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Abstract
Objective: We present a novel Bayesian adaptive comparative effectiveness trial comparing three treatments for status epilepticus that
uses adaptive randomization with potential early stopping.

Study Design and Setting: The trial will enroll 720 unique patients in emergency departments and uses a Bayesian adaptive design.
Results: The trial design is compared to a trial without adaptive randomization and produces an efficient trial in which a higher pro-

portion of patients are likely to be randomized to the most effective treatment arm while generally using fewer total patients and offers
higher power than an analogous trial with fixed randomization when identifying a superior treatment.

Conclusion: When one treatment is superior to the other two, the trial design provides better patient care, higher power, and a lower
expected sample size. � 2013 Elsevier Inc. All rights reserved.
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1. Background

Regulatory clinical trials are frequently long and expen-
sive and fail to find a statistically significant difference
between treatments [1]. Comparative effectiveness trials,
those comparing commercially available products, can be
even more costly and even less likely to produce statisti-
cally significant results, because one is typically searching
for a very small effect size in a setting with greater variabil-
ity. The smaller effect size is because the difference be-
tween two effective therapies is likely smaller than that
between an effective therapy and a placebo. Variability is
often greater if the trial is conducted in a pragmatic setting,
a trial with more representative ‘‘real-world’’ inclusion/
exclusion criteria, as is encouraged for maximum general-
izability [2,3]. This combination requires a much higher
sample size for adequate power, producing a longer and/
or (usually and) more expensive trial.
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When comparing multiple commercially available and
perhaps U.S. Food and Drug Administration (FDA)- or
European Medicines Agency (EMEA)-approved products
or treatment strategies against one another via comparative
effectiveness research (CER) trial, Bayesian adaptive trials
may offer strong benefit for their ability to calculate the
probability that each treatment is the best or worst. Here
we describe the design of a multiarm Bayesian adaptive
comparative effectiveness trial in refractory status epilepticus
that compares three commonly used drugs. The Established
Status Epilepticus Treatment Trial (ESETT) is a phase 3
comparative effectiveness trial in patients with established
status epilepticus who have failed benzodiazepines.

The goal of this article was to illustrate via a detailed ex-
ample of an actual trial design, how Bayesian adaptive de-
signs are well suited to comparative effectiveness trials. We
discuss the ESETT and how its Bayesian adaptive design is
specifically tailored to answer the key clinical question of
which treatment to choose by describing the design features,
an example of its execution, and its characteristics compared
with a more traditional design. The design illustrated here
typically offers a lower expected sample size with higher
power than a standard fixed-allocation three-arm trial, while
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What is new?

There are very few examples of applying the novel
approaches of Bayesian adaptive trial design in a com-
parative effectiveness setting. We describe a Bayesian
adaptive trial design that uses adaptive randomization
in a multi-arm trial to produce higher power, lower
total trial size, and a trial with more patients receiving
the most efficacious therapies.

also having a high probability of randomizing a higher pro-
portion of patients to the most effective therapy.
2. Design

This trial was designed as one of five trials emanating
from the Adaptive Designs Accelerating Promising Trials
into Treatments (ADAPT-IT) project, a collaborative ef-
fort supported by both the National Institutes of Health
(NIH) and FDA to explore how adaptive clinical trial de-
sign might improve the evaluation of drugs and medical
devices [4].

The primary objective of ESETTwas to identify the most
effective and/or the least effective treatment among three
commonly used second-line therapies for status epilepticus
within an emergency department setting. There were three
treatment arms: fosphenytoin (fPHT), levetiracetam (LVT),
and valproic acid (VPA). We define a positive response to
treatment as achieving the primary endpoint of clinical
cessation of status epilepticus within 20 minutes of the
start of study drug infusion without recurrent seizures, life-
threatening hypotension, or cardiac arrhythmiawithin 1 hour.

A maximum sample size of 720 unique patients will pro-
vide high (90%) power to identify a single arm as best if it
has a response rate at least 15% greater than that of the
others. The primary analysis is an intent-to-treat analysis
and includes all patients as they were randomized regard-
less of the treatment actually received or missing outcome.
Re-enrollment of the same subject is expected to occur 5%
of the time (and only the data associated with the first
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enrollment will be analyzed). Given the possibility of re-
enrollers, treatment crossovers, and missing data, the max-
imum sample size was inflated from 720 to 795. Thus, the
actual trial will enroll a minimum of 400 and a maximum
of 795 patients. We expect the primary analysis to include
approximately 720 eligible patients.

The trial has predefined adaptations in which randomiza-
tion probabilities are updated to increase the proportion of
patients randomized to superior treatments and to increase
study power when a most effective therapy exists [5,6]. The
trial also includes interim analyses for stopping early for
success or futility if it becomes evident that differences be-
tween drugs are unlikely to be identified.

2.1. Statistical model

Each of the three treatment arms is modeled indepen-
dently. We assume the probability of response, qT, has a uni-
form Beta prior distribution
½qT�|Betað1;1Þ for T˛ffPHT;LVT;VPAg:

This is the standard reference prior when estimating

a proportion, is conjugate to the binomial distribution,
and assigns equal prior probability to all possibilities of
the unknown response rates [7]. It is equivalent to starting
with two patients’ worth of information, one a treatment
success and the other a treatment failure.

At each interim analysis, the number of observed re-
sponses on each treatment, XT, among the currently enrolled
patients on that treatment,NT, follows a binomial distribution;
therefore, the posterior distribution for each response rate is
½qT jXT ;NT �|Betað1þXT ;1þNT �XTÞ:

The treatment with the highest true (but unknown) re-

sponse rate is labeled tmax, whereas the treatment with the
lowest response rate is labeled tmin. During the trial, we will
not know which treatment is tmax and which is tmin; how-
ever, we can calculate probabilities that each of the three
treatments is tmax and tmin.

The probability that treatment T is the most effective
treatment is expressed as Pr(T 5 tmax) 5 Pr(qT O qx and
qT O qY), where X and Y represent the two treatments other
than treatment T.

The probability that each treatment arm offers the highest
response rate can be shown (using LVT as an example) as

Likewise, the probability that treatment T is the least ef-
fective treatment is expressed as Pr(T 5 tmin) 5 Pr(qT ! qx
and qT ! qY), where X and Y represent the two treatments
that are not treatment T.
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2.2. Primary efficacy analysis

At the conclusion of the trial, we will report the response
rate for each treatment group with 95% credible intervals as
well as the pair-wise differences in response rates with 95%
credible intervals. We will also report the probability that
each therapy offers the best and worst response rates,
Pr(T 5 tmax) and Pr(T 5 tmin).

Currently, all three drugs are commonly used for status ep-
ilepticus. Ordering the drugs by effectiveness is the primary
goal. Therefore, identifying a treatment as either superior so
it can be more broadly used or inferior so its use can be lim-
ited will be clinically beneficial. Therefore, this trial will be
considered a success if it identifies the most effective treat-
ment or least effective treatment with high probability
PrðT5 tmaxÞO0:975 or PrðT5 tminÞ50:975
for a treatment T.

2.3. Adaptive allocation

Initially, 100 patients will be allocated to each arm. Af-
ter the initial 300 patients, adaptive randomization will be-
gin. Adaptive randomization will focus on identifying the
treatment arm offering the highest response rate, labeled
tmax, using information weighting. Information is a measure
of the expected reduction in variance from adding an addi-
tional patient to treatment arm T and is defined for treat-
ment arm, T, as
IT 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PrðT5 tmaxÞVarðqTÞ

NT þ 1

s

IT is calculated for all three treatment arms, and the
values are rescaled to produce randomization probabilities
rT5IT=

P ðItÞ that sum to 1. Therefore, the randomization
probability to arm T is proportional to the probability that
the arm offers the highest response rate, Pr(T 5 tmax),
and the variance of the response rate estimate, Var(qT),
and inversely proportional to the sample size, NT. The result
is that better treatments are favored, but if at an interim
analysis two arms are equally effective, the arm with fewer
patients randomized to it will have a larger randomization
probability for the next set of patients.

If the adaptive randomization probability for an arm is
less than 5%, then that arm is suspended and the remaining
arms receive proportionally increased probability. Adaptive
randomization probabilities will be updated after every 100
patients are enrolled.

Allocation to the treatment arms will be stratified by
age group (2e16, 17e65, andO65 years). Simple blocking
within age group is not possible with adaptive randomiza-
tion probabilities. To ensure similar randomization proba-
bilities across the three age groups while incorporating
adaptive randomization, we will use a ‘‘Step Forward’’ cen-
tralized randomization procedure developed for emergency
treatment trials, as described by Zhao et al. [8].
The timing of analyses, starting at 300 patients and re-
peating after every 100 patients are enrolled, was chosen af-
ter comparing numerous alternative design options via
simulation as well as considering the logistical challenges
of more frequent randomization updates.

2.4. Interim monitoring for success

Interim monitoring for success will begin after 400 pa-
tients have been enrolled and will be repeated after every
additional 100 patients are enrolled. Early success stopping
is based on identifying a superior treatment. This trial will
stop early for success if we have identified the maximum
effective treatment with at least 97.5% probability, that is,
if any arm T˛{fPHT, LVT, VPA} offers
PrðT5 tmaxÞ � 0:975:
2.5. Interim monitoring for futility

Interim monitoring for futility will begin after 400 pa-
tients have been enrolled and will be repeated after every
additional 100 patients are enrolled. Each arm will be mon-
itored independently and terminated if there is a clinically
unacceptable response rate. If the probability that a treat-
ment offers at least a 25% response rate is less than 5%,
PrðqT � 25%Þ!0:05;
then that arm will be terminated. If all arms have a clinically
unacceptable response rate, the trial will be stopped for
futility.

The second futility stopping criterion applies if the trial
is unlikely to achieve its primary objective, that is, to iden-
tify the most effective and/or the least effective treatment.
This trial will stop early for futility if the predictive proba-
bility of identifying either the most effective (tmax) or the
least effective treatment (tmin) at the maximum sample size
is less than 5% [9].
3. Example trial

Table 1 shows example interim analyses for a hypotheti-
cal trial that stops early for success. These data are from
one of the thousands of simulated trials that inform the trial
operating characteristics.

At the first interim analysis, when 300 patients are en-
rolled, the response rates are 51% for fPHT, 55% for LVT,
and 64% for VPA. There is an 88% chance that VPA truly of-
fers the highest response rate and a 70%chance that fPHThas
the lowest response rate. The randomization probabilities for
the next 100 patients are calculated to be 12%, 22%, and 66%
for fPHT, LVT, and VPA, respectively. Of the next 100 pa-
tients enrolled, 11, 26, and 63 patients are randomized to
fPHT, LVT, and VPA, respectively.

At the 400-patient interim analysis, the response rates are
51%, 59%, and 64% for fPHT, LVT, and VPA, respectively.



Table 1. Example trial demonstrating data gathered at each interim analysis, probability that each treatment arm offers the highest and lowest
response rates, randomization probabilities for the next 100 patients, and the predictive probability of identifying the best or worst
treatment at the maximum sample size

N

Observed responses/randomized (%) Probability tmax (probability tmin)

Randomization
probabilities for next

100 patients Predictive probability
at maximumfPHT LVT VPA fPHT LVT VPA fPHT LVT VPA

300 51/100 (51) 55/100 (55) 64/100 (64) 0.025 (0.70) 0.092 (0.29) 0.88 (0.014) 0.12 0.22 0.66 0.71
New 6/11 (55) 19/26 (73) 39/63 (62)
400 57/111 (51) 74/126 (59) 105/163 (64) 0.010 (0.87) 0.16 (0.13) 0.83 (0.008) 0.094 0.34 0.57 0.50
New 5/12 (42) 20/38 (53) 34/50 (68)
500 62/123 (50) 94/164 (57) 139/213 (65) 0.004 (0.88) 0.056 (0.12) 0.94 (0.002) 0.080 0.23 0.69 0.59
New 3/3 (100) 17/28 (61) 55/69 (80)
600 65/126 (52) 111/192 (58) 194/282 (69) 0.000 (0.87) 0.008 (0.13) 0.992 (0.00) d d d d
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The observed benefit of VPA over LVT has decreased from
9% to 5% but is based on more data. Because the probability
that VPA has the highest response rate decreased slightly
from 88% to 83%, the randomization probability to LVT in-
creases further for the next 100 patients. The predictive prob-
ability of trial success (the probability of identifying themost
or least effective treatment at the maximum sample size) is
0.50, well above the 5% threshold to stop for futility. There-
fore, the trial continues to the next interim analysis after 500
patients are enrolled.

VPA has the best response rate in the next 100 patients.
The probability that VPA offers the highest response rate is
94%, which is high but does not meet the 97.5% required to
stop early for success. The trial continues enrollment.

Of the next 100 patients, we randomize 69% to VPA,
23% to LVT, and 8% to fPHT. At the 600-patient interim
analysis, VPA has a 99.2% chance of having the highest re-
sponse rate. This exceeds the 97.5% criterion, and the trial
is stopped early, having identified VPA as the most effec-
tive treatment. In addition, fPHT has an 87% chance of be-
ing the least effective treatment.
4. Operating characteristics

Closed-form solutions for trial operating characteristics
such as power, type I error, sample size distribution, and
proportion of patients expected to be randomized to each
arm do not exist. Therefore, we calculate these key trial
Table 2. Results of 1,000 simulated trials for each of six response rate sce

Scenario (response rates) tmax Early

Null (0.50e0.50e0.50) 0.012
One Good (0.50e0.50e0.65) 0.879
Two Good (0.50e0.65e0.65) 0.115
One Middle, One Good (0.50e0.575e0.65) 0.481
All Bad (0.25e0.25e0.25) 0.016
All Really Bad (0.10e0.10e0.10) 0.006

tmax Early and tmax Max N show the proportion of trials in which an arm is
the trial, respectively. tmax is the total probability of identifying a superior tr
ment at the end of the trial. tmax or tmin is the probability of identifying either
characteristics via simulation. We simulate data from us-
ing known ‘‘true’’ response rates for each therapy and ex-
ecute trials incorporating the adaptations described. For
each trial, we track the total sample size and number ran-
domized to each therapy, which drug was identified as the
best or worst, and so forth. Repeating this process 1,000
times per scenario, we can estimate the trial operating
characteristics.

During the design stage, we compared these operating
characteristics among competing designs (e.g., more fre-
quent interim looks, fixed randomization, starting at 200 pa-
tients vs. 300 patients).

To evaluate how the design performs, we simulated the
trial considering different response scenarios. Operating
characteristics are based on 1,000 simulations per scenario.
We explored six scenarios that represent a broad range of
potential treatment effects. Three scenarios include when
the three treatments are equivalent but at varying levels
of response: all 50%, 25%, or 10%. Other scenarios explore
when one arm is 15% better than the other two, when two
arms are equally better (15%) than the third, and one in
which the response rates decrease across the arms: 65%,
57.5%, and 50%. The simulation results are presented as-
suming a maximum sample size of 720 unique patients.

Table 2 shows the probabilities of trial success for each
of the six response rate scenarios: identifying the best treat-
ment (early, at the maximum sample size, and overall), the
worst treatment, and either the best or the worst.
narios

Probability identify

tmax Max N tmax tmin tmax or tmin

0.001 0.013 0.018 0.031
0.013 0.892 0.033 0.902
0.003 0.118 0.672 0.763
0.022 0.503 0.245 0.682
0.001 0.017 0.030 0.044
0.000 0.006 0.000 0.006

identified as the best treatment at an interim analysis and at the end of
eatment. tmin is the probability of identifying the least effective treat-
(or both). Values are bolded denoting true positives under tmax and tmin.
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The false-positive rate for this trial is the probability of
declaring an arm to be either the most or the least effective
when in truth there is no difference between the arms. This
is illustrated in the three ‘‘Null’’ scenarios in which all
treatment arms have the same response rate. The probabil-
ity of identifying a maximum effective treatment is 0.013,
0.017, and 0.006 for equal treatment effects of 0.50, 0.25,
and 0.10, and the probability of identifying a least effective
treatment is 0.018, 0.030, and !0.001 for the same three
scenarios. Thus, the false-positive rate in the all-0.50 re-
sponse scenario is 0.031. In the ‘‘All Bad’’ and ‘‘All Really
Bad’’ scenarios, the false-positive rates are 0.044 and 0.006,
respectively. In the ‘‘Two Good’’ scenario, two of the treat-
ment arms have the same response rate, and the probability
of identifying one of these as the tmax is 0.12. Thus, the
false-positive rate in this scenario is 0.12. However, the
clinical consequences of a type I error in CER may be less
than those in placebo-controlled trials, because an effective
therapy will still be provided to patients. If two treatments
are truly similar, but one is erroneously ruled superior, pa-
tients still receive an effective therapy. This form of type I
error may be less consequential than a situation in which
a treatment is erroneously determined to be better than
a placebo and patients pay for and receive an ineffective
therapy while also being exposed to its adverse events
and costs.

Alternatively, the power (the true-positive rate) of this
trial is the probability of identifying either the most or
the least effective treatment when there truly are differences
in the response rates. In the ‘‘One Good’’ scenario, the
probability of identifying a maximum effective treatment
is 89%. In the ‘‘One Middle, One Good’’ scenario, the
probability of identifying either a maximum or a least ef-
fective treatment is 68%.

Table 3 shows the mean sample size and the mean allo-
cation to each of the three treatment arms for each of the
response rate scenarios. The most effective treatment arms
are shown in bold italics. Adaptive allocation leads to
a higher proportion of patients on the most effective treat-
ment arms. When two arms are tied for most effective, any
patients randomized to either of these arms are included in
the percent randomized to most effective.

Table 4 shows, for each arm, the probability that it will
be identified as the maximum effective treatment (tmax) and
the probability that each arm will be identified as the
Table 3. Average sample size based on 1,000 simulations per response rate

Scenario (response rates) Total

Null (0.50e0.50e0.50) 507
One Good (0.50e0.50e0.65) 483
Two Good (0.50e0.65e0.65) 679
One Middle, One Good (0.50e0.575e0.65) 586
All Bad (0.25e0.25e0.25) 524
All Really Bad (0.10e0.10e0.10) 400

Average randomization rates are shown in parentheses. Bold italics indi
maximum effective treatment with at least 97.5% probabil-
ity (i.e., reaches the success criteria). The arms with the
highest true response rate are shown in bold italics. In the
‘‘One Good’’ scenario, the arm with the highest true re-
sponse rate has the highest response rate 99.5% of the time
and fulfills the success criteria, Pr(VPA 5 tmax) � 0.975,
89% of the time. In the ‘‘Two Good’’ scenario, two arms
have the same response rate. Thus, the probability of being
tmax is split between these two arms, and each receives ap-
proximately 50% probability of being tmax. In the One Mid-
dle, One Good scenario, the arm with the highest response
rate is identified as the tmax with 95% of the time, and this
arm achieves the success criteria: to be clearly identified as
the best 50% of the time.
4.1. Comparison to fixed randomization

Table 5 compares the design described here with a simi-
lar trial with fixed randomization.

The fixed trials hold a sample size advantage in the Null
and All Bad cases, in which all three treatments offer the
same treatment effect. Here trials with adaptive randomiza-
tion enrolled an average of 8e15 more patients.

When treatment effect differences do exist, Table 5 dem-
onstrates that power is maintained, generally with a lower
total sample size, while a higher proportion of patients
are randomized to the superior treatment. When one treat-
ment offers a 65% response rate vs. 50% in the other two
groups, adaptive randomization offers higher power (90%
vs. 88%) and lower mean sample size (483 vs. 497), all
while randomizing a higher proportion of patients to the
better treatment (48% vs. 33%). The One Middle, One
Good case further shows similar power, smaller sample
size, and a higher proportion of patients randomized to
the superior treatment compared with a trial with fixed
randomization.

Power to identify either the best or the worst treatment is
lower in the Two Good case, because fixed randomization
is better at identifying the worst treatment when one treat-
ment is truly worse than then other two. In the adaptive
randomization case, fewer patients (16% vs. 33%) are ran-
domized to the worst treatment, leading to lower power:
a 79% chance of identifying the worst with fixed randomi-
zation decreases to a 67% chance with adaptive randomiza-
tion. This was a key point of discussion during the design
scenario (Total) and average patients per treatment arm

fPHT, n (%) LVT, n (%) VPA, n (%)

169 (33) 169 (33) 168 (33)
126 (26) 127 (26) 230 (48)
115 (17) 282 (42) 282 (42)
122 (21) 189 (32) 275 (47)
173 (33) 172 (33) 179 (34)
133 (33) 133 (33) 134 (33)

cate the most effective treatment arms.



Table 4. The average Pr(T 5 tmax) for each T˛{fPHT, LVT, VPA} based on 1,000 simulations per scenario and the proportion of trials in which
Pr(T 5 tmax) � 0.975, which indicates that the best therapy has been clearly identified

Scenario (response rates)

Average tmax Proportion Pr(tmax) O 0.975

fPHT LVT VPA fPHT LVT VPA

Null (0.50e0.50e0.50) 0.34 0.34 0.32 0.004 0.005 0.004
One Good (0.50e0.50e0.65) 0.001 0.004 0.995 0.00 0.00 0.89
Two Good (0.50e0.65e0.65) 0.007 0.48 0.51 0.00 0.06 0.05
One Middle, One Good (0.50e0.575e0.65) 0.003 0.04 0.95 0.00 0.002 0.50
All Bad (0.25e0.25e0.25) 0.30 0.34 0.36 0.003 0.009 0.005
All Really Bad (0.10e0.10e0.10) 0.30 0.35 0.34 0.002 0.001 0.003

The arms with the highest true response rate are shown in bold italics.
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stage. The clinical team was asked the importance of in-
creasing the probability of identifying the worst treatment,
realizing that increasing the probability meant randomizing
more patients to a knowingly inferior treatment and de-
creasing the probability of identifying a superior treatment
if one exists. It was decided that it was better to increase
power to identify the best therapy and increase the propor-
tion of patients on the better therapies with the trade-off of
decreasing power to identify the worst therapy.
5. Discussion

This Bayesian adaptive trial design for CER more
closely mimics the goal of continuous quality improvement
than would a traditional fixed design and combines that be-
havior with a prospectively defined protocol that enables us
to calculate operating characteristics such as type I error
rate and power.

Most importantly in a case in which one treatment is su-
perior to the other two (e.g., second scenario in Table 5),
the trial design presented here offers higher power (90%
vs. 88%) with a lower expected sample size than a standard,
fixed-randomization rate trial (483 vs. 497), all while ran-
domizing a far greater proportion of patients to the superior
treatment (48% vs. 33%). In situations in which the three
treatments are equal, this design tends to have a slightly
larger (8e15 patients) expected sample size than if we
had used fixed randomization. Furthermore, type I errors
are small: when all three treatments are equally effective,
the probability of erroneously declaring one the best is less
Table 5. Comparison of the design with adaptive randomization to a trial with
of patients randomized to the therapy with the highest response rate

Scenario (response rates)

Adaptive ran

Power Mean N

Null (0.50e0.50e0.50) 0.031 507
One Good (0.50e0.50e0.65) 0.90 483
Two Good (0.50e0.65e0.65) 0.76 679
One Middle, One Good (0.50e0.575e0.65) 0.68 586
All Bad (0.25e0.25e0.25) 0.044 524
All Really Bad (0.10e0.10e0.10) 0.006 400

Abbreviations: % to Best, average proportion of patients randomized to th
as best or worst at the 0.975 level; N/A, not applicable.

The same early stopping rules are used in both. All values are based on
than 0.02 and the probability of erroneously declaring one
the worst is also less than 0.03.

Another key point is that when randomization probabil-
ities drop to less than 5%, randomization to that arm is sus-
pended, but the arm is not dropped and may re-enter at
subsequent interim analyses. Situations in which the most
effective arms were even temporarily dropped were ex-
tremely rare in the simulation study.

In this trial, the main challenges to adaptive randomiza-
tion are logistical. The trial is conducted in emergency
departments with a waiver of informed consent. To speed
treatment to patients, we forego any voice- or Internet-
based randomization process. Instead, three boxes containing
intravenous study drugs are placed in each site, one for each
age stratum, and caregivers are instructed to grab the top box,
labeled ‘‘Use Next’’, for use. At each allocation update, sites
will be instructed how to reorder boxes (each box will have
a unique code) based on the centralized randomization
scheme.

Design characteristics were chosen via a tradeoff of logis-
tical practicality and the operating characteristics they pro-
duce. For example, updating randomization probabilities
more often (e.g., everyweek or every20patients)may slightly
improve operating characteristics, but given that boxes will
have to be reordered at the time of updates to the allocation,
we believed that every 100 patients (or approximately every
6 months) would not be overly burdensome to clinical sites.
We also believe that minimizing reordering of drugs would
decrease the probability of human error.

By writing tailored simulation software (in R), we stud-
ied the design over a range of variants which led to
fixed randomization via power, mean sample size, and the proportion

domization Fixed randomization

% to Best Power Mean N % to Best

N/A 0.029 499 N/A
48 0.88 497 33
84 0.86 687 67
47 0.69 599 33
N/A 0.030 509 N/A
N/A 0.028 400 N/A

e most effective therapy; Power, probability of identifying a treatment

1,000 simulations per scenario.
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choosing optimal design features. For example, we discov-
ered the lag between beginning adaptive randomization af-
ter 300 patients and the possibility of early stopping after
400 patients helps to decrease the type I error rate com-
pared with starting both at 300 patients. When all three
treatments are truly equal, but at the 300-patient analysis
one treatment is doing much better because of random
variation, this design increases the randomization probabil-
ity to the best-performing treatment in the next stage. If
Pr(T 5 tmax) 5 0.975, a situation in which the trial may
stop if early stopping were allowed at 300 patients, instead
approximately 82 of the next 100 patients will be random-
ized to that drug. During that time, we are likely to see the
effect size regress to its true mean and not meet the early
stopping threshold at the 400-patient interim analysis.
However, if the effect were real, most patients are random-
ized to the best therapy while we confirm it as superior.

The design required custom-written R [10] code (avail-
able from the authors) rather than using off-the-shelf
sample size software. We and others [11,12] advocate us-
ing simulation for trial design even in more standard trials,
for example, group sequential designs, as it allows for the
illustration of example trials to physician-collaborators,
institutional review boards, and data monitoring commit-
tees, as well as for the designers to better understand
how each adaptive component affects the overall design
properties.

The Bayesian paradigm may offer another key advan-
tage in CER. Effect size differences may be small, leading
to nonstatistically significant differences in effect sizes. Al-
though a P-value cannot be interpreted as a measure of ef-
fect size, a clinician still needs to decide which treatment to
use. In a frequentist trial, the clinician is left to compare
point estimates of the nonsignificantly different therapies.
Bayesian posterior probabilities, even if one is not dramat-
ically high, can offer insight to clinicians on the likelihood
that they are using the best therapy.

Trial designs should be situation dependent and tailored
to the primary clinical objectives. One key consideration in
implementing adaptive randomization, in particular, is the
time elapsed from when a patient is randomized until he
reaches his final endpoints. Here it is a matter of hours or
days; so it is straightforward to use accumulating data to in-
fluence future randomization probabilities or to stop the
trial early for success or futility. In situations with rapid ac-
crual and/or long-term endpoints, such response adaptive
randomization may not be feasible.

Adaptive randomization is oftentimes criticized because
drift in the probability of response because of changing pa-
tient populations over time may lead to bias in parameter
estimates. Cook [13] showed, however, that these effects
are generally very small. When adaptive randomization is
being used, we would caution against dramatic changes in
inclusion/exclusion criteria that may lead to changes in
overall response rates, or adding additional high-volume
sites that may be quite different than the existing sites.
Finally, an adaptive trial requires a system to manage
study drug inventory at the site (e.g., reordering of study
drug IV bags), which is tied to the randomization of sub-
jects and keeps the clinical sites blinded and the central
pharmacy unblinded. When choosing to implement an
adaptive design, one needs high confidence that such inter-
actions are likely to produce a trial run according to proto-
col. Here we plan to use two existing trial networks that
have strong and successful experience conducting high-
quality trials: the Neurological Emergencies Treatment
Trials (NETT) Network with 17 preexisting study sites,
Clinical Coordination Center (at the University of Michi-
gan), and Statistical and Data Management Center (at the
Medical University of South Carolina) [14,15], and the Pe-
diatric Emergency Care Applied Research Network for
pediatric patients [16,17].
6. Summary

We illustrate that Bayesian adaptive trial designs are par-
ticularly well suited to comparative effectiveness trials.
Randomization probabilities may be updated during the
course of the trial to improve patient outcomes while, in
a more-than-two-arm study, increasing study power. Fur-
thermore, early stopping may be incorporated so that clin-
ically important results can be shared with the broader
community as soon as they are established and confirmed
within the prospective trial setting.
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