularly for modest sample sizes.

I Binary outcome: difference of proportions often of interest - exact
test will be more robust and often preferred particularly for small
samples sizes

I Survival outcome: simple log-rank test

I A regression that adjusts for treatment and stratification
variables, possibly other important baseline prognostic factors

I For cluster RCTs, often consider a mixed effects model to handle
the clustering (possibly gee)

I For common missing data approaches, primary analysis chosen
to be parametric test (e.g. a t-test not Wilcoxon)
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Change from baseline

I Frison and Pocock (1992) generalize the following.
I With continuous outcome Y , at least 3 ways to analyze:

I T-test on end of study value, treatment effect estimate δ̂ = ȲT − ȲC .
I T-test on change from baseline, treatment effect estimator

δ̂ = (ȲT − X̄T )− (ȲC − X̄C).
I Analysis of covariance (ANCOVA) regression using baseline value

as covariate:
Y = β0 + β1X + β2Z + ε,

where z is treatment indicator and ε is a random error independent
of X . Treatment effect estimator δ̂ = ȲT − ȲC − β̂1(X̄T − X̄C).

I Which one is best?

I Assume ANCOVA model is correct.

I Unconditionally (averaged over distribution of X ), all 3 estimate
the same parameter, E(YT )−E(YC) because X is baseline
variable, so E(XT ) = E(XC).
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Change from baseline

I Asymptotically,
I T-test on Y , var(Y ) = β 2

1 σ2
X + σ2

ε .
I T-test on Y −X ,

var(Y −X ) = var{β0 + (β1−1)X + ε}= (β1−1)2σ2
X + σ2

ε .
I ANCOVA is essentially t-test on Y −β1X , and

var(Y −β1X ) = var(ε) = σ2
ε . Smallest variance, so best.

Asymptotic power when σX = σY = 1, ρ = cor(X ,Y ).

ρ Post Change ANCOVA
0.00 0.50 0.28 0.50
0.20 0.50 0.34 0.52
0.40 0.50 0.43 0.57
0.60 0.50 0.59 0.69
0.80 0.50 0.87 0.90
0.90 0.50 0.99 0.99
0.95 0.50 1.00 1.00

Note: Post is better than change if ρ < 0.50.
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Many different approaches for handling missing data

I Exclude subjects with missing values (“Completers” analysis or
“complete case” analysis)

I Last Observation Carried Forward (LOCF)

I Baseline Observation Carried Forward (BOCF)

I Group means

I Inverse probability weighting (IPW)

I Multiple imputation (MI)

I Confounder adjustment

I Causal modeling for desired estimand
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Taxonomy for Missing Data
Little et al. (2012)

I Missing completely at random (MCAR)
- Missingness mechanism depends neither on the observed or

unobserved data

I Missing at random (MAR)
- Missingness mechanism depends on data that are observed, but

not data that are not observed

I Missing not at random (MNAR), or nonignorable missing

29 / 71



MISSING COMPLETELY AT RANDOM (MCAR)

I Missing data are independent of any covariates and independent
of the true outcome

I Fact that the data are missing provides no information about
outcome, nor could it be predicted from other measured variables

I Under MCAR, completers analysis will give unbiased estimate of
treatment effect

I Rare that we can be confident that missing data in clinical trials
are MCAR
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MISSING AT RANDOM (MAR)

I Missingness is associated with other variables we measure, but
once we account for those variables missingness is not
associated with the missing value

I Implication: we can predict the missing outcome in an unbiased
way from characteristics of subject, of other subjects, and on
observed outcomes of other subjects

- Two common approaches: multiple imputation (MI), inverse
probability weighting (IPW)
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MISSING NOT AT RANDOM (MNAR)

I Also referred to as “nonignorable” missing

I Missingness depends on unobserved events/characteristics; so
one cannot make unbiased estimates of actual outcome using
other measured variables

I Incorporation of subjects with missing data in the analysis
requires modeling the missing data mechanism

- Generally takes form of sensitivity analysis of results under
different scenarios or a “pattern mixture” modeling

32 / 71



IMPLICATIONS FOR ANALYSIS

I MCAR
- Inference for subjects with complete data will be same as for

subjects with missing data; can just exclude dropouts

I MAR
- Inference for subjects with missing data will be the same after

accounting for baseline characteristics and observed data for other
participants

I MNAR
- Requires additional assumptions about missingness mechanism
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EXCLUSIONS OF SUBJECTS

I Excluding subjects with missing values “completers analysis” is
simplest approach

- Requires assumption that excluded subjects are a random subset
of all randomized subjects: MCAR

I Approach generally not recommended unless amount of missing
data is minimal (<5%)

- Assumptions too difficult to justify
- Complete case data does not take advantage of the partial data

available on excluded participants

I Unfortunately very common approach; often, no
acknowledgement of basic assumptions
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IMPUTATION

I Determine a value that is “best guess” of true value of missing
data point

I Several approaches proposed and/or in use

I Simplest approaches are generally statistically most problematic

I Any approach involving “made-up” data is problematic to some
degree
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SINGLE IMPUTATION APPROACHES

I Last Observation Carried Forward (LOCF)
- Use last measurement available in patients with missing data after

a certain point

I Baseline Observation Carried Forward (BOCF)
- Use the measurement at baseline as final data point

I Group means
- Assign average value of outcome variable among those in that

treatment group (or in total study population) with complete data

Historically popular, Statistically not recommended
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LAST OBSERVATION CARRIED FORWARD (LOCF)

I Used in trials with repeated measures but where primary
comparison is final value to baseline value

I Concept: whatever the last measurement was prior to dropout,
use that as the final value

I Commonly used in trials evaluating symptom relief for new
products
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EXAMPLE

I Trials of new antidepressants generally use the Hamilton
Depression (Ham-D) scale as the primary outcome

I Trials typically last 4-8 weeks; subjects are evaluated weekly

I Primary comparison is value at final week to baseline value

I If subject drops out after week 3 evaluation, week 3 score is used
to assess effect in that subject
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APPEAL OF LOCF

I It’s simple

I Allows all randomized subjects receiving at least one evaluation
to be included in final analysis: looks sort of like ITT

I Assumption is that dropout is related to lack of effect; scores
after dropout may improve if subject initiates active medication

I In certain settings, some (including regulators) have argued this
approach is conservative (unlikely to inflate Type 1 error) but. . . .
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PROBLEMS WITH LOCF

I The last observation before dropout is not a reliable estimate of
the effect of the treatment at the desired time point

I Variance underestimated: get same credit for full sample size as
if all data were available

I Will not always be conservative!

I Generally regarded as a suboptimal method
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WHY IS LOCF NOT ALWAYS CONSERVATIVE?

I If active treatment has side effects that cause subjects to
discontinue, efficacy data may look OK at time of treatment stop
but would be expected to worsen once subject is off treatment

I If tolerability is a major cause of treatment stop, LOCF analysis
could overstate treatment benefit

I Allowing use of entire sample size increases power for detecting
differences (that may not be real)
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BASELINE OBSERVATION CARRIED FORWARD

I Same idea as LOCF, but use baseline as final value

I Often used in pain studies; assumption is that subjects
abandoning treatment are getting no relief

I Idea again is to be conservative; assume no improvement from
baseline

I Big problem: people might have worsened on assigned
treatment, so could be anticonservative

I As with LOCF, get credit for more data than actually have

I Generally regarded as a suboptimal method
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GROUP MEANS

I Assumption: best estimate of effect for individual is the average
effect of that individual’s treatment group

I This is equivalent to simply excluding dropouts from analysis,
except worse—we give ourselves credit for a larger sample size
and so reduce variance

I Generally regarded as a suboptimal method

I Perhaps more conservative: use average effect of both groups
combined or average effect from the control group –but still not
accounting for added uncertainty from missing data
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MORE SOPHISTICATED: MODEL-BASED
APPROACHES (MAR)

I Multiple Imputation: Predict missing outcome on basis of
outcomes for other patients with similar characteristics

I Inverse probability weighting – Predict probability of being
complete and perform weighted regression, inversely weighting
records according to missingness probability

I These approaches will yield comparisons with little to no bias if
the data are “missing at random” and the models correct
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MULTIPLE IMPUTATION

I LOCF, BOCF, group means are all examples of single imputation
methods

- Choose an estimate for the missing data point, and insert that, so
that the subject can be included in the analysis

- This essentially gives you credit for an observation you don’t have;
results in an underestimate of variability, artificially increases
precision of estimate

I Multiple imputation
- A way to account for the extra variability that is inherent in

estimating the missing data point
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MI: Basic Idea

I Create a model to predict missing value on basis of covariates
and outcomes
I Develop this model on those with complete data

I Apply this model to obtain multiple versions of the “completed
data” – impute multiple estimates of possible data points for each
missing observation

I Data analysis proceeds by using each of these completed
datasets to get the target estimate, then aggregates results into
an overall results

I Variability among outcomes for subjects with missing data
incorporated into overall variability
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Simple Example: Regression based imputation
Molenberghs et al. (2014)

Suppose only a continuous outcome is missing

Step 1: Use complete cases to build model and predict outcome
Y based on covariates observed on everyone
I That prediction model will have regression coefficients (α) that

have uncertainty and residual unexplained variance (σ2)

Step 2: Draw α̂(m) and σ̂ (m) from “posterior” distributions
- Note, a “proper” imputation would take into account the uncertainty

of the model parameters and prediction error

Step 3: For each missing yi , draw ε
(m)
i N(0, σ̂ (m)) and impute

(predict) the missing outcome: y (m)
i = X t

i α̂(m)+ ε(m)

Step 4: Do outcome regression on completed data to obtain
parameter estimate β̂ (m) of interest

Step 5: Repeat Step 2-4 m times (10,25,50. . . )

Step 6 : Average β and get Rubin’s variance/df
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Rubin’s Rules

I Each imputation yields β̂ m and var(β̂ m)

I Pool the estimates across the M imputations:

β̂MI = Avg(β̂ m)

var(β̂MI) = Avg(var(β̂ m)))+var(β̂MI) (Rubin’s rules)

I Note the typical formula for Rubin’s rules was for a small number
of imputations (M≈5) and had an adjustment to the 2nd variance
term that isn’t needed for large M

I For reproducibility of results, today M≈25 or larger is much more
typical and better for reproducibility

I A few references for practical considerations are White et al.
(2011) and Von Hippel (2020)
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More advanced multiple imputation techniques

I This is a deep topic that needs its own short course
I Multivariate Imputation by Chained Equations (MICE) (mice

package in R, proc MI in SAS) - this involves specifying a set of
equations for how each variable can be predicted. (e.g. may
assume multivariate normality if all variables continuous.)
I Don’t assume the package defaults are okay for your problem
I Generally a Gibbs sampler type algorithm and needs a ”burn-in”

I There are pitfalls to be aware of with common algorithms: in that
you could specify conditional models that are not compatible with a
joint distribution, which can lead to inflated variance estimates.

I Multiple Imputation of Covariates by Substantive Model
Compatible Fully Conditional Specification is one alternative in R
and Stata (smcfcs package) that addresses common pitfalls of
MICE (Bartlett et al., 2015)
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Adjustment Approach for Handling MAR in RCTs

I In the simple case of missing outcome only, adjustment of the
outcome model for covariates will address bias from missingness
under MAR and be fully efficient
I Groenwold et al. (2012) show you get similarly consistent

estimates with MI and adjusted complete case analysis.
I Some argue (Sullivan et al., 2018; Little et al., 2022) that non-MI

approaches should be considered more often under MAR (e.g.
mixed modeling or adjustment method), with caveat MI still offers
chance to be more precise

I Common approach in longitudinal data (e.g. mixed models)
I MI approaches allow you to handle MAR and still do the original

statistical test (e.g. two group comparison).
I MI approaches directly satisfy ITT
I Groenwold et al. (2012) work suggested when MNAR MI could

address bias better than adjustment approach, but both biased
I Generally a good idea to do multiple approaches as sensitivity

analyses
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INVERSE PROBABILITY WEIGHTING

I If the probability of having an observed value (i.e., not missing) is
closely related to the values of other measured variables, this
method can be useful

I Weights observed values inversely by the probability of being
observed

I Can reduce bias if the assumption that the probability of being
observed is a function of other measured variables is reasonable

- In other words, if we are in a “missing at random” situation

I Easy to do in software, e.g. IPW package in R
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Nitty Gritty: IPW

Step 1: Create a binary variable indicating completeness
outcome

- 1=complete case
- 0=non-complete case (missing at least one of: outcome or key

covariate)

Step 2: Model this completeness outcome (e.g. with logistic
regression

- Include characteristics thought to be related to missingness (need
to be observed on most people)

Step 3: Create IPW weights for each person= 1/predicted
probability from logistic model

Step 4: Perform a weighted regression using IPW

Step 5: Final analysis should consider variability in the weights:
either using a bootstrap or sandwich approach ((Carpenter and
Kenward, 2007))
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You can examine the success

I Should evaluate the predictive accuracy of the IPW model.
- Could consider AUC for the ROC for phat to predict the binary

outcome complete (yes/no)
- AUC close to 0.50 means your model could not predict which data

were complete.
- Poor AUC means wont have a good adjustment for missingness

I Analytical concern: sometimes large weights can create
instability

- Look for influential points in regression
- More sophisticated algorithms are available that stabilize weights

I IPW approach can be more variable than MI
- Classic Bias/variance tradeoff
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Take aways

I Validity of analytical approaches under MAR depend on
assumptions that we can model the systematic mechanisms
driving the missing data

I Build models to predict missing outcome or to predict probability
of being observed

I IPW seen as more “robust” (relying on fewer assumptions) than
MI

I MI seen as more “efficient” (less variable) than IPW

I MI approach more common, more intuitive way to preserve ITT
and efficiency is attractive
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What to do if data are MNAR?
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SENSITIVITY ANALYSES

I Analyze data under variety of different assumptions regarding
missing data—see how much the inference changes

I Sensitivity analyses could involve any of approaches already
described, and others

I When multiple sensitivity analyses are done without changing
conclusions, we can be more comfortable that missing data are
not obscuring important information about treatment effect
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SIMPLE SENSITIVITY ANALYSIS: Impute the most
extreme scenarios

I Provide bounds for the “true” results if all planned data points
had been observed

I Provides a sense of how far off any of the other analyses could
be

I Does not provide a single “answer” but aids in interpretation of
other “answers”
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EXAMPLE

I Suppose outcome for each subject is “response” or
“nonresponse”

I In worst case analysis, assume each missing subject in
treatment group has “nonresponse” and each missing subject in
control group has “response”

I In best case analysis, reverse
I Less straightforward but still feasible when outcome is a

continuous rather than a binary variable
- In weight loss trial, there are biological limits to how much weight

could change in 6 months.
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More Complex Sensitivity Analyses

I “Pattern mixture” methods consider how patterns in the missing
data may be different than the observed patterns

I Can show how departures from the MAR assumption can
influence conclusions

I Tipping point analysis: e.g. conjecture differential outcome
models until results are reversed. Judge to what extent that
scenario would be possible/believable.

I Using different models and showing minimal impact on
conclusions will support primary findings
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MISCONCEPTIONS ABOUT HANDLING
MISSING DATA
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

1. If a dropout rate of x% is expected, the sample size should be
adjusted upward by x% to compensate.

61 / 71



MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

1. If a dropout rate of x% is expected, the sample size should be
adjusted upward by x% to compensate.

Problem: This provides the desired number of data points for
precision, but the results may be biased

Example: Suppose dropouts are those who are not benefiting
from treatment. Then we are hiding treatment failures by
replacing such patients.

Not wrong to enlarge sample size; it just doesn’t make the
problem go away

Key consideration: to safeguard power, likely need to assume a
certain % on tx arm wont respond /has a worse outcome. . . reduces
power by bringing arms closer
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

2. If the amount of missing data is the same in each study arm,
everything is OK
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

2. If the amount of missing data is the same in each study arm,
everything is OK

Problem: The reasons for data being missing may not be the
same for each arm. On one arm, drop outs may be those doing
well; on the other, those doing poorly
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

3. If the baseline characteristics of subjects with missing data are
similar to those of subjects with complete data, it is probably safe to
limit analysis to “completers”
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MISCONCEPTIONS ABOUT HANDLING OF
MISSING DATA

3. If the baseline characteristics of subjects with missing data are
similar to those of subjects with complete data, it is probably safe to
limit analysis to “completers”

Problem: Many aspects of prognosis are not understood and
therefore not measured. The balance on unknown prognostic
factors provided by randomization is no longer assured when
randomized subjects are excluded.
Note: this is the big concern about methods assuming MAR.
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Final note on Reporting

I CONSORT Guidelines for Clinical Trial Reporting (Altman et al.,
2001) have detailed recommendations on how to report missing
data

I Must account for all randomized subjects/all individuals in
original cohort

I Describe pre-specified approach to handling missing data in
analysis

I Address extent to which results may be biased due to missing
data

I Report results of sensitivity analyses
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SUMMARY

I The less missing data, and the lower the rate of noncompliance,
the less concern about

- bias
- unreliable conclusions
- inappropriate methods of analysis

I Methods to replace/account for missing data are all problematic
in important ways – but put your best foot forward! (In analysis,
try to address bias, incorporate uncertainty)

I Sensitivity analyses are essential to evaluating reliability of
conclusions
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KEY REFERENCES

I Little et al. (2022)
I Missing data in randomised controlled trials— a practical guide

by John Carpenter (https://researchonline.lshtm.ac.uk/
id/eprint/4018500/1/rm04_jh17_mk.pdf)

I National Research Council report: “The Prevention and
Treatment of Missing Data in Clinical Trials” (National Academy
Press, 2010)

- Detailed discussion of different methods with examples
I Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS,

Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA,
Neaton JD. The prevention and treatment of missing data in
clinical trials. NEJM 2012;367(14):1355-60.

- Overview discussion of different methods for handling missing
data, with examples

I Schulz KF, Altman DG, Moher D. CONSORT 2010 statement:
updated guidelines for reporting parallel group randomised trials.
Trials. 2010 Dec;11(1):1-8.
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Introduction

▶ See Hochberg and Tamhane (2009) for thorough treatment and
Proschan and Brittain (2020) for a tutorial on multiple
comparisons.

▶ Multiple comparisons arise in many ways in clinical trials: Arms,
endpoints, subgroups, analyses, covariates, time points
(monitoring).

▶ Problem: With enough comparisons, some will be significant
even if nothing is going on.

“If you torture the data long enough, it will confess to any-
thing.”

Ronald H. Coase, British economist.

▶ Sometimes the size of the multiplicity problem is not clear.
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Introduction: Magnitude of Problem

▶ In 2003, VaxGen announced their AIDSVAX HIV vaccine may be
effective in Blacks and Asian-Americans.
▶ 5,108 men who have sex with men (MSM) and 309 high risk

women in North America and the Netherlands.
▶ Overall, only a 3.8% reduction in HIV incidence in vaccine arm

compared to placebo (p=0.76).
▶ Blacks: 4/203 vaccine versus 9/111 placebo participants got HIV.
▶ Asians: 2/53 vaccine versus 2/20 placebo participants got HIV.

“If we announced to the world that we were abandoning the project
because the study failed in whites, we’d be crucified.”

VaxGen CEO Lance Gordon.

▶ Very controversial.

▶ How many subgroups did they examine?
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Introduction: Magnitude of Problem

▶ ISIS-2 trial evaluated effect of aspirin on mortality in heart
patients (ISIS-2 (1988)).

▶ Journal asked for subgroup results, but authors thought it would
mislead. Journal insisted, so authors included signs of zodiac to
prove a point:

“. . . for patients born under Gemini or Libra there was a
slightly adverse effect of aspirin on mortality (9% SD 13 in-
crease; NS), while for patients born under all other astrolog-
ical signs there was a strikingly beneficial effect (28% SD 5
reduction; 2p<0.00001).”

▶ They combined 2 astrological signs and compared to others; if
that had not worked, they probably would have combined 3
signs. Number of potential comparisons huge!
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Introduction: Magnitude of Problem

▶ Similar examples can be found in other fields.

▶ Bible code controversy (Drosnin (1997); History-Channel
(2003)).
▶ Believers (including Sir Isaac Newton) say there is secret code in

first 5 books of the Old Testament.
▶ Must skip letters (e.g., read every 50th letter) to uncover code

words like “Bin Laden”, “twin towers”, etc.
▶ Code supposedly “proven” by Witztum et al. (1994) by permutation

test: Code revealed that rabbis’ names were too close to dates of
birth to be explained by chance.

▶ Debunked by Bar-Hillel et al. (1999).
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Strong/Weak Control of FWER

▶ Consider testing hypotheses H1, . . . ,Hk .

▶ Global null hypothesis is ∩iHi , meaning set of parameter
vectors such that all null hypothesis are true. E.g., for comparing
all pairs among 3 means, global null is {(µ1,µ2,µ3) : µ1 =

µ2,µ1 = µ3,µ2 = µ3}= {(µ1,µ2,µ3) : µ1 = µ2 = µ3}.

▶ Familywise error rate (FWER) is
P(at least 1 false rejection of a null hypothesis).

▶ Can calculate FWER under global null or under other nulls.

▶ Weak control of FWER means FWER is controlled if global null is
true.

▶ Strong control of FWER means FWER is controlled no matter
which nulls are true.

Strong control ⇒ weak control.
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Strong/Weak Control of FWER: Fisher’s LSD

▶ Example: Comparing all pairs of means of arms 1,2,3,4.

▶ Fisher’s least significant difference (LSD) procedure: If F-test
comparing all arms is significant at level α, compare each pair
with level α t-test.

▶ For 4 (or more) arms, Fisher’s LSD controls FWER weakly,
but not strongly.

▶ Weak control: To declare any differences, F must be significant,
and P(F significant |global null) = α.

▶ Therefore, Fisher’s LSD controls FWER weakly.
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Strong/Weak Control of FWER: Fisher’s LSD

µ1

µ2

µ3

µ4

L U

Figure: Configuration of 4 population means that inflates the FWER for Fisher’s LSD:
µ1 = µ2 = µ3 = L and µ4 = U, where U −L is huge.

▶ Lack of strong control of Fisher’s LSD with 4 arms: Suppose
µ1 = µ2 = µ3 = L, µ4 = U, where U −L is huge.
▶ F is almost guaranteed significant.
▶ In above scenario, Fisher’s LSD almost same as doing unadjusted

t-tests, which inflates FWER among µ1,µ2,µ3.
▶ So Fisher’s LSD does not strongly control FWER for ≥ 4 arms.
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Strong/Weak Control of FWER: Fisher’s LSD

▶ Sometimes easy to show a procedure strongly controls FWER by
enumerating all possibilities.

▶ Can use enumeration method to show Fisher’s LSD with 3
arms does strongly control FWER.

▶ Why? Consider all possible configurations of parameters.
▶ If global null is true, P(F significant)≤ α, so FWER protected.
▶ If global null is false, then at most one pairwise null is true and its

t-test protects type 1 error rate if that pairwise null is true.

▶ Argument shows FWER protected under all configurations of
parameters, so Fisher’s LSD strongly controls FWER when k = 3
arms.
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Strong Control Methods: Bonferroni

▶ Bonferroni method always strongly controls FWER.

▶ Bonferroni method requires Pi ≤ α/k to reject Hi , where Pi is
p-value for i th comparison and k =number comparisons.

▶ Why does Bonferroni strongly control FWER?
▶ Suppose t is number of true nulls, & without loss of generality,

assume they are the first t .
▶ By Bonferroni inequality,

P(∪t
i=1reject Hi) ≤

t

∑
i=1

P(reject Hi)

≤ t(α/k)≤ k(α/k)

= α. (1)
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Strong Control Methods: Bonferroni

▶ Bonferroni too conservative if statistics highly correlated.

▶ If statistics had correlation 1, then could use level α for each.

▶ If statistics are independent, Bonferroni is only slightly
conservative. Use Bonferroni’s other inequality (p. 100 of Feller
(1957)):

FWER = P(∪k
i=1reject Hi)

≥
k

∑
i=1

P(reject Hi)− ∑∑
1≤i<j≤k

P(reject Hi ∩ reject Hj)

= k(α/k)−
(

k
2

)
(α/k)2

≥ α −α
2/2. Thus,

α −α
2/2 ≤ FWER ≤ α. (2)

▶ If α = 0.05, then 0.04875 ≤ FWER ≤ 0.05.
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Strong Control Methods: Holm’s Sequentially
Rejective Bonferroni

▶ Holm’s sequentially rejective Bonferroni method (Holm
(1979)):
▶ Order p-values P(1) < P(2) < .. . < P(k).
▶ Compare P(1) to α/k .

▶ If P(1) > α/k , stop and declare nothing significant.
▶ if P(1) ≤ α/k , reject null associated with P(1) and proceed to next step.

▶ Compare P(2) to α/(k −1).
▶ If P(2) > α/(k −1), stop and declare nothing else significant.
▶ If P(2) ≤ α/(k −1), reject null associated with P(2) and proceed to

next step.
▶ Compare P(3) to α/(k −2).

▶ If P(3) > α/(k −2), stop and declare nothing else significant.
▶ If P(3) ≤ α/(k −2), reject null associated with P(3) and proceed to

next step.
...
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Strong Control Methods: Holm’s Sequentially
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Strong Control Methods: Holm’s Sequentially
Rejective Bonferroni

Death Mech vent/death WHO 8-pt ord score
0.042 0.020 0.013

▶ Suppose p-values for 3 endpoints in COVID-19 trial are as
shown in above table.

▶ For Holm:

▶ p(1) = 0.013 ≤ 0.05/3, so WHO 8-point scale is significant.

▶ p(2) = 0.020 ≤ 0.05/2, so mechanical ventilation/death is
significant.

▶ p(3) = 0.042 ≤ 0.05/1, so mortality is significant.

▶ For ordinary Bonferroni, only WHO 8-point scale is significant.
13 / 49



Strong Control Methods: Holm’s Sequentially
Rejective Bonferroni

Death Mech vent/death WHO 8-pt ord score
0.042 0.020 0.013

▶ Equivalent formulation: Adjust p-values and compare to 0.05.

▶ In R, first store p-values in a variable:

pvals<-c(0.042,0.020,0.013)

▶ Now use function p.adjust. E.g., for Holm:

p.adjust(pvals, method="holm")

Gives (0.042,0.040,0.039). All are ≤ 0.05, so all are significant.

▶ For ordinary Bonferroni:

p.adjust(pvals, method="bonferroni")

Gives 0.126, 0.060, 0.039; Only 0.039 is ≤ 0.05, so only WHO
8=point ordinal score is significant by ordinary Bonferroni.
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Strong Control Methods: Holm’s Sequentially
Rejective Bonferroni

▶ Holm strongly controls FWER and is more powerful than
Bonferroni.

▶ Informal rationale for Holm: Once we reject null associated with
P(1), we have either made a type 1 error or not.
▶ If so, it doesn’t matter what happens next because we already

made ≥ 1 type 1 error.
▶ If not, then null associated with P(1) was false, so there were at

most k −1 true nulls. Can use Bonferroni with α/(k −1).

▶ Once we reject null associated with P(2) we have either made
≥ 1 type 1 error or not.
▶ If so, it doesn’t matter what happens next because we already

made ≥ 1 type 1 error.
▶ If not, then nulls associated with P(1) and P(2) were false, so there

were at most k −2 true nulls. Can use Bonferroni with α/(k −2).
...
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Strong Control Methods: Graphical Alpha Transfer

▶ Same reasoning to tranfer alpha from significant comparisons to
other comparisons (Bretz et al. (2011)).
▶ Pre-specify initial alpha levels α1, . . . ,αk with ∑i αi ≤ α.
▶ Pre-specify plan for transferring alpha from significant comparisons

to other comparisons.

▶ Example: 3 endpoints: (1) Cardiovascular disease (CVD), (2)
Coronary heart disease (CHD), (3) stroke.
▶ CVD primary, so initial allocation of alpha: (α,0,0) to (CVD, CHD,

stroke).
▶ If CVD is significant, transfer all of its alpha to secondary endpoint

CHD.
▶ If reach CHD & it is significant, transfer all of its alpha to secondary

endpoint stroke.
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Strong Control Methods: Graphical Alpha Transfer

▶ Called a gatekeeping procedure. Must pass through each gate
to test subsequent hypothesis.

▶ Great if you are confident of passing through gates. E.g.,
comparing doses of drug to placebo.
▶ Compare high dose to placebo at level α. Stop if not significant.
▶ If significant, compare middle dose to placebo at same level α.

Stop if not significant.
▶ If significant, compare low dose to placebo at same level α.

▶ Downside: Must stop testing if fail to pass through gate.

▶ Another option in 3-endpoint example: If CVD significant, transfer
half of alpha to each of CHD & stroke.

▶ If reach CHD/stroke & one is significant, transfer all of its alpha to
other one.
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Strong Control Methods: Graphical Alpha Transfer

Cardiovascular Disease
𝛼

Coronary Heart Disease
0

Stroke
0

1/2 1/2

1

1

Cardiovascular
Disease
𝛼

Coronary Heart
Disease

0

Stroke            
0

1 1

Figure: Two alpha transfer options for primary endpoint (cardiovascular disease) and
two secondary endpoints (coronary heart disease, stroke).
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Strong Control Methods: Graphical Alpha Transfer

▶ Can represent with graph: Initial alpha allocation inside nodes,
proportion of alpha transferred shown on arrows.

▶ Top option: Gatekeeping procedure.

▶ Bottom option with α = 0.05: If CVD not significant at α = 0.05,
stop. If CVD significant at α = 0.05, test both secondary
endpoints at α = 0.05/2 = 0.025.

▶ If either secondary is significant at 0.025, transfer all of 0.025 to
other secondary.

▶ I.e., if primary and one secondary significant, last endpoint is
tested at 0.025+0.025 = 0.05.
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Strong Control Methods: Graphical Alpha Transfer

▶ Bretz et al. (2011) show that graphical alpha transfer method
strongly controls FWER.

▶ Same reason that Holm method strongly controls FWER:

▶ Key Principle: Once you reject a null hypothesis, you either
erred or you didn’t.
▶ If you erred, it doesn’t matter what happens next because

you’ve already made at least 1 type 1 error.
▶ If you didn’t err, then that null hypothesis was false and you

never needed to spend any alpha on it. Therefore, you can
transfer its alpha! (but only if you follow pre-specified method
for transferring).
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Strong Control Methods: Graphical Alpha Transfer

▶ Another advantage of graphical transfer method: Graph
succinctly summarizes what would take pages of text to explain,
and the text would be harder to understand!

▶ Order of testing doesn’t matter provided you continue until no
longer able to transfer any alpha, but some orders are more
efficient than others.

▶ Bretz et al. (2011) give efficient way to carry out procedure.
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Strong Control Methods: The Closure Principle

▶ Marcus et al. (1976).

▶ Testing finite family F of all intersections of {H0i , i = 1, . . . ,n}.

▶ Suppose that for each subset P ⊂ {1, . . . ,n}, there is an α level
test of HP = ∩i∈PHi .

▶ Closure principle: Reject HP if and only if the test of HR is
significant at α = 0.05 for each HR that implies HP (i.e., for each
R such that R ⊃ P).

Theorem
(Marcus et al. (1976)) Following the closure principle strongly
controls the FWER among the family F .
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Strong Control Methods: The Closure Principle

▶ Very powerful, but sometimes misunderstood.

▶ E.g., suppose compare 4 means, Hij : µi = µj .

▶ Newman-Keuls procedure: for comparing pairs of means,
Hij : µi = µj . Reject H12 if and only if T12, F123, F124, and F1234

are all significant at level α, where T and F denote t and F
statistics. Similarly for other pairwise comparisons.

▶ Does Newman-Keuls follow closure principle?

▶ No! Closure principle also requires an α level test of H12 ∩H34.

▶ In fact, Newman-Keuls does not strongly control FWER for k = 4.
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Strong Control Methods: The Closure Principle

µ1

µ2

µ3

µ4

L U

Figure: Configuration of 4 population means that inflates the FWER for
Newman-Keuls: µ1 = µ2 = L and µ3 = µ4 = U, where U −L is huge.

▶ F123, F124, F134, F234, and F1234 nearly guaranteed to be
statistically significant, so FWER of Newman Keuls ≈ FWER of
rejecting if either T12 or T34 is significant at level α.

FWER ≈ P (T12 signif. or T34 signif.)
= 1−P(neither signif.) = 1− (1−0.05)2

= 0.0975. (3)

▶ Doesn’t violate closure principle: To truly follow closure, must
have α-level test of H12∩34. Newman-Keuls doesn’t do this.
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Multiple Arms: Dunnett and Variants

▶ Consider 1-sided problem of comparing k arms to same control
(platform trial) on continuous endpoint Y .

▶ Hi : µi = µ0, µ0 and µi are means in control and arm i .

▶ Global null is H = ∩Hi : µ0 = µ1 = . . .= µk .

▶ Poor option: Bonferroni.
▶ Reject hypothesis associated with p(i) if p(i) ≤ α/k .

▶ Better option: Holm sequentially rejective Bonferroni using
p-value thresholds of α/k ,α/(k −1), . . . ,α/1 for p(1), . . . ,p(k).

▶ Better still: Dunnett procedure Dunnett (1955): Find actual joint
distribution of test statistics using clever trick.
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Multiple Arms: Dunnett and Variants

▶ Assume Y normally distributed with same variance σ2 in
different arms, and assume n large enough to treat σ2 as known.

▶ Zi =
Ȳi−Ȳ0√

2σ2/n
, i = 1, . . . ,k .

▶ Zi are dependent only because of shared control. Can condition
on control sample mean to remove dependence, then
uncondition at end.

▶ See Appendix at end of this lecture for details of derivation of
Dunnett critical value.

26 / 49



Multiple Arms: Dunnett and Variants

Table: Dunnett critical values ck for 1-sided test at α = 0.025 for large n.

k Z-score boundary
1 1.960
2 2.212
3 2.349
4 2.442
5 2.511
6 2.567

▶ Substitute pooled variance σ̂2 for σ2 in Zi .
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Multiple Arms: Dunnett and Variants

▶ Even better option: Use sequential Dunnett based on
closure principle. Let Z(1) < Z(2) < .. . < Z(k) be order
statistics:
▶ Compare Z(k) to ck .

▶ If Z(k) < ck , stop.
▶ If Z(k) ≥ ck , reject hypothesis associated with Z(k) and proceed to

next step.

▶ Compare Z(k−1) to ck−1.
▶ If Z(k−1) < ck−1, stop.
▶ If Z(k−1) ≥ ck−1, reject hypothesis associated with Z(k−1) and proceed

to next step.

▶ Compare Z(k−2) to ck−2.
▶ If Z(k−2) < ck−2, stop.
▶ If Z(k−2) ≥ ck−2, proceed to next step.

...
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Multiple Arms: Dunnett and Variants

Table: Dunnett critical values ck for 1-sided test at α = 0.025 for large n.

k Z-score boundary
1 1.960
2 2.212
3 2.349
4 2.442
5 2.511
6 2.567

▶ Example of sequential Dunnett comparing 3 arms to control:
Start by comparing maxi=1,2,3 Zi to 2.349.

▶ Suppose max is Z2 and Z2 ≥ 2.349. Declare Arm 2 better than
control and compare maxi=1,3 Zi to 2.212.

▶ Suppose maxi=1,3 Zi is Z1 and Z1 ≥ 2.212. Declare Arm 1 better
than control and compare Z3 to 1.96.

▶ Declare Arm 3 better than control if Z3 ≥ 1.96.
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Multiple Subgroups

▶ Subgroups difficult to deal with because of their sheer number:
▶ Demographics: race, sex, age, etc.
▶ Prognostic characteristics: prior heart attack or family history in

heart disease trial, risky behaviors in HIV vaccine trial, etc.

▶ Two opposing problems: (1) Multiplicity leads to false positives
and (2) Low power to detect interactions, exacerbated by
adjusting for multiple comparisons!

▶ Typical approaches either don’t control, or weakly control, FWER.

▶ E.g., for each factor, first test (factor)×(treatment) interaction.
Only if interaction is significant, test treatment effect separately
within subgroups. Doesn’t control FWER, even weakly.

▶ Accompanying plot: Forest plot .
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Multiple Subgroups: Forest Plots

NEJM 2020; 
383:1813-26

Figure: Forest plot from the ACTT-1 clinical trial of Remdesivir for treatment of
hospitalized COVID-19.
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Multiple Subgroups: Forest Plots

▶ Forest plots often show good agreement of treatment effect
across subgroups, but no FWER control.

▶ Could control FWER using Bonferroni on number of subgroup
comparisons.

▶ Problem: Too conservative because subgroups based on
prognostic factors can have big overlap.
▶ E.g., in HIV, big overlap of patients in worst viral load and worst

CD4 count subgroups.

▶ How do we control FWER weakly, accounting for overlap?

▶ There are bootstrap (Rosenkranz (2014)) and permutation (Dane
et al. (2019); Lipkovich et al. (2011)) methods. We focus on one
permutation method.
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Multiple Subgroups: SEAMOS

▶ Standardized Effects Adjusted for Multiple Subgroups
(SEAMOS) (Dane et al. (2019)).
▶ Compute standardized difference between effect δ̂ij in category j of

factor i and overall effect δ̂ that ignores subgroups, then take max:

Zij =
δ̂ij − δ̂

se(δ̂ij )
, M =max

ij
(Zij ). (4)

▶ Fix outcome & treatment vectors, randomly interchange covariate
vectors across people, compute M for covariate-interchanged data.

▶ Repeat many times to get null reference distribution of M. Declare
effect in a subgroup better than average if original (unpermuted) M
exceeds 97.5th percentile of permutation distribution.

▶ SEAMOS preserves overall treatment effect and dependence of
covariates.
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Multiple Subgroups: SEAMOS

Patient Treatment 
Assignment

Outcome 
(28-day 

mortality)

Ordinal 
Score

Other Covariates

1 T 0 4 𝐱𝟏

2 P 1 6 𝒙𝟐

3 P 0 5 𝐱𝟑

4 T 0 5 𝒙𝟒

5 T 0 4 𝒙𝟓

6 P 1 7 𝒙𝟔

⋮ ⋮ ⋮ ⋮

Fix

SEAMOS Method

Figure: SEAMOS method illustrated for mortality comparison in ACCT-1 trial: Fix
outcomes and treatment indicators, randomly permute patient covariate vectors,
compare original M =maxij (Zij ) from Equation (4) to its permutation distribution.
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Multiple Endpoints: Hochberg*

▶ Hochberg (1988) is used to test whether effect in any subgroup.

▶ Holm’s procedure started with most significant (smallest p-value)
result and proceded to less significant results.

▶ Can also go in reverse direction.
▶ Start with largest p-value, p(k) and compare to α.

▶ If p(k) ≤ α, reject ALL hypotheses and stop.
▶ If p(k) > α, do not reject hypothesis associated with p(k), but move

to next step.

▶ Compare p(k−1) to α/2.
▶ If p(k−1) ≤ α/2, reject hypotheses associated with p(k−1), . . . ,p(1).
▶ If p(k−1) > α/2, do not reject hypothesis associated with p(k−1), but

move to next step.

▶ Compare p(k−2) to α/3 . . .

*Not guaranteed to strongly control FWER without further conditions
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Multiple Endpoints: Hochberg*

▶ Called Hochberg procedure.

▶ P-value thresholds for Holm and Hochberg are same, but
Holm starts with most significant, while Hochberg starts
with least significant.

p(1) ≤ α

k p(2) ≤ α

k−1 p(k−1) ≤ α

2 p(k) ≤ α

Holm Hochberg

. . . . . .

Figure: Holm and Hochberg procedures.

*Not guaranteed to strongly control FWER without further conditions
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Multiple Endpoints: Hochberg*

▶ Hochberg always more powerful than Holm, which is more
powerful than Bonferroni.

▶ Problem: Hochberg does not always strongly control FWER.

▶ However, Hochberg DOES strongly control FWER when test
statistics independent or have certain types of positive
dependence.

*Not guaranteed to strongly control FWER without further conditions
37 / 49



Multiple Endpoints: Hochberg*

▶ Hochberg is attractive for multiple positively correlated endpoints.

▶ Example: COVID-19 trial with primary endpoints 1. mechanical
ventilation or death, 2. death.

▶ Declare benefit on at least one endpoint if
▶ smaller p-value ≤ 0.25 for Bonferroni/Holm procedure,
▶ smaller p-value ≤ 0.025 or both p-values ≤ 0.05 for Hochberg

procedure.

▶ If the two endpoints are positively correlated, then Hochberg
procedure strongly controls FWER.

*Not guaranteed to strongly control FWER without further conditions
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False Discovery Rate (FDR)

▶ Another error rate is false discovery rate.

Table:

Declared not Declared significant
significant

H0 True T V m0

H0 Untrue U W m−m0

m−X X m

▶ Q = V/X , proportion of nulls that are true among rejections
(defined as 0 if X = 0).

▶ FDR= E(Q), expected proportion of nulls that are true among
rejections.

▶ FDR≤FWER. Why?
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False Discovery Rate (FDR)

Table:

Declared not Declared significant
significant

H0 True T V m0

H0 Untrue U W m−m0

m−X X m

▶ Claim: I(V ≥ 1)≥ Q = V/X because:
▶ If V = 0, then I(V ≥ 1) = 0 and Q = V/X = 0 (even if X = 0).
▶ If V ≥ 1, then I(V ≥ 1) = 1 and Q = V/X ≤ 1.

▶ Because I(V ≥ 1)≥ Q, FWER=E{I(V ≥ 1)} ≥ E(Q) = FDR.
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False Discovery Rate (FDR)

▶ Thus, FDR is less stringent than FWER.

▶ Can have FDR≤ α and FWER> α but not vice-versa.

▶ FDR control is reasonable when # comparisons very large.

▶ Benjamini-Hochberg procedure (Benjamini and Hochberg
(1995)).

▶ Reject hypotheses associated with p(1), . . . ,p(j) at level q∗ if
p(j) ≤ (j/k)q∗.

▶ If test statistics are independent, Benjamini-Hochberg controls
FDR at level q∗.
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False Discovery Rate (FDR)

▶ Note that under global null, if test statistics independent and
have continuous distribution function, E(P(j)) = E(U(j))

= j/(k +1), where Ui are iid uniforms,

▶ In that case, Benjamini-Hochberg rejects hypotheses associated
with p(1), . . . ,p(j) at level q∗ if

p(j)

E(P(j))
≤
(

k +1
k

)
q∗ ≈ q∗ if k large.

▶ In terms of stringency,

Benjamin-Hochberg ≤ Hochberg ≤ Holm ≤ Bonferroni.

▶ FDR usually reserved for large # comparisons (e.g., gene
association studies).
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Summary

▶ Multiple comparisons in clinical trials caused by multiple arms,
endpoints, analyses, subgroups, time points (monitoring), etc.

▶ P(at least one type 1 error)=FWER. Can control it:
▶ Weakly: Under global null.
▶ Strongly: Regardless of which nulls are true.

▶ Bretz et al. (2011) graphical method of transferring alpha from
rejected hypotheses to other hypotheses is very powerful.
Several techniques are special cases, including
▶ Gatekeeping procedures.
▶ Sequentially rejective Bonferroni.

▶ Closure principle also useful for proving strong control of FWER.

▶ With huge number of comparisons, may want to control FDR
(less conservative) instead of FWER.
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Appendix: Deriving Distribution of Dunnett

▶ Assume Y normally distributed with same variance σ2 in
different arms, and for simplicity, assume n large enough to treat
σ2 as known.

▶ Zi =
Ȳi−Ȳ0√

2σ2/n
, i = 1, . . . ,k .

▶ To compute FWER, assume without loss of generality that
Yi ∼ N(0,1), i = 1, . . . ,k .

▶ Zi are dependent only because of shared control. Condition on
control sample mean to remove dependence.
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Appendix: Deriving Distribution of Dunnett

Given Ȳ0 = y0,

Z1 =
Ȳ1 −y0√

2/n
, Z2 =

Ȳ2 −y0√
2/n

, . . . , Zk =
Ȳk −y0√

2/n
are iid.

Let M =max(Z1, . . . ,Zk ). Then

P(M ≤ ck | Ȳ0 = y0) = P
{
max

(√
nȲ1, . . . ,

√
nȲk

)
≤
√

2ck +
√

ny0

}
=

{
Φ
(√

2ck +
√

ny0

)}k
.

48 / 49



Appendix: Deriving Distribution of Dunnett

▶ Now integrate over density, fn(y0), of Ȳ0, which is normal with
mean 0 and variance 1/n.

P(M ≤ ck ) =
∫

∞

−∞

{
Φ
(√

2ck +
√

ny0

)}k
fn(y0)dy0. (5)

▶ Make substitution z0 =
√

ny0. Because Z0 =
√

nȲ0 ∼ N(0,1), get

P(M ≤ ck ) =
∫

∞

−∞

{
Φ
(√

2ck +z0

)}k
φ(z0)dz0,

where φ(z0) is standard normal density.

▶ Equate to 1−α and solve for ck .
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Introduction

▶ WARNING: This is a brief overview of a vast topic! Only the main
ideas are provided. See chapter 11 of Proschan (2022).

▶ Clinical trial planning requires information such as:
▶ The control event rate (for binary outcome) or variance (for

continuous outcome).
▶ The treatment effect.
▶ Whether data will be skewed, etc.

▶ This information is lacking in new disease.

▶ What do we do?

▶ Adaptive methods: Pre-specified procedures to use within-trial
data to change design.
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Introduction

▶ Examples:
▶ Sample size re-estimation based on lumped event rate (binary

outcome trial) or lumped variance (continuous endpoint trial).
▶ Examine lumped data to detect outliers. If none, use t-test; if

outliers, use Wilcoxon rank sum test.
▶ Sample size re-estimation based on treatment effect.
▶ Change of primary endpoint after examining treatment effect.

▶ First two are very different from last two: They don’t require
unblinding.

▶ Unblinding is undesirable because could lead to:
▶ Background treatment bias, selection bias, etc.
▶ Problems with regulators.
▶ Inflation of type 1 error rate if not careful.
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Blinded Sample Size Methods

▶ We begin with binary outcomes and safest adaptations–blinded
ones (Gould (1992)).

▶ In trials with binary endpoint like 28-day mortality, we often
over-estimate event rate. Why?

▶ Event rate estimates may be based on observational data.
People volunteering for clinical trials:
▶ May be more health-conscious.
▶ May get better care in clinical trial.
▶ Must satisfy entry criteria that could exclude sickest patients.
▶ May undergo run-in to weed out non-adherers.

▶ If power is based on a given relative effect (e.g., 25% reduction
in 28-day mortality), overestimating event rate means
underpowering trial.
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Blinded Sample Size Methods: Binary Outcomes

▶ Want specified power to detect fixed relative risk R < 1. E.g., for
25% reduction, R = 0.75.

▶ Procedure:
▶ Calculate initial sample size n0/arm based on fixed relative

risk R < 1 and pre-trial estimate of control probability pC .
▶ At planned halfway point, n1 = n0/2 per arm (or another

fraction), calculate overall event rate (blinded)
p̂1 = (# with event)/(# evaluated).

▶ Equate

(pT +pC)/2 = p̂1

pT /pC = R, (1)

and solve for pT and pC .

pC =
2p̂1

R +1
, pT =

2Rp̂1

R +1
. (2)
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Blinded Sample Size Methods: Binary Outcomes

▶ Example: COVID-19 trial of hospitalized patients, usual
care+new drug versus usual care+placebo.

▶ Primary endpoint: ventilation/death by day 60.

▶ Initial estimate of control probability: pC = 0.20.

▶ Want 85% power to detect 25% reduction (R = 1−0.25 = 0.75 )
using 2-tailed test at α = 0.05.

▶ Initial sample size: n0 = 1,036/arm.

▶ After n1 = 500/arm, 150 have events (combined across arms), so
proportion with events is p̂1 = 150/1,000 = 0.15.
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Blinded Sample Size Methods: Binary Outcomes

▶ Compute

pC =
2p̂1

R+1
=

2(0.15)
0.75+1

= 0.1714

pT =
2Rp̂1

R+1
=

2(0.75)(0.15)
0.75+1

= 0.1286.

▶ New sample size based on pC = 0.1714 and pT = 0.1286:
n = 1249/arm.

▶ Increase sample size to 1249/arm and use z-test of
proportions at end as if sample size were fixed in advance.

▶ Could also stratify analysis by before/after sample size change
(always good to compare results pre- and post-adaptation).
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Blinded Sample Size Methods: Binary Outcomes

▶ One problem with blinded sample size method: Overall event
rate could be low for at least 2 reasons:

1. Control event rate is lower than expected.
2. Treatment effect is much higher than expected.

▶ If second reason is true, then don’t need to increase sample size!

▶ But very large treatment effects are unusual in clinical trials.

▶ Why not avoid problem by looking at control event rate instead of
overall rate?

▶ Problem 1 with peeking at control event rate: Even blinded
investigators may know overall event rate.
▶ knowledge of control event rate plus overall rate reveals the

observed treatment effect!
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Blinded Sample Size Methods: Binary Outcomes

▶ Problem 2 with peeking at control event rate: Even if
investigators don’t know overall event rate, control event
rate gives some information about treatment effect because
control event rate is correlated with observed treatment
effect:

cov(p̂C1, p̂T1 − p̂C1) = cov(p̂C1 , p̂T1)–cov(p̂C1, p̂C1)

= 0−var(p̂C1)

= −pC(1−pC)/n1. (3)

▶ Dividing by product of standard deviations gives correlation
ρ ≈−0.71 under the null hypothesis.

▶ Nonzero correlation implies that the type 1 error rate could be
inflated by procedure that allows peeking at control event rate.
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Blinded Sample Size Methods: Binary Outcomes

▶ Not a problem with blinded method because:

cov
{
(p̂T1 + p̂C1)/2, p̂T1 − p̂C1

}
= (1/2)

{
cov(p̂T1 , p̂T1)− cov(p̂T1, p̂C1)+ cov(p̂C1, p̂T1)− cov(p̂C1, p̂C1)

}
= (1/2){var(p̂T1)−0+0−var(p̂C1)}

= (1/2){pT (1−pT )/n1 −pC(1−pC)/n1}

= (1/2){p(1−p)/n1 −p(1−p)/n1} (under H0)

= 0. (4)
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Blinded Sample Size Methods: Continuous
Outcomes

▶ Same ideas apply to trials with continuous outcomes analyzed
using unpaired t-test. Gould and Shih (1992).

▶ Sample size depends on treatment effect and variance σ2.

▶ Blinded method: Keep treatment effect fixed.
▶ Use pre-trial estimate of σ2 for initial sample size n0/per arm.
▶ At planned halfway point, n1 = n0/2/arm, re-estimate σ2 using

variance of combined data across arms.
▶ Modify sample size and treat as fixed in final analysis (use

ordinary t-test at end).
▶ Alternatively, could use t-test stratified by stage.

▶ Similar issue as with binary outcomes: Blinded variance could be
large because treatment effect is huge.
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Blinded Sample Size Methods: Continuous
Outcomes

Figure: Lumped variance is inflated when there is large treatment effect.

▶ Still, unless treatment effect is huge, the problem is minor.

▶ E.g., if σ2 is within-arm variance and E = δ/σ is treatment effect
relative to standard deviation (some authors call this the effect
size, then var(Y ) = σ2(1+E2/4).

▶ Even large treatment effect of E = 1/2 results in only 6% inflation
of variance, 3% inflation of standard deviation.
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Unblinded Sample Size Methods

▶ Now consider unblinded sample size methods: Much riskier
and error rate can be inflated if not careful.

▶ Example: Suppose original sample size is 1,000/arm and we
peek at z-score after 10/arm.
▶ If Z10 ≥ 1.645, change final sample size to 10/arm & reject H0.
▶ If Z10 < 1.645, continue to 1,000/arm and reject if Z1,000 ≥ 1.645.

▶ Z10 and Z1,000 are nearly independent because they share only
1% of data; type 1 error rate, P{Z10 ≥ 1.645∪Z1,000 ≥ 1.645}, is

= 1−P{Z10 < 1.645∩Z1,000 < 1.645}
≈ 1− (1−0.05)2 = 0.0975. (5)

▶ Proschan and Hunsberger (1995) showed that the most
nefarious method more than doubles the type 1 error rate.
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Unblinded Sample Size Methods

▶ How can we protect the type 1 error rate?

▶ Assume n is large enough to treat nuisance parameters (like σ or
p) as known.

▶ Again specify initial sample size n0/arm and assume sample size
reassessment is after n1 = n0/2/arm (fixed number).

▶ Let Z1 be z-score at stage 1 with n1/arm.

▶ Choose n2 = n2(Z1) (random, as is n = n1 +n2) based on Z1. We
give more details on choice of n2 later.
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Unblinded Sample Size Methods

▶ If make no change in sample size (n2 = n0/2), then usual, fixed
sample size z-score using all data is

Z =
Z1 +Z2√

2
. (6)

▶ Key to adaptive method: Even if we change n2, still equally
weight Z1 and Z2, as in (6), and reject if Z in (6) is ≥ zα .

▶ Justification:
▶ Under H0, Z1 ∼ N(0,1) and Z2 |Z1 ∼ N(0,1), regardless of n2.

▶ Because distribution of Z2 |Z1 does not depend on Z1, (Z1,Z2) are
independent.

▶ Conclusion: (Z1,Z2) are iid N(0,1) under H0 in this adaptive
setting, just as in fixed sample setting.
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Unblinded Sample Size Methods

▶ More generally, any level α rejection region (Z1,Z2) ∈ R
when n2 is fixed remains level α in adaptive n2 setting.

▶ Weakness of adaptive method is clear: Equally weighting
z-scores from stage 1 and 2 even though n2 is much larger (or
smaller) than n1 is inefficient.

▶ Reasonable if n2 doesn’t change much, but not if it does!

▶ Extreme case: Can even reject H0 for right-tailed alternative
hypothesis when conventionally computed z-score is negative!
▶ Proschan and Hunsberger (1995) showed this.
▶ Burman and Sonesson (2006) “rediscovered” this fact.

▶ Other adaptive procedures have similar drawbacks.
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Unblinded Sample Size Methods

▶ Note: procedure would NOT work if weighted Z1 and Z2 by
sample sizes instead of equally weighting them.

▶ Why not? Because then we would be taking weighted
combination w1Z1 +w2Z2, where

▶ if Z1 is small, n2 (and therefore w2) would be large.

▶ If Z1 is large, n2 (and therefore w2) would be small.

▶ Intuitively clear that giving more weight to the larger observed
z-score would create bias and inflate type 1 error rate.
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Unblinded Sample Size Methods

▶ Could combine 1-sided p-values, Pi = 1−Φ(Zi), i = 1,2 instead
of z-scores.

▶ Called a p-value combination function.

▶ Any level α rejection region (P1,P2) ∈ R when n2 is fixed
remains level α in adaptive n2 setting.

▶ Z-score and p-value combination procedures are equivalent:

▶ Any z-score combination procedure corresponds to some
p-value combination function procedure and vice versa.

▶ One such p-value combination function: Fisher’s method of
combining p-values:

−2 ln(P1P2)∼ χ
2
4 under H0. (7)
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Unblinded Sample Size Methods

▶ Bauer and Köhne (1994) method:
▶ After observing first stage p-value, change sample size but

continue to use (7) at end.
▶ Reject H0 if −2 ln(P1P2)≥ χ2

4 (α), the (1−α)th quantile of a
chi-squared distribution with 4 degrees of freedom.

▶ They also modified procedure to allow stopping at first stage
for futility/benefit.

▶ Note: If −2 ln(P1)≥ χ2
4 (α), the (1−α)th quantile of a χ2

4
distribution, no need for second stage.

▶ Procedure has same drawback as equally weighting z-scores:
Giving equal weight to p-values is inefficient if one p-value is
based on much more information than the other.
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Unblinded Sample Size Methods

▶ Another equivalent way to formulate adaptive methods, the
conditional error function approach of Proschan and
Hunsberger (1995), works as follows.

▶ Pre-specify a function A(z1), 0 ≤ A(z1)≤ 1, telling how much
conditional error rate you can spend after seeing Z1 = z1,
where∫

∞

−∞

A(z1)φ(z1)dz1 = α and φ(z1)denotes standard normal density.

▶ After seeing Z1 = z1, do a test using second stage z-score Z2

only, but use alpha level A(z1).

▶ A(z1) is called a conditional error function because it is the
conditional type 1 error rate given Z1 = z1 (conditional power
under H0).
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Unblinded Sample Size Methods

▶ Z-score combinations, p-value combinations, and
conditional error functions are mathematically equivalent.
They are different formulations of the same idea.

▶ Conditional error formulation is useful because we can choose
n2 by considering conditional power under an alternative
hypothesis.

▶ At end of first stage, alpha level A = A(z1) to use in second stage
is fixed.

▶ To achieve (conditional) power 1−β , use EZ principle: Equate

E(Z2) = zA +zβ ,

and solve for n2.
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Unblinded Sample Size Methods

▶ For example, in t-test setting, if A(z1) = 0.15,

E(Z2) =
δ√

2σ2/n2
.

▶ Estimate σ2 and δ . Suppose estimates are σ̂2 = 25 and δ̂ = 1. If
we want 90% conditional power, set

√
n2 δ√
2σ2

= z0.15 +z0.10 = 1.036+1.282 = 2.318

n2 =
2σ2(2.318)2

δ 2 =
2(25)(2.318)2

12 ≈ 269. (8)

▶ Choose second stage sample size 269/arm.
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Unblinded Sample Size Methods

▶ Adaptive methods based on treatment effect have been criticized
on grounds of inefficiency and potentially strange behavior
(Burman and Sonesson (2006); Jennison and Turnbull (2003);
Jennison and Turnbull (2006)).

▶ Additionally, Tsiatis and Mehta (2003) showed that it is more
powerful to set large initial sample size and use group-sequential
monitoring to stop early.

▶ Therefore, in general, adaptive methods based on treatment
effect should be avoided.
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Unplanned Changes

▶ In rare cases, unplanned changes are needed (Posch and
Proschan (2012)).

▶ Recall Pam’s example of Metronidazole for TB (NCT00425113):
Investigators reviewed blinded lung scans, discovered primary
endpoint was not meaningful, and changed it.

▶ Can anything be done to protect the type 1 error rate?
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Unplanned Changes

▶ Can anything be done to protect type 1 error rate in
Metronidazole example? Assume endpoint change was made at
end of trial.

▶ A re-randomization test would still protect type 1 error rate
under strong null hypothesis that treatment has no effect on
any outcome examined.

▶ Get null distribution by treating data as fixed constants,
re-randomizing many times, and computing new value of test
statistic for each re-randomization.

▶ Compute p-value as proportion of re-randomized trials with result
at least as extreme as observed result.

▶ Valid because re-randomization tests already condition on
outcomes. Tests strong null hypothesis: H0: Treatment has no
effect on any endpoint you examined.
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Unplanned Changes

▶ What about unplanned sample size increase after examining
data by arm? Can anything be done to protect type 1 error rate?

▶ One potentially useful method is due to Chen et al. (2004).
▶ Compute conditional power (CP) under the current trend

estimate, B(t)/t = Z(t)/
√

t of drift parameter, θ (remember,
θ = E{Z(1)}).

▶ If CP is greater than 0.50, you can increase sample size with
no penalty.

▶ Justification: If CP≥ 0.50, then increasing the sample size
decreases the null conditional power.

▶ Proven to protect type 1 error rate with at most 1 interim analysis,
and simulations suggest control of error rate with more interim
analyses.
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Unplanned Changes

▶ Müller and Schäfer (2004) proposed a method to make any
design change (number or timing of interim analyses,
sample size, primary endpoint, analysis method, etc.).

▶ Let CRPorig be conditional rejection probability at interim
analysis under original design:

CRPorig = P0(Cross future boundary with original design |Z = z),

where z is interim z-score.

▶ Make design change but make sure CRPnew ≤ CRPorig.
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Unplanned Changes

▶ Controls type 1 error rate because

P0(reject H0 with new design)

=
∫

P0(reject H0 with new design |Z = z)φ(z)dz

=
∫

CRPnew(z)φ(z)dz ≤
∫

CRPorig(z)φ(z)dz

=
∫

P(reject H0 with original design |Z = z)φ(z)dz

= P(reject H0 with original design) = α. (9)

▶ Still, use only in emergencies and for minor changes!
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Summary

▶ Adaptive methods use within-trial data to make design changes.

▶ Adaptive methods should be preplanned, although emergencies
sometimes happen.

▶ Blinded methods are safer & less controversial than unblinded
methods.

▶ Blinded sample size re-estimation is common.
▶ Binary outcomes: Gould (1992): Use overall event rate and

hypothesized treatment effect to compute pT and pC and
re-compute sample size.

▶ Continuous outcomes Gould and Shih (1992): Treat overall
variance as within-arm variance and re-compute sample size.
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Summary

▶ Unblinded sample size increase based on promising trend also
safe if use Chen et al. (2004).
▶ Can increase sample size if conditional power under current

treatment effect estimate is ≥ 0.50.
▶ Boundary at end is unchanged.
▶ Logistical issues: Who makes sample size decision? Investigators

should remain blinded.

▶ Müller and Schäfer (2004) can be used in emergencies.
▶ Allows any design change after looking at data by arm.
▶ Type 1 error rate is protected if conditional rejection probability

(CRP) is ≤ CRP of original design.
▶ Will generate controversy unless design change is minor.
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