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In recent months, three different applications have brought home the
widespread use and acceptance of DNA evidence. A jury in Santa Monica
found a prominent football player responsible for the wrongful death of his
former wife and her friend, a New York state crime laboratory was able to
identify the remains of all 230 people who perished in an airplane crash,
and scientists from the University of California at Davis were able to estab-
lish the parentage of the classic grape variety Cabernet Sauvignon. These
very different uses of DNA rested on the ubiquity and uniformity of DNA
throughout any living organism, and on the near identity of DNA between
generations. Of almost equal importance in each case, however, was the
numerical reasoning designed to show that matching DNA profiles provided
strong evidence in favor of a single source of those profiles. It is this numer-
ical reasoning with which we are concerned in this book. We have assumed
some general knowledge of the field of DNA profiling, and would recommend
the book An Introduction to Forensic DNA Analysis by Inman and Rudin
for those without this knowledge.

Writing the book has been both a joy and a challenge. We have enjoyed
laying out the foundations of a fascinating field, and we have been gratified
by the response to early drafts from participants in the various short courses
we have been teaching. We have struggled with the challenge of writing in
a way that will be most useful for people who must confront DNA evidence
in their professions but who do not have extensive training in statistical
genetics. We have each been relatively recently introduced to the other’s
field, and we have enjoyed the challenge of accommodating each other’s
different backgrounds and philosophies.

We have benefited by good advice from many colleagues, and we wish to
extend special thanks to Dennis Lindley, John Buckleton, Lindsey Foreman,
Jim Lambert, Ian Painter, and Charles Brenner. We are very grateful for the
comments we received from James Curran, Spencer Muse, Edward Buckler,
Dahlia Nielsen, Christopher Basten, Stephanie Monks, Jennifer Shoemaker,
and Dmitri Zaykin. Christopher Basten has helped with our LATEX prob-
lems. Andy Sinauer has remained a steady friend to us and our fields. We
will welcome comments and suggestions, and we will display any corrections
on the World Wide Web at http://www.stat.ncsu.edu (click on “Statistical
Genetics”). We can be contacted via that address.

At several places in the text we have illustrated concepts by referring to
data collected by the Forensic Science Service in the UK and by Cellmark
Diagnostics in the US. We are grateful to both these organizations for their
permission to use these data.

Gill Evett and Beth Weir have shown remarkable tolerance for our pre-
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occupation with this project over the past few years. This brief mention of
our gratitude is all too inadequate.

London and Raleigh
April, 1998
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Forensic science is experiencing a period of rapid change because of the
dramatic evolution of DNA profiling. The sensitivity and discrimination of
techniques now in routine use in many countries were undreamed of ten years
ago. DNA has entered the vocabulary of the man in the street, perhaps not
so much because of the beautiful work of those such as Watson and Crick
as more because of the dramatic impact DNA profiling has had on crime
detection.

One of the consequences of this new technology for the forensic scientist
is that the strength of the evidence presented at court is usually expressed
numerically. Whereas that has been the case for conventional serological
techniques for decades, there are now two differences: the scale of imple-
mentation of the new methods and the enormous power of the evidence.
A match between the profiles of a biological sample from the scene of a
crime and that of a suspect has now been shown in many courts in various
jurisdictions to have sufficient probative value to convince a jury that the
sample came from the suspect, without the need for nonscientific corrobo-
rating evidence. The question often asked of a DNA profile is “Is it as good
as a fingerprint?” We will meet this question later in the book (like many
apparently simple questions, it does not have a simple answer!), but here it
gives us an opportunity to reflect on a fascinating paradox.

Many will share the view that DNA profiling is the greatest advance
in forensic science since the acceptance of fingerprint identifications by the
courts at the turn of the century. Since that time, hundreds of thousands
of opinions have been given by fingerprint experts. A fingerprint opinion
is never a shade of grey–it is a categorical “those two marks were made
by the same finger.” This is accepted by courts throughout the world, in
most cases without challenge, and the original introduction of this kind of
evidence was, apparently, fairly painless. The statistical justification for
fingerprint identification was rather sketchy and mainly theoretical.

DNA profiling, on the other hand, received something of a baptism by
fire. For a few years, it was conventional to refer to the “DNA controversy,”
and in some countries there have been long and sometimes bitter courtroom
confrontations. The controversy has, in turn, contributed to an explosion
in the literature on the subject. Hundreds of papers have been published
on DNA profiling statistics, many dealing with data collection, many others
dealing with theoretical considerations of probability, statistics, and genet-
ics. Although there were times when the controversy became acrimonious
and testifying was unusually stressful, most would now agree that this ex-
tended debate has been good for the science. We know that DNA profiling
is here to stay and that the statistics of the current techniques have been,
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in the main, established as robust. We now can say that we understand
far more about the statistics of DNA profiles than about any other forensic
technique–including fingerprints!

But another consequence is that there is now an appreciable body of
knowledge with which the forensic practitioner must be comfortable if he
or she is to report results and give evidence. This book is written with the
aim of helping the forensic scientist who works in the DNA profiling field to
gain sufficient knowledge of the statistical and genetic issues to report cases
and to testify competently. We hope that there will also be much in the
book that will interest other groups, such as lawyers and judges, as well as
researchers in other fields.

Many forensic scientists engaged in DNA profiling have backgrounds that
are strong in the biological sciences but relatively weak in mathematics. We
consider that our “core reader” will be a forensic scientist with a degree
in one of the biological sciences; thus he or she will be familiar with basic
genetics, though we do review the necessary terms and concepts. In our
experience, such scientists are often uncomfortable with statistics and so we
have deliberately taken a gentle pace over the first three chapters. We have
not assumed knowledge of calculus, but we do assume that our readers will
be familiar with such mathematical ideas as logarithms, exponentiation, and
summation. We must also recognize that there will be other readers with
stronger mathematical backgrounds who are interested in a deeper coverage
of some of the issues. For the most part, we have worked at keeping the
mathematics as simple as possible, and our main aim has been to expose the
underlying principles. However, from time to time, we have included more
mathematical topics, and wherever possible we have enclosed these in boxes
so that the reader who so wishes can skip them.

Because the field is changing rapidly, it has been rather difficult for us
to decide what subjects to include and what to leave out. After consid-
erable deliberation we decided to concentrate on the current generation of
polymerase chain reaction (PCR) nuclear DNA-based profiling systems. It
follows that we have included nothing on the subject of treating measure-
ment error in comparing profiles, so readers will search in vain for a discus-
sion of match/binning. We have not included anything on mitochondrial
DNA statistics. That is rapidly becoming a subject in its own right and we
have decided, with some reluctance, to defer any treatment of it to a future
edition.

We devote all of Chapter 1 to an explanation of basic probability the-
ory because we regard a good grounding in probability to be an essential
prerequisite to an understanding of the problems of forensic inference. In
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Chapter 2 we show how the Bayesian approach to inference provides a log-
ical and coherent framework for interpreting forensic transfer evidence. In
particular, we show how the likelihood ratio is of central importance for
forensic interpretation. Chapter 3 covers those topics in basic statistics that
are necessary for our purposes; in particular, the theory underlying the es-
timation of allele proportions, and the basics of classical statistical testing
of independence hypotheses. In this chapter we introduce a simple forensic
example, based on a rape offense in the imaginary Gotham City, and we use
this to discuss both the statistical and population genetics issues involved in
assessing the strength of the evidence when the crime profile matches that
of a suspect.

Chapter 4 introduces the concepts of population genetics and develops
those ideas that are relevant to forensic science. In Chapter 5, we combine
the statistical ideas of Chapter 3 with the population genetics from Chapter
4. Chapter 6 is a discussion of inference in cases of disputed parentage.
We consider simple paternity and also more complicated situations such as
incestuous paternity and identification of human remains. In Chapter 7
we consider the interpretation of cases of profiles of mixtures, illustrated
by several examples. In Chapter 8 we return to the Gotham City exam-
ple introduced in Chapter 3 to illustrate how match probabilities should
be calculated, and in Chapter 9 we continue using the example to give our
views on how the interpretation of matching profiles should be explained in
a statement or formal report. Finally, we talk about the presentation of ev-
idence in court, with particular reference to recent Appeal Court judgments
in the UK.

We trust that the reader will appreciate our strategy of using boxes to
separate the more mathematical passages. However, we must warn that this
approach was inadequate in a few places: indeed, we should have liked to
have much of the later sections of Chapters 4 and 5 in boxes!



Chapter 1

Probability Theory

INTRODUCTION

Events, Hypotheses, and Propositions

The word event is often used in the context of probability theory. Basi-
cally, we take it to mean any occurrence, past, present, or future, in which
we have an interest. Sometimes, in real-life applications when dealing with
nonscientists, it appears a little strange. Thus, for example, it is not cus-
tomary for a lawyer to refer to the event that the defendant assaulted the
victim. There are other words we can use in our attempts to understand
the world: as scientists we might talk about the truth of a hypothesis or a
proposition. In the legal context, it is common to use the word allega-
tion. We will use each of these terms in what follows to mean essentially
the same thing; on each occasion we will pick the word that best seems to
suit the context.

Randomness

The word random is used frequently in basic statistics textbooks and also
in the forensic context, particularly when the concept of “a person selected
at random” is invoked. We will take some time to explain our understanding
of the word and the meaning we assign to it when we use it in this book.

When we are talking about DNA types and we talk about “selecting a
man at random” we mean that we are going to pick him in such a way as
to be as uncertain as possible about his blood type. Another meaning of
“random” in this context is selecting a man in such a way that all men have
the same chance of being selected. This, however, is a more abstract way
of looking at things, particularly when you imagine the practical problems

1
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of actually doing such a selection. Later, we will be talking about human
populations in which there is random mating, and in that sense we mean
that each person picks a mate in such a way that all of the other members
of the population have the same chance of being selected. Clearly this is an
abstract idea.

Consider another example. Imagine that we have a chicken’s egg before
us and we are interested in its weight. Of course, we know something about
its weight: it’s certainly greater than a milligram and it’s certainly less than
a kilogram. But as we attempt to make increasingly precise statements,
we become increasingly uncertain about their truth. If we can benefit from
the experience of having weighed eggs on previous occasions, then we might
be able to say that the weight of this particular egg is about 60 g. This
represents our best guess, on the information available to us: it might be 50
g, it might be 70 g. The weight of the egg is a random quantity for us.

We can improve our knowledge by actually weighing the egg. Imagine
that we use a kitchen scale and it reads 55 g. We now know more but we
still can’t be certain of the weight. For example, we are not sure about
how well the scales have been calibrated, and in any case the scales are
graduated only to the nearest 5 g. We now believe that the weight lies
between 50 g and 60 g with 55 g our best guess: but the weight itself is still
for us a random quantity. The reading on the scales represents data (strictly
speaking, a single datum) that has enabled us to update our uncertainty
about the weight of the egg. The science of statistics is all about using data
in this way.

To illustrate our next point, let us consider a simple family board game
in which the move of each player in turn is determined by his or her rolling
of a single six-sided die. How is that rolling to be done? We could allow
each player to hold the die in the hand and place it on the board, but we
don’t do that because we know that an unscrupulous player, such as five-
year-old Suzy, may sneak a look at the die and place it in a way that favors
the outcome she needs. So we use a cup, and each player is required to
place the die in the cup and tip it out of the cup onto the table. But still
the determined unscrupulous player can bend things in his or her favor by
placing the die carefully in the cup and sliding it down the side onto the
board: the required outcome is not guaranteed but this method appears
to favor that which the player seeks, and the other players might feel that
it was unfair. The next step then is for the players to agree on a means
of manipulating the cup and of ejecting the die from it. What is their
requirement? They want the outcome to be fair, and in this sense it means
that the outcome should not favor any one player. How do they achieve
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this requirement? By making the shaking and tossing processes so chaotic
as to make the outcome as unpredictable, or as uncertain, as possible. Note
that when we were talking about the egg we were attempting to reduce our
uncertainty about something (the weight of the egg), but in this second
example we are trying to maximize our uncertainty about something (the
score that the die will show). If we asked our players what they meant
by fair, in the present context, they would say that all of the six possible
outcomes should have the same probability. Note that we have slipped in
this last word before we get to the section on probability and we are not
yet talking mathematically. But we don’t apologize because we don’t think
that mathematical concepts are needed here. The players might have used
other terms such as “likelihood” or “chance” but their meaning would have
been clear to each other and to us. In this context, fairness is equated to
the same chance for each outcome.

The process of shaking and tossing is called randomization by statis-
ticians; its sole purpose (other than perhaps to heighten the suspense of the
players) is to maximize uncertainty, and this, it turns out, is the best way
of achieving fairness. It can be shown using mathematics that maximum
uncertainty in the present context is equivalent to the same chance for each
outcome; we are not going to give this proof because it is a digression from
the main theme of the book, and in our experience most people seem to find
our assertion intuitively reasonable.

It is worth saying a little about popular misconceptions relating to ran-
domization, probability, and chance (we are using the latter two words inter-
changeably at present because in everyday language they are synonymous).
There is a tendency to think that the achievement of our belief in equiprob-
able outcomes in the die throwing example is some physical property of the
die. Of course, it is in part because we first establish that the die has a
different number on each of its six faces and that a piece of lead has not
been craftily inserted immediately behind one face (there wouldn’t be much
point in using such a die in a board game but it could give an edge in a
gambling game such as craps). Given those assurances, our beliefs about
the outcome are a consequence of the state of uncertainty we have delib-
erately created. There is no mysterious physical mechanism–though there
is a widespread tendency among both laymen and scientists to speak and
act as though there is. Jaynes (1989) calls this the mind projection fal-
lacy. It is a common idea to say that it is the mechanism of chance which
ensures that in the long run we end up with equal numbers of each of the
six outcomes. But there is no mechanism, no mysterious natural force field
governing the behavior of the die. We end up with equal numbers because
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we have deliberately maximized our uncertainties. This is the essence of
randomization.

We sometimes hear of “the laws of chance” or “the law of averages”
as though these are natural laws that govern the behavior of the universe.
They are not. They are simply the consequences of our efforts to maximize
uncertainty. We will later be talking about the laws of probability, but there
we mean something that has a completely different sense from the foregoing
popular conception. We will be using probability as a mathematical tool
for understanding how we may reason logically in the face of uncertainty.
We arrive at the laws of probability in such a way as to make the tools
work in such a sensible fashion: they are rather different in nature from, for
example, Newton’s laws of motion, which are intended to describe aspects
of how the natural universe behaves.

We conclude this discussion by referring to an essay by noted mathe-
matician Mark Kac (Kac 1983). Kac pointed out how difficult it is to define
randomness and concluded:

The discussion of randomness belongs to the foundations of sta-
tistical methodology and its applicability to empirical sciences.
Fortunately, the upper reaches of science are as insensitive to
such basic questions as they are to all sorts of other philosoph-
ical concerns. Therefore, whatever your views and beliefs on
randomness–and they are more likely than not untenable–no
great harm will come to you. If the discipline you practice is suf-
ficiently robust, it contains enough checks and balances to keep
you from committing errors that might come from the mistaken
belief that you really know what “random” is.

We believe that the discipline covered in this book is indeed sufficiently
robust that the genotypes of samples of people, chosen without knowledge
of their genotypes by forensic scientists, can be regarded as random.

PROBABILITY

Uncertainty follows from a deficiency of information and our lives are char-
acterized by decisions that must be made in the face of uncertainty. The
issues involved in most real-life decisions are far too complex and fleeting to
justify any attempt at logical and numerical analysis. However, there are
areas where some progress can be made. Indeed, in the world of science it
might be argued that there is a need, wherever possible, to ensure that one’s
reasoning is governed by logic and quantification rather than emotion and
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intuition. This book is concerned with one area of science where there is
such a perception.

Probability theory has a history that extends over 200 years, taking its
origin in the study of games of chance–the original motivation presumably
being that a person who understands decision making in the face of uncer-
tainty will gain an edge over someone who does not. But there have been
several different ways of approaching the problem. Each one starts with
a different view of probability and how it is defined. Remember that we
are talking about a mathematical concept rather than a concrete facet of
the natural universe. At the end of the day, the best definition of proba-
bility is going to be the one that will take us furthest toward the goal of
rational thought, without our losing sight of the real-world problems we are
attempting to solve.

Probability Based on Equiprobable Outcomes

Here is an early definition of probability. Think of a hypothetical experiment
with several outcomes–the die rolling in the previous section is such an
experiment. Now think of an event that is true if one of the outcomes
happens. The event “the score is even” is true if the die shows a 2, 4, or 6;
the event “the score is greater than 2” is true if the die shows a 3, 4, 5, or
6. Then, if all outcomes are equally probable, the probability of an event H
is defined by

Probability of H =
Number of outcomes favorable to H

Total number of outcomes

What do we make of this? First of all, it is a definition that can be
of considerable use in analyzing many complicated problems, particularly
those involving games of chance. It has some serious limitations, however.
First, note that it is a definition of probability yet it contains the stipulation
that the outcomes must be “equally probable,” so the definition is circular.
Second, it is restricted in its range of application; indeed, it is useless for
most real-life situations. In a criminal trial, for example, a court is concerned
with the uncertain event that the defendant committed the crime: there is
no possibility of envisioning a number of equally probable outcomes in this
situation. We face the same difficulty if we try to invoke the definition
to answer a question of the kind “what is the probability that it will rain
tomorrow?”
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Long-Run Frequency

Defining probability as a long-run frequency is the basis of a school of sta-
tistical thought known as frequentist or classical. If we wish to talk
about some event H, then it needs to be regarded as the outcome of an
experiment that can, in principle at least, be carried out a large number of
times. The outcome is assigned a numerical value, or random variable,
which in this case can take two values, say 1 if H is true and 0 if H is false.
We are interested in the number of times that the random variable takes a
value equivalent to H being true. Let us carry out N identical experiments
(e.g., roll a die N times). If we observe the event H (e.g., the score is an even
number) occurring n times then we define the probability of H as the limit
of n/N as N approaches infinity. So the probability of H can be determined
only by experiment.

This definition can be very useful and, as we have said, most of the
modern science of statistics has been built on this foundation. We will be
using probabilities assigned on the basis of frequencies a lot later in the book.
A useful distinction is to call probability assigned in this way “chance.”

However, the frequency definition has limitations. It is intended to make
statements about the behavior of random variables; indeed, frequentist prob-
abilities can be applied only to random variables, and the concept of a very
long run of random variables is central. This type of probability is then
quite different in nature from the probabilities that we talk about in every-
day life. If we ask “What is the probability of life on Mars?” then there is
no useful purpose in attempting to visualize an infinite collection of planets
indistinguishable from Mars. Indeed, this question cannot be answered with
a frequentist probability. We face a similar problem when we talk about
court cases. The question “What is the probability that this is the defen-
dant’s semen?” has only two answers in the frequentist sense: it either is or
it isn’t, so the probability is either one or zero.

Subjective Probability

A growing number of statisticians have been dissatisfied with the frequency
definition of probability and its inferential consequences, and this brings us
to the second main school of thought, called Bayesian or subjectivist.
This school recognizes probability simply as a measure of our degree of
belief. Although this might sound simple, there are a number of subtle
arguments that need to be established before a system of mathematical
rigor can be built upon it. We are not going to attempt to get involved in
those arguments but refer the interested reader to fundamental works such
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as those by O’Hagan (1994) and Bernardo and Smith (1994).
A measurement system should have some kind of calibration standard,

and this can be achieved in the following manner as described by Lindley
(1991). Let us imagine that we are thinking about whether it will rain
tomorrow afternoon at the time we are planning a barbecue. Denote by R
the event that rain will spoil tomorrow’s barbecue. Imagine a large opaque
container that holds 100 balls. They are indistinguishable in size, weight,
and shape but there are two colors: black and white. The container is shaken
vigorously so that every ball has the same chance of being drawn. We are
going to dip in and draw out a ball; we are interested in the probability of
the event B that the ball is black. So we now have two uncertain events
under consideration: R (rain) and B (black ball). Imagine now that we are
going to be given a cash prize if either we correctly predict rain or if we
correctly predict a black ball. So we have to choose: which gives us the
better chance of winning a prize, predicting R or predicting B? To help us
choose the wager we are told the number b of black balls in the container.
Now if b is high, say over 90, then the better wager may appear to be that
on B (unless we are thinking of a barbecue at a completely unsuitable time
of the year). On the other hand, if b is less than 10, then the rain wager
may appear preferable. Let us try to think of that value of b at which we
are completely indifferent to which wager we are going to choose: assume
that we decide that this happens at about b = 20. Then our probability of
R is 20/100 = 0.2.

It is this concept of probability that will form the basis of the discussion
for the rest of this chapter, although the formal discussion about the laws
of probability also holds for frequentist probabilities. Note that as we are
talking about subjective (or personal) probabilities we will not talk about
them as though they had an independent determinate existence. Instead of
talking about determining a probability as we would if we had a frequency
definition, we will talk about assigning a probability. Given a set of circum-
stances, you will assign your probability to a particular event, but another
person may assign a different probability. Is it a weakness that different
people may assign different probabilities to the same event? Not at all–it is
an inescapable feature of the real world. We discuss this issue in the next
section when we talk about conditioning.

All Probabilities Are Conditional

If you respond “one-half” to the question “What is the probability that this
coin will land showing a head?” then think again. Does the coin have two
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different sides? How is it to be dropped? Has it been loaded in any way?
Only if the answers to these questions are appropriate does it make sense to
assign one-half to the probability of a head. But the most important point
here is that the probability that we assign depends on what we know: every
probability is conditional.

In our family board game, if we ask “What is the probability the next
throw will be a 3?” then our answer will be conditioned on the following:
the die has six sides numbered 1 to 6; the die has not been loaded; the
tossing is designed to maximize uncertainty. Only then can we agree on the
answer 1/6.

Recall the example of the egg. We weren’t actually talking about prob-
ability at that time, but we were talking about uncertainty. Our first judg-
ment about the weight of the egg was conditioned by our previous experience
about eggs. We could, if we had been asked, have assigned a probability to
a proposition of the kind “the weight exceeds 110 g.” Later, we learned
something new–an item of data–which changed our state of uncertainty and
would have undoubtedly changed our probability for the proposition in the
previous sentence. The conditioning has changed.

We will be saying much more later about how probabilities change in the
light of new data, but at this point we need to digress briefly to talk about
three words we will be using frequently: data, information, and evidence.
Some writers would not distinguish between these three in a discussion of
probability, arguing that probabilities can always be viewed as being condi-
tioned by data. But we believe that understanding can be eased by making
distinctions in the following way. We will use data when we are referring to
observations that can be quantified in some way: for example, they might
be a set of genotypes from samples examined by a scientist. We will use in-
formation to refer to things that are not so easily quantifiable, such as an
eyewitness report that the offender was Caucasian. This word has a more
general meaning, and if we have a collection of information that includes
some data, such as a report that there were three offenders, then we will
use the more general term. The word evidence will be used in a still more
general sense to include both data and information, particularly when we
are talking about preparing a statement or presenting results in court. The
distinctions between the three are not hard and fast and the reader should
not feel confused if we sometimes use one of the three rather than another
that appears more suitable in a given situation.

In our experience, when scientists disagree about the probability of a
proposition, then it is often because they have different conditioning. It
may be a simple matter of knowledge; for example, in speculating about the
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probability of rain tomorrow, one person may have better local knowledge of
conditions than another. In scientific arguments, one proponent might have
a slightly different model for reality than another does. It may be a matter
of information: in the weather example, one may have heard a different
weather forecast from the other. This is the reason that it is necessary
always to be as clear as possible about the conditioning.

Notation

We have now reached the stage at which we need to introduce some notation.
Choosing notation is always a compromise, but without it arguments become
impossibly verbose and even harder to understand. Comprehension can be
aided by a carefully chosen notation.

This is our first piece of notation: Pr(H|E), that is shorthand for “the
probability of H given E.” Here, H is some event or proposition about
which we are uncertain, and E is the evidence (information and/or data)
that we have in relation to H. If H is an event, then, depending on context,
we might read Pr(H|E) as

• the probability that H has occurred,

• the probability that H will occur, or

• the probability that H is true.

We will also use H̄ to denote the complement of H. Then Pr(H̄|E)
denotes

• the probability that H has not occurred,

• the probability that H will not occur, or

• the probability that H is not true.

Sometimes we will summarize all of the conditioning by one letter, but
sometimes it will be necessary to list different aspects. So we might write
something like Pr(Hp|GS , GC , I), where

• Hp is the (prosecution) hypothesis that the semen came from the sus-
pect.

• GS and GC denote DNA profiles, or genotypes, of the suspect and
crime sample, respectively.
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• I denotes all of the other evidence relevant to the allegation (what the
complainant said, for example).

The commas have no function other than to aid clarity by separating the
different items of conditioning. We will use Pr(H) to denote “the probability
of H” in situations in which we are confident that there is no disagreement
between all participants in a discussion about the conditioning. This will
normally be done when we are talking about abstract problems where the
conditioning can be explicitly established beforehand. The abbreviation of
Pr(H|E) to Pr(H) is again done to assist in achieving clarity.

Now that we have decided on what we mean by probability and settled
on some basic notation, it is necessary to state the logical rules that govern
the ways in which probabilities may be combined. The requirements of
those rules are that they should be as simple as possible, but the results
that derive from them must be consistent with rational thought. This is
called coherence by some writers (see, for example, Lindley 1982). If a
gambler, for example, were using an incoherent set of rules for deciding on
his betting strategy, then he would tend to lose money, even if the betting
system was fair for him. It turns out that the requirements can be satisfied
by three simple rules, or laws. There are various ways of expressing the
rules, but we have selected the following way because we hope that it is the
easiest to follow.

THE LAWS OF PROBABILITY

The First Law of Probability

The first law is undoubtedly the simplest. It tells us that probability can
take values in the range zero to one only and that an event that is certain
to occur has probability one. The first law of probability is{

0 ≤ Pr(H|E) ≤ 1
Pr(H|H) = 1 for any H

that is, if we know H is true, then it has a probability of 1.
From this we can later deduce, using the second law, that if a proposition

is false, it has a probability zero. Note that it is a common convention to
multiply probabilities by 100 and call them percentage probabilities.
We will do this ourselves from time to time.
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Box 1.1: General form of second law of probability
If Hi, i = 1, 2, · · · , r, are mutually exclusive events given E, then

Pr(H1 or H2 or . . . or Hr|E) = Pr(H1|E) + Pr(H2|E) +
· · ·+ Pr(Hr|E)

=
∑

i

Pr(Hi|E)

The Second Law of Probability

Return to the example of throwing a die that we talked about earlier. Given
all the conditions to which we can agree for a fair tossing, then we also agree
that the probability of any one score is 1/6. If we ask the probability of the
event that the die will show an even number, few people will hesitate before
replying 1/2, and this is the result of adding together the probabilities for
a 2, a 4, and a 6. There is one very important feature of these last three
events that we must emphasize: they are mutually exclusive. If any one
of them occurs, then none of the others has occurred. It is obviously the case
with die throwing that each throw can result in only one number. Another
feature of the event we stipulated–an even number–was the implication of
the word or. The event is satisfied by either the event 2, or the event 4, or
the event 6. This suggests a rule for adding probabilities that is intuitively
reasonable: If two events are mutually exclusive and if we wish to know
the probability that one or other of them is true then we simply add their
probabilities. Formally, if G and H are mutually exclusive events, given E,
then the second law of probability is

Pr(G or H|E) = Pr(G|E) + Pr(H|E)

This law is generalized to an arbitrary number of mutually exclusive events
in Box 1.1.

There is a useful corollary to the first and second laws. If Pr(H|E) is the
probability that H is true (or that event H occurs) then Pr(H̄|E) denotes
the probability that H is false (or that event H does not occur). Because
these two events are mutually exclusive

Pr(H or H̄|E) = Pr(H|E) + Pr(H̄|E)

they are also exhaustive in that between them they cover all possibilities–
one or other of them must be true. So,

Pr(H|E) + Pr(H̄|E) = 1
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and

Pr(H̄|E) = 1− Pr(H|E)

The probability that H is false is one minus the probability that H is true.
For an event (H̄) that is false (when H is true)

Pr(H̄|H) = 1− Pr(H|H) = 0

as mentioned in the previous section.

Exercise 1.1 When a die is tossed, suppose E is the information that the face
showing is even, H1 is the event that the face shows a 2, and H2 the event it shows
a 4. What are Pr(H1|E), Pr(H1 or H2|E), Pr(H̄1|E), and Pr(H1|Ē)?

The Third Law of Probability

We lead up to this law by means of two examples. First, suppose there is
an opaque jar containing a large number of balls that are indistinguishable
in shape, size, and weight: half are black and half are white. We have a
balanced coin with a head and a tail. We are going to draw a ball and then
toss the coin, and we are interested in the probability that the ball will be
black (B) and the coin will land showing a head (H). It seems reasonable
to assign the probability 1/2 to B. If we do get a black ball, then what does
that tell us about the outcome of the coin tossing? Absolutely nothing, of
course. So the probability of H is 1/2 no matter what happens when we
draw a ball. It is unlikely that people will disagree that the probability of
B and H is the product of these two probabilities: 1/4.

In the next example we have the same jar containing equal numbers of
black balls and white balls, but there is no coin tossing. Instead, each ball
is marked with a letter: half are marked H and half are marked T . Now
we are going to draw a ball, and again we are interested in the probability
that B and H will occur. Again we agree to assign the probability 1/2 to
B and 1/2 to the probability H. But can we multiply these two numbers
together? Well, we could, but we’d be better off asking for information on
how the balls have been marked: are all the black balls marked H and all
the white balls T? If so, the information that B is true tells us that H must
be true also. In the special case where half the black balls are marked H,
then the probability of B and H is 1/4, otherwise it is something else. Once
we know that B has occurred, we need to know the probability of H given
that B has occurred. This gives us two probabilities that we can multiply
together.
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Box 1.2: General form of third law of probability
For all events Hi, i = 1, 2, . . . , r,

Pr(H1 and H2 and . . . and Hr|E) = Pr(H1|H2,H3, . . . ,Hr, E)
× Pr(H2|H3, . . . ,Hr, E)× · · ·
× Pr(Hr|E)

For any two events, J and K, the third law of probability can be
written:

Pr(J and K|E) = Pr(J |E) Pr(K|J,E)

A general statement of the law is given in Box 1.2.
For a little while, we will assume that the conditioning information is

clearly specified and the same for all of us, and then we present this equation
in a slightly less forbidding form:

Pr(J and K) = Pr(J) Pr(K|J)

There is no particular reason J should precede K, and the law can also be
written

Pr(J and K) = Pr(K) Pr(J |K)

We can illustrate the application of the third law with the following
example. Three-quarters of the population of a hypothetical country are
Chinese and one-quarter is Asian Indian. We are interested in the follow-
ing question: if a person is selected from the population, then what is the
probability that person will be Asian Indian (event J) with a HUMTHO1
genotype 8,9.3 (event K)? We agree that the sensible value to assign to
Pr(J) is 0.25; how do we complete the calculation? Clearly, the answer
involves the proportion of people who are 8,9.3. But we are not interested
in the proportion of the entire population with this genotype, or the pro-
portion of the Chinese population who are 8,9.3. Assume that we are told,
by someone who has done some research on the locus, that 4.8% of Asian
Indians are type 8,9.3; then it is reasonable to assign Pr(K|J) = 0.048. So

Pr(J and K) = Pr(J) Pr(K|J)
= 0.25× 0.048 = 0.012
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We return to this example later.

Exercise 1.2 In another hypothetical country, 80% of the registered voters are
Caucasian. Of the Caucasian voters, 20% inhabit the highlands and the remainder
the lowlands. Among the Caucasian highlanders, 75% speak an ancient Celtic lan-
guage. If we select a person at random from the voter registration list, what is the
probability that he or she will be a Celtic-speaking, Caucasian highlander?

Independence

There is a special case in which the information that K is true does nothing
to change our uncertainty about J (and vice versa). The earlier example
with the balls in the container and the coin was such a case. Then Pr(J |K) =
P (J) and, from the first of these two equations,

Pr(J and K) = Pr(J) Pr(K)

In this special case the two events are said to be statistically independent
or unassociated.

Note that, although we have omitted E for brevity from our notation,
the independence or otherwise of J and K will be determined by E. If every
white ball in the urn of the previous example was marked with a T and every
black ball was marked with an H, then B and T are dependent. If half of
each color are marked H and half marked T , then B and T are independent.
It is more correct to say that events are independent conditional on E.

When we discuss forensic transfer evidence later, we will encounter situa-
tions where two events are independent under one hypothesis, but dependent
under another. Here is an example: in an inheritance dispute a man claims
to be the brother of a deceased person. Under his hypothesis, the events
that he and the deceased person have a particular DNA profile are depen-
dent, but under the hypothesis that he is unrelated to the deceased person
the two events may be taken as independent. As we will see in Chapter 4,
sibs are more likely than unrelated people to have the same DNA profile.

The notion of independence extends in a similar way to three or more
events, as we shall see later when we combine genotype probabilities across
multiple loci.
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Box 1.3: Derivation of the law of total probability
Let S1, S2, . . . , Sr be r mutually exclusive events. Furthermore, let them be ex-
haustive so that

∑
i Pr(Si) = 1. Let R be any other event. Then the events

(R and S1), (R and S2), . . . , (R and Sr) are also mutually exclusive. The event

(R and S1) or (R and S2) or · · · or (R and Sr)

is simply R, because the Si are exhaustive. So, from the second law

Pr(R) = Pr(R and S1) + Pr(R and S2) + . . .+ Pr(R and Sr)

Then, by the third law

Pr(R) =
∑

i

Pr(R|Si) Pr(Si)

The Law of Total Probability

From the above three laws follow the entire theory of probability; no further
basic laws are needed. However, there are certain standard results that are
used frequently. The first of these, the law of total probability, has also been
called the “law of the extension of the conversation” (see, for example, Lind-
ley 1991). If A and B are two mutually exclusive and exhaustive events (so
that B = Ā), then for any other event H, the law of total probability
states that

Pr(H) = Pr(H|A) Pr(A) + Pr(H|B) Pr(B)

It is derived in a more general form from the first three laws as shown in
Box 1.3, and readers who wish to do so may skip the derivation.

We use this result when we are interested in evaluating the probability
of an event that depends on a number of other events that are themselves
mutually exclusive. The examples we do in Chapter 6 on family trees and
parentage analysis illustrate this, but a small foretaste may help. Let us
imagine that we are interested in determining the probability that one of
the HUMTHO1 alleles an individual inherits is allele 8. One way of looking
at this is to say that either the mother had the 8 allele and passed it on to
the offspring or the father had the 8 allele and passed it on. We won’t work
that calculation at this stage, because it is complicated a little by the need
to take account of the possibilities of homozygosity in the parents. Instead
we give an example that is based on one by Berry (1996). Fred is playing
in a chess tournament. He has just won his match in the first round. In
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Figure 1.1: Tree diagram for chess tournament.

the second round he is due to play either Bernard or Tessa depending on
which of those two wins their first round match. Knowing what he does
about their respective abilities, he assigns 3/4 to the probability that he
will have to play Bernard, Pr(B), and 1/4 to the probability that he will
have to play Tessa, Pr(T ). We should write these as Pr(B|K) and Pr(T |K),
where K denotes Fred’s knowledge of their respective abilities, but we leave
the conditioning out just to simplify the notation.

What is the probability of W , the event that Fred will win? He assigns
1/4 to the probability that he will beat Bernard if he has to play him,
Pr(W |B), and 1/2 to the probability that he will beat Tessa if he has to play
her, Pr(W |T ). So, the probability that he will win his second round match,
Pr(W ), is the probability of Bernard winning and Fred beating Bernard plus
the probability of Tessa winning and Fred beating Tessa. That is:

Pr(W ) = Pr(W |B) Pr(B) + Pr(W |T ) Pr(T )

=
(

1
4
× 3

4

)
+
(

1
2
× 1

4

)
=

5
16

It is useful to present this type of analysis as the tree diagram shown in
Figure 1.1.

Exercise 1.3 According to the 1991 census, the New Zealand population con-
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sists of 83.47% Caucasians, 12.19% Maoris, and 4.34% Pacific Islanders. The prob-
abilities of finding the same YNH24 genotype as in the crime sample in the case
R. v. Ladbrook from a Caucasian, Maori, or Pacific Islander are 0.013, 0.045, and
0.039 respectively. What is the probability of finding that genotype in a person
taken at random from the whole population of New Zealand?

Odds

Before we explain another important result of probability theory, we need
to explain the notion of odds. It is a term used in betting, where it means
something slightly different from what it means in formal theory. In every-
day speech, odds and probability tend to be used interchangeably; this is a
bad practice because they are not the same thing at all.

If we have some event H about which the conditioning is unambiguous,
then Pr(H) denotes the probability of H, and the odds in favor of H are

O(H) =
Pr(H)
Pr(H̄)

i.e.,

O(H) =
Pr(H)

1− Pr(H)

Because O(H) is the ratio of two probabilities, it can take any value between
zero (when H is false) and infinity (when H is true). Let us consider some
numerical examples. In the family board game, given the agreed conditions
for rolling the die, we have 1/6 as our probability for the event that the die
will show a score 3, and 5/6 for the probability that it will not show a score
3. The odds in favor of a 3 showing are:

O(3) =
1/6
5/6

=
1
5

When, as here, the odds are less than one, it is customary to invert them
and call them odds against. So, in this case, the odds are 5 to 1 against.

Now consider a fair coin toss example where we can agree that the prob-
ability of a head Pr(H) is 0.5. Then the odds in favor of a head are 0.5/0.5
= 1. Odds of one are conventionally called evens, no doubt as an indication
that things are evenly balanced.

For a last example on converting probabilities into odds, think of the first
round of the chess game described earlier. Fred’s probability that Bernard
will beat Tessa, Pr(B), is 3/4 so the odds in favor of Bernard winning are
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3/4 divided by 1/4 or 3. When odds are bigger than one it is conventional
to call them odds on so in this case the odds are 3 to 1 on that Bernard
will beat Tessa (that is, as far as Fred is concerned–Bernard and Tessa may
each have a different view!).

It is our experience that people have little difficulty in converting from
probabilities to odds, but converting from odds to probabilities sometimes
causes problems. The simplest solution is to remember a formula that can
easily be derived by rearranging the above expression for O(H):

Pr(H) =
O(H)

1 +O(H)

Exercise 1.4 Two regular six-sided dice are rolled fairly. (a) What are the odds
that they both show an even number? (b) What are the odds that they both show
a six?

Exercise 1.5 Convert the following odds in favor of H to the probabilities of
H: (a) O(H) = 19; (b)O(H)=0.2; (c)O(H)=1000; (d) O(H) = 1/1000.

BAYES’ THEOREM

Bayes’ Theorem is a very important result that we will be using frequently.
It is attributed to an 18th century clergyman, Thomas Bayes, and is now
recognized as a useful model for understanding how evidence may be pre-
sented logically and impartially in legal proceedings.

In the problems we will be discussing in later chapters there will generally
be some event or proposition H about which there is uncertainty and some
conditioning information I. Then there is some additional information E
that, in our problems, will generally be the DNA evidence, and we are
interested in how this affects the uncertainty about H. Bayes’ theorem
provides a model for doing this. If Hp and Hd are the prosecution and
defense hypotheses, one form of the theorem is as follows:

Pr(Hp|E, I)
Pr(Hd|E, I)

=
Pr(E|Hp, I)
Pr(E|Hd, I)

× Pr(Hp|I)
Pr(Hd|I)

This is the odds form of Bayes’ theorem and its proof is contained in
Box 1.4. We will illustrate the way it can be used by means of an example.

Let us return to the example where there were black and white balls in
an opaque container. This time we are told that one-third are black and
two-thirds are white. As before, some of the balls carry the letter H and
some the letter T , but now we are given the following information:
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Box 1.4: Derivation of Bayes’ theorem
Let Hp be an event or proposition, and let E be an item of evidence. Let I denote
all the relevant background information. Then the third law gives

Pr(Hp and E|I) = Pr(Hp|I) Pr(E|Hp, I)
Pr(Hp and E|I) = Pr(E|I) Pr(Hp|E, I)

Equating the right hand sides of these two expressions

Pr(Hp|I) Pr(E|Hp, I) = Pr(E|I) Pr(Hp|E, I)

and, rearranging,

Pr(Hp|E, I) =
Pr(E|Hp, I) Pr(Hp|I)

Pr(E|I)

Similarly, for proposition Hd

Pr(Hd|E, I) =
Pr(E|Hd, I) Pr(Hd|I)

Pr(E|I)

The odds form of Bayes’ theorem follows by dividing one equation by the other:

Pr(Hp|E, I)
Pr(Hd|E, I)

=
Pr(E|Hp, I)
Pr(E|Hd, I)

× Pr(Hp|I)
Pr(Hd|I)

More generally, if {Hi}, for i = 1, 2, . . . , r, is a set of r mutually exclusive and
exhaustive events or propositions, then

Pr(Hi|E, I) =
Pr(E|Hi, I) Pr(Hi|I)∑r

j=1 Pr(E|Hj , I) Pr(Hj |I)
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• 3/4 of the black balls are marked H and 1/4 are marked T

• 1/4 of the white balls are marked H and 3/4 are marked T

Imagine that someone draws a ball by putting in his hand, stirring the balls,
and picking one. We are asked for our probability that it is black; let’s call
this Pr(B|I), where I is all of the information we have been given about
the container, balls, and method of drawing. It seems reasonable to assign
Pr(B|I) = 1/3. Now the person who drew the ball tells us that it carries the
letter H. How does that affect our uncertainty about the color of the ball?
What is Pr(B|H, I)? Is it bigger than, the same as, or less than Pr(B|I)?

If we write out the odds form of Bayes’ theorem using the letters for the
current example (W means white), we have

Pr(B|H, I)
Pr(W |H, I)

=
Pr(H|B, I)
Pr(H|W, I)

× Pr(B|I)
Pr(W |I)

The term on the left is close to what we are seeking–the odds in favor
of B given that we know that the ball is marked with an H. The second
term on the right can be worked out from what we started with; it is the
odds in favor of B before we knew that it was marked with an H, i.e., 1/3
divided by 2/3 which is 1/2 (or two to one against). It is the first term on
the right that holds the key to what we are trying to do. It is the ratio of
two probabilities: the probability that a ball carries an H if it is black (we
have been told that this is 3/4); and the probability that a ball carries an
H if it is not black (we have been told that this is 1/4). Put another way,
a ball is three times more probable to carry an H if it is black than if it is
white. So our arithmetic is quite simple:

Pr(B|H, I)
Pr(W |H, I)

=
3/4
1/4

× 1
2

=
3
2

We can easily calculate Pr(B|H, I) using the formula from the section
on odds: it is 3/5.

A Model for Updating Uncertainty

We have already expressed our view that an inescapable aspect of everyday
life is concerned with updating uncertainty, and hence decisions and judg-
ments, in the light of new information. The previous example is a trivial
illustration of this. We were given an initial body of information from which
we assigned odds that represented our belief that the ball picked from the
jar was black. It is conventional to call these the prior odds: here the
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word “prior” is used in the sense of the odds before the new information.
After the information is received, we have the posterior odds, and these
can be calculated from the prior odds using the expression in the previous
section. This calculation hinges on multiplying by the ratio of two proba-
bilities, which is called the likelihood ratio, and the odds form of Bayes’
theorem is

Posterior odds = Likelihood ratio× Prior odds

Example

Here is an example to show how Bayes’ theorem can be used to update
one’s uncertainty about something. We return to the hypothetical country
where 75% of the people are Chinese and 25% are Asian Indian. A crime
has been committed and the offender left a blood stain at the crime scene
that has been found to be the HUMTHO1 genotype 8,9.3. There are no
eyewitnesses, but the investigator suspects that the offender was Chinese–
simply because they represent 75% of the population. We have already
seen that the proportion of Asian Indians with this genotype is 4.8%, but
among Chinese its proportion is only 0.31%. How should this influence the
investigator’s view?

As before, let J denote the proposition that the offender was an Asian
Indian. Then if I denotes our background information about the crime
and the population of the country, the probability of J before the typing
information is available is 0.25. We can write Pr(J |I) = 0.25. If J̄ denotes
the event that the offender was Chinese then Pr(J̄ |I) = 0.75. The prior
odds in favor of J are

Pr(J |I)
Pr(J̄ |I)

=
0.25
0.75

=
1
3

This encapsulates the investigator’s belief: the odds are 3 to 1 against the
offender being Indian and hence 3 to 1 in favor of his being Chinese.

Now we have the evidence G that the offender left a stain of genotype
8,9.3. We can assign the value 0.048 to the probability of G if J is the case,
and the value 0.0031 to the probability of G if J̄ is the case. The likelihood
ratio is then

Pr(G|J, I)
Pr(G|J̄ , I)

=
0.046
0.0031

≈ 15

So, the posterior odds are calculated as follows:

Pr(J |G, I)
Pr(J̄ |G, I)

=
Pr(G|J, I)
Pr(G|J̄ , I)

× Pr(J |I)
Pr(J̄ |I)

≈ 15× 1
3

= 5
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The odds in favor of the offender being Asian Indian have changed by the
scientific evidence from 3 to 1 against to 5 to 1 on. If we prefer to talk in
terms of probability, then the probability that the offender was an Asian
Indian is 5/6, or 0.83.

Exercise 1.6 There is a serious disease that affects one person in 10,000. A
screening test detects the disease with a probability 0.99. However, the test can
give a false positive result with probability 0.05. Let X be a person, and let I de-
note the information that he has been selected at random from the population. Let
D denote the event that he has the disease, and E denote the event that this test
gives a positive result. Calculate: (a) Pr(D|I); (b) Pr(E|D, I); (c) Pr(E|D̄, I); (d)
The prior odds that X has the disease; (e) The likelihood ratio needed to convert
prior odds of X having the disease to posterior odds; (f) The posterior odds that
X has the disease.

SUMMARY

The interpretation of DNA evidence has to be made in the face of uncer-
tainty. The origins of crime scene stains are not known with certainty, al-
though these stains may match samples from specific people. The language
of probability is designed to allow numerical statements about uncertainty,
and we need to recognize that probabilities are assigned by people rather
than being inherent physical quantities. As we progress through the book,
it will be increasingly clear that comparing probabilities of evidence con-
ditional on either prosecution or defense propositions is at the heart of a
logical and coherent approach. The formal theory for using probabilities in
this framework is provided by Bayes’ theorem.



Chapter 2

Transfer Evidence

SINGLE CRIME SCENE STAIN

Imagine that a crime has been committed and an examination of the crime
scene has revealed a blood stain. From its situation and apparent freshness
the investigator believes that it was left by the person who committed the
crime, whom we will refer to as the offender. For simplicity we will write
as though offenders are male. As a result of information received–and there
are several different kinds of information which could be relevant here–the
investigator detains a suspect, who provides a blood sample. At the forensic
science laboratory, some kind of typing technique is applied to a swab of
the crime stain, which we call the crime sample, and the suspect’s blood
sample, which we call the suspect sample. In keeping with the theme of
this book, we suppose that it is DNA typing that has been applied. The
two samples are found to be of the same type. How is this result to be
interpreted? In this book we will avoid discussion of whether we should
talk about genotypes (genetic constitution) or phenotype (physical type)
other than to say that, for the DNA systems we have in mind, the two
terms are effectively synonymous. We will therefore refer to DNA profiles
as genotypes. We use the term suspect although, of course, if he is later
charged with the crime and the case subsequently comes to court he will
become the defendant.

We assume that the scientist at the laboratory has a role in assisting
the investigator, or later a court of law, in understanding the significance of
this item of evidence. The investigator is interested in establishing whether
there is sufficient evidence to take a case against the suspect to court. If
this happens then the prosecution will endeavor to convince the jury of the
suspect’s guilt. We will avoid, as far as possible, talking in terms such

23
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as guilt and innocence. They both rest on a premise that a crime has
been committed–a premise that the jury will need to consider as part of its
deliberation, but which, in this case at least, is not something that is directly
addressed by the DNA evidence. In the present example, the suspect may
acknowledge that the blood is his and present a credible explanation why it
should have been at the crime scene for purely innocent reasons. In a rape
case, for example, evidence that semen on a vaginal swab from a complainant
has the same type as that of the suspect does not necessarily mean that a
crime has been committed. It may be that the complainant had consented
to intercourse. For this reason we will talk in terms of propositions that
are more closely directed to the origin of the crime stain. In the present
example, the scientist can anticipate that, if the case comes to court, the
prosecution will put to the jury the following proposition:

Hp: The suspect left the crime stain.

Of course, the shorthand Hp is introduced here solely to assist us in the
formal analysis that follows. We would not expect prosecuting counsel to
speak in algebraic notation. We have already recognized that at court the
suspect will be referred to as the defendant.

We now introduce some more notation. Let GS and GC denote the
DNA typing results for the suspect and crime sample, respectively, and let
I denote the non-DNA evidence that will be put to the court in relation
to Hp. Note that in the present example GS = GC . We can now view the
interpretation problem as one of updating uncertainty in the light of new
information. Before the DNA evidence, the probability of Hp was condi-
tioned by I: P (Hp|I). After the DNA evidence, the probability of Hp is
conditioned by GS , GC , and I: Pr(Hp|GS , GC , I).

We saw in Chapter 1 how Bayes’ theorem can be used to do this. How-
ever, in the present context, we cannot proceed unless we introduce some
sort of alternative proposition to Hp. In the most general case we would
have a range of alternatives, but things are simplest if there is only one,
and in the legal setting this is appropriate because it naturally becomes the
defense proposition:

Hd: Some other person left the crime stain.

Clearly, Hp and Hd in this case are mutually exclusive and exhaustive. At
this point we emphasize what we will call the first principle of evidence
interpretation: to evaluate the uncertainty of any given proposition, it
is necessary to consider at least one alternative proposition.
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If we now talk in terms of odds, then our problem is one of progressing
from

Pr(Hp|I)
Pr(Hd|I)

which we can call the prior odds in favor of Hp, to

Pr(Hp|GS , GC , I)
Pr(Hd|GS , GC , I)

which we call the posterior odds in favor of Hp. This can be calculated from
the odds ratio form of Bayes’ theorem described in Chapter 1, where now
E = (GS , GC):

Pr(Hp|E, I)
Pr(Hd|E, I)

=
Pr(E|Hp, I)
Pr(E|Hd, I)

× Pr(Hp|I)
Pr(Hd|I)

We consider this equation to be of central importance in forensic inter-
pretation because it enables a clear distinction to be made between the role
of the scientist and that of the juror. The jury needs to address questions
of the following kind:

• What is the probability Pr(Hp|E, I) that the prosecution proposition
is true given the evidence?

• What is the probability Pr(Hd|E, I) that the defense proposition is
true given the evidence?

On the other hand, the scientist must address completely different kinds of
questions:

• What is the probability Pr(E|Hp, I) of the DNA evidence if the pros-
ecution proposition is true?

• What is the probability Pr(E|Hd, I) of the DNA evidence if the defense
proposition is true?

We cannot emphasize this distinction enough and will return to it frequently;
our second principle of evidence interpretation is that the scientist
must always be asking questions of the kind “What is the probability of the
evidence given the proposition?” and not “What is the probability of the
proposition given the evidence?” The latter is the kind of question that falls
within the domain of the court.



26 CHAPTER 2. TRANSFER EVIDENCE

The posterior odds that we seek are therefore arrived at by multiplying
the prior odds by a ratio of two probabilities–the likelihood ratio (LR):

LR =
Pr(E|Hp, I)
Pr(E|Hd, I)

The third principle of evidence interpretation emerges from this
analysis: The scientist must evaluate the DNA evidence, not only under the
conditioning of Hp and Hd, but also under the conditioning of the non-
DNA evidence, I. This is another point to which we will return frequently.
But now we continue with the present example by writing out E in its two
components, so the likelihood ratio is

LR =
Pr(GS , GC |Hp, I)
Pr(GS , GC |Hd, I)

To take this a stage further, we need to use the third law of probability to
expand the numerator and denominator of the ratio. There are two ways of
doing this:

LR =
Pr(GC |GS ,Hp, I)
Pr(GC |GS ,Hd, I)

× Pr(GS |Hp, I)
Pr(GS |Hd, I)

(2.1)

and

LR =
Pr(GS |GC ,Hp, I)
Pr(GS |GC ,Hd, I)

× Pr(GC |Hp, I)
Pr(GC |Hd, I)

(2.2)

The first of these is called suspect anchored and the second is called
scene anchored. The choice of which to use is determined by the problem
at hand. In principle they should each lead to the same final answer, but
one or other of them may involve probabilities that are difficult to assign
given the circumstances. Interested readers are referred to Evett and Weir
(1991) to see how the present problem can be solved either way. However,
for the present we will use Equation 2.1.

The terms Pr(GS |Hp, I) and Pr(GS |Hd, I) denote the probabilities of the
observation GS for the suspect sample given either the suspect did or did
not leave the crime sample. The very important point to note here is that
the conditioning does not include the observation GC for the crime sample,
and whether or not the suspect left the crime sample does not provide us
with any information to address our uncertainty about his genotype. So,

Pr(GS |Hp, I) = Pr(GS |Hd, I)
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and the likelihood ratio simplifies to

LR =
Pr(GC |GS ,Hp, I)
Pr(GC |GS ,Hd, I)

Now remember that GS = GC in this particular example. If we assume
that the genotype we are considering can be determined without error, then
it is certain that GC would take the value it does if Hp is the case, so
Pr(GC |GS ,Hp, I) = 1 and the likelihood ratio simplifies still further to

LR =
1

Pr(GC |GS ,Hd, I)
(2.3)

It is necessary to assign the probability of GC given that some person
other than the suspect left the crime stain. The way that we proceed from
here depends on I, or, as we more commonly say, the circumstances.
For the present, we are going to assume that the circumstances are such
that knowledge of the suspect’s type GS does not influence our uncertainty
about the type of the offender, given that person is not the suspect. Then,
in formal terms

Pr(GC |GS ,Hd, I) = Pr(GC |Hd, I) (2.4)

Because there will be cases in which it is not true, it is important to re-
member that this assumption has been made. One such circumstance is the
situation in which if the crime stain did not come from the suspect then it
came from a close relative; then knowledge of GS certainly influences our
judgment about the probability of GC . We will be discussing such situations
in later chapters. For the time being, we assume that Equation 2.4 holds.
Then

LR =
1

Pr(GC |Hd, I)
(2.5)

Also, to simplify notation, for the rest of this section we let GC = GS = G.
We have now reached the point at which so much of the debate on

DNA statistics starts; how do we assign a value to the denominator of this
likelihood ratio? What is the probability that we would observe genotype
G if some person other than the suspect left the stain? The answer depends
entirely on the circumstances I. We need to address the concept of a group
of people, identified according to the information I, to which the offender
belongs, if that person is someone other than the suspect. This group will, in
the simplest situation, be seen to be a population of some kind–perhaps the
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population of the town in which the crime was committed, or a population of
a particular ethnic group identified by some element of I, such as would be
the case when an eyewitness says that the person who committed the crime
appeared to be Caucasian. However the population is identified, it will not
normally be the case that we know everything that there is to know about
all of its members. On the contrary, our information will be limited to data
collected from a small portion (a sample) of the population. The science
of using samples to make inferences about populations is called statistics
and forms a major part of this book.

So let us assume that we have data from a sample of people we believe to
be representative of the population to which the offender belongs, if the
suspect is not the offender. At this stage, we do not discuss what we mean
by “representative” other than to say that it is a matter for the judgment
of the scientist in the case to decide whether he considers the data from the
sample to be relevant to inference about the population suggested by I. Let
us further assume, without going into the details of how we may do it, that
we estimate that genotype G occurs in a proportion P of the population to
which the offender credibly belongs, if he is not the suspect. Then we assign
the probability P to the denominator of Equation 2.5 and our likelihood
ratio is

LR =
1
P

If, for example, P = 1/100 then the likelihood ratio is 100 and the evidence
could be presented in the form “The evidence is 100 times more probable if
the suspect left the crime stain than if some unknown person left the stain.”
We discuss issues of communication later.

We wish to emphasize a couple of points here. First, in our view, the
process is that the scientist assigns a numerical value to the denominator
based on all the information available to him and his judgment of the rele-
vance of all the different aspects of the information. Of course, we do not
regard that judgment to be infallible and it goes without saying that, if the
case comes to court, he will need to explain his reasons. Furthermore, he
will have proceeded as he has by taking account of the circumstances of the
offense as they were explained to him. If those circumstances change in any
way, then it may be necessary for him to review his interpretation of the
evidence. The scientist uses an estimate of the population proportion of the
offender’s type, G, as the probability of finding the crime sample to be of
that type if it had been left by some other person.

Readers will note that we are emphasizing the personal nature of the
interpretation and we stress that further by dismissing the idea that in any



THE BAYESIAN MODEL 29

case there is a “right answer” when it comes to the assessment of DNA
evidence. Of course, there is a right answer to the question of whether or
not the suspect left the crime stain but, as we have seen, it is not within
the domain of the scientist’s expertise to address that question (though
readers familiar with the forensic field will be aware that with other types
of scientific evidence, such as handwriting and fingerprinting comparison, it
has long been the scientist’s function to address such questions). But as far
as the likelihood ratio is concerned, scientists should not be led down the
false path of believing that there is some underlying precise value that is
“right.” We must never lose sight of the fact that, for the denominator, we
are conditioning on the idea that some unknown person left the stain. What
do we mean by an “unknown person”? More importantly, what will the court
determine to be the most appropriate concept for the unknown person? We
have loosely invoked the concept of a population, but human populations
are never completely homogeneous and can never be precisely defined. Even
if we become as general as possible and say that we mean the population
of the world, then do we mean the population today? or yesterday? Let’s
say that we mean the population of the world at the instant that the crime
was committed. But do we really suggest that a female octogenarian from
Beijing should be regarded a potential offender in this case? Or a 6-month-
old Ghanaian? If we decide that we will consider the population of the
town in which the crime was committed then are we going to ignore the
possibility that a person from another town left the stain? The offender
may be a visitor passing through, for example. Or, do we mean an area
of the town? Are some streets more likely than others to provide refuge to
the true offender? Whereas we will show in Chapter 5 that such effects are
in general of little practical importance, they do mean that there is always
a residual uncertainty and the concept of a “right answer” is misleading.
The probability that we assign to the denominator of the likelihood ratio
is ultimately a matter of judgment–informed by I. This means that the
scientist must be clear in his evidence to the court of the nature of I as it
appeared to him when he made his assessment. If the court has a different
view of I, then this will inevitably mean that the scientist must review the
interpretation of the evidence.

THE BAYESIAN MODEL

Scientists have been presenting body fluid evidence in court for decades
without resorting to the Bayesian model, and it is a natural reaction at this
stage to suggest that presenting the evidence in the form of a likelihood



30 CHAPTER 2. TRANSFER EVIDENCE

ratio is unnecessarily complicated. Why not just give the court an estimate
of the frequency of the observed type?

If the case is indeed as simple as the one described above then it can
be argued that the relative frequency approach is as effective as the likeli-
hood ratio. However, as soon as any sort of complication arises–and we will
meet various kinds of complications in the pages that follow–the frequency
approach breaks down and can give answers that are misleading. Although
we have argued that there is no “right answer” it does not follow that there
are no “wrong answers”: there are answers that are patently wrong–and we
will meet some of them–because they lack science and logic. In cases that
involve any kind of complication a Bayesian analysis is unavoidable. We
claim no originality for this view, and we refer interested readers to impor-
tant hallmark publications in the field. Mosteller and Wallace (1964) used
Bayesian analysis to explore the issue of the authorship of “The Federalist”
papers. Finkelstein and Fairley (1970) first explored transfer evidence from
the perspective we have described above, and Lindley (1977) developed the
ideas further in exciting ways. A comprehensive overview of evaluating sci-
entific evidence is given in recent books by Robertson and Vignaux (1995)
and Aitken (1995): the first of these is less mathematical than the second.
Some description of the approach is also contained in the second NRC re-
port (National Research Council 1996), and a very useful review was given
by Friedman (1996).

Likewise, we would be remiss if we gave the impression that the Bayesian
view was universally accepted–it is not. Counter views have been expressed
by Tribe (1971) and Kind (1994). However, among serious students of infer-
ence relating to scientific evidence in the legal context the Bayesian view is
dominant. Nevertheless, we must remember that it is a mathematical model,
and any such model has limitations that we must guard against ignoring.
In particular, we are going to take the evidence into the court room, where
the proceedings owe no allegiance to the laws of science or mathematics and
many of the participants are stubbornly nonnumerate. We will also see that
there are serious problems in assigning prior probabilities. And, at the end
of the day, the concept of “beyond reasonable doubt” is unquantifiable.

THREE PRINCIPLES OF INTERPRETATION

It is not our claim that Bayesian inference is a panacea for all the problems
of the legal process. However, we do maintain that it is the best available
model for understanding the interpretation of scientific evidence. It provides
insights that are not otherwise possible. In particular, we would argue that
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the preceding sections suggest three precepts for the forensic scientist:

1. To evaluate the uncertainty of any given proposition it is
necessary to consider at least one alternative proposition.

This observation is obviously more general than forensic science alone
but it is well worth remembering. Within a legal trial there will be, at
the very least, two competing views; one from the prosecution and one
from the defense. In that situation the odds form of Bayes’ theorem
is applicable. There will be other situations where the hypotheses
multiply, and we consider some such examples in Chapter 7.

2. Scientific interpretation is based on questions of the kind
“What is the probability of the evidence given the propo-
sition?”

This is the most important rule to emerge from the Bayesian formu-
lation, and we discuss it a little more in the section on the transposed
conditional.

3. Scientific interpretation is conditioned not only by the
competing propositions, but also by the framework of cir-
cumstances within which they are to be evaluated.

We have demonstrated the relevance of I to the assignment of the
probabilities in the likelihood ratio and we will give more examples
later. It demonstrates that a scientist should make clear, either in his
written report or statement or in his oral evidence, the perception of
the circumstances within which the evaluation has been carried out.

ERRORS AND FALLACIES

Use of the three principles of interpretation will lead to logical statements
about evidence. Failure to adhere to these principles in the past has led to
some common errors and fallacies, as we now discuss.

The Transposed Conditional

It has been a long-standing practice in courts of law to indicate evidential
value of a typing match between crime and suspect samples by quoting a
probability based on the estimate of the proportion of a population that
possesses the given type. It is conventional to make a statement of the form
“the chance of observing this type if the blood came from someone other



32 CHAPTER 2. TRANSFER EVIDENCE

than the suspect is 1 in 100.” A common error is to reinterpret this sentence
in such a form as “the chance that the blood came from someone else is 1 in
100.” There are many variations on this theme; we will meet some of them
later, but it is essential that all scientists who practice in this field should
realize that the second of these two sentences does not follow from the first.
The terminology that we have introduced in earlier sections enables us to
understand the difference in the two statements.

The first sentence quoted says, in our terminology:

Pr(GC |Hd, I) = 1/100

The second sentence says

Pr(Hd|GC , I) = 1/100

The second sentence can be developed further by saying “the chance that
the blood type came from someone else is 1 in 100, therefore there is a 99%
chance that it came from the suspect.” This makes the evidence extremely
damning from the suspect’s viewpoint–it seems almost certain that he left
the blood stain–and so this is potentially a serious error. From the Bayesian
formulation, we have seen that it is not proper for the scientist to address
questions of the kind “what is the probability that the blood came from
the suspect?” Such questions are the province of the court and their answer
depends, not just on the DNA evidence, but also on all of the other evidence
in I.

It would be pleasing to report that using a Bayesian approach removed
one from the danger of transposing the conditional; alas, it is not so. We have
seen that the likelihood ratio can be expressed in terms like “the evidence
is 100 times more probable if the suspect left the crime stain than if some
unknown person left it.” Just a brief carelessness can lead to a rephrasing
of this as “it is 100 times more probable that the suspect left the crime
stain than some unknown person.” This statement would be a reasonable
statement of the posterior odds if the prior odds were exactly one: otherwise
it is always wrong.

The transposed conditional is a potential trap that is always waiting for
the forensic scientist. Life is made still more difficult by a very widespread
tendency among members of the legal profession to commit the error in ei-
ther questioning or summarizing the witnesses’ evidence: “you testify that
there is . . . a 1 in 71 chance that a pair of contributors at random could have
left the stain” (People v. Simpson, transcript page 33,242). The subject is
discussed in more detail in Evett (1995).
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Exercise 2.1 A crime has been committed, during the commission of which the
offender left a bloodstain at the scene. Mr. Smith has been arrested, and a sample
of his blood taken for analysis. His blood and that of the stain at the scene are
found to be the same. Data from a sample of people suggest that the proportion of
people in the population of potential offenders is approximately 1 in 1000. The first
alternative proposition is that the stain came from Smith, and the second alterna-
tive is that the stain came from someone else. State whether each of the following
methods for expressing the evidence is correct, incorrect, or ambiguous.
(a) The probability of finding this blood type if the stain had come from someone
other than Smith is 1 in 1000.
(b) The probability that someone other than Smith would have this blood type is
1 in 1000.
(c) The probability that the blood came from someone other than Smith is 1 in
1000.
(d) The evidence is 1000 times more probable given the first alternative rather than
the second.
(e) The first alternative is 1000 times more probable than the second.
(f) The odds are 1000 to 1 in favor of the first alternative.
(g) There is only a 1000 to 1 chance that Smith is not the donor of the bloodstain.
(h) The chance of a man other than Smith leaving blood of this type is 1 in 1000.
(i) The chance that a man other than Smith would leave blood of this type is 1 in
1000.
(j) The chance that a man other than Smith left blood of this type is 1 in 1000.
(k) It is very unlikely that the stain came from someone other than Smith.
(l) The evidence strongly supports the hypothesis that the stain came from Smith.
(Adapted from Evett 1995.)

Defense Attorney’s Fallacy

The fallacy of the transposed conditional has been termed “The Prosecutor’s
Fallacy” (Thompson and Schumann 1987) even though defense attorneys are
not immune from making the error. Another error, more likely to be made by
defense attorneys, assigns prior probabilities of guilt from transfer evidence.
If the DNA type of a crime stain has an estimated frequency of 1 in 100,000
people then it is true that 10 people are expected to have that type in a
city of 1,000,000 people. The defense attorney’s fallacy is to assume equal
probabilities of guilt for these 10 people, and therefore assign a probability
of guilt of 1/10 to a particular suspect from the city who does have the type.
It is very doubtful that all 10 are equally likely to be guilty. We return to
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this in Chapter 9.

Expected Values Implying Uniqueness

If the profile frequency is estimated to be 1 in a million, then one person
in a population of a million people is expected to have that profile. When
one person, the suspect, has been found in a population of this size it is
fallacious to conclude that this person is guilty. Kingston (1965) discussed
the issue for an example involving fingerprints.

In Chapter 3 we discuss probability distributions, but here we can point
out that the actual number of people with a particular profile can be zero,
one, two, or more. Each of these possible outcomes has a certain probability,
and the expected value is formed by weighting each outcome by its proba-
bility. The expected value may not even be one of the possible actual values,
let alone provide the only possible value. Families may have an average of
2.1 children, even though no family has that number and actual family sizes
range from zero to a number considerably larger than 2.1.

When a suspect has been found to have the profile of interest, the proper
question to ask is “Given that we know there is one person with this profile,
what is the probability that there are other people of the same type?” We
return to this when we discuss the island problem later in this chapter, and
again in Chapters 4 and 9.

Defendant’s Database Fallacy

The probabilities of obtaining profiles from untyped people are given nu-
merical values on the basis of a sample of people from some population.
Ideally, this sample would be drawn from among those people who could be
considered possible contributors to the crime sample. This population will
be defined by the hypothesis Hd and by circumstances of the crime, such as
location or eyewitness reports. In practice, samples are not collected anew
for every crime, and we shall see in Chapter 5 how this is accommodated.
We will see there that frequencies of DNA profiles may differ between pop-
ulations, especially when people in these populations have different racial
backgrounds. Especially under hypothesis Hd, the racial background of the
suspect does not define the population.

In 1991, a Mr. Passino was on trial for homicide in Vermont. His defense
established that his paternal grandparents were Italian, his maternal grand-
father was Native American and his maternal grandmother was half French
and half Native American. On this basis, the defense was able to have DNA
profile calculations ruled inadmissible because they were not based on a
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sample of people with the same racial heritage as Mr. Passino. We pointed
out (Weir and Evett 1992) the lack of logic since the defense hypothesis was
that the crime sample was not from Mr. Passino, and therefore his racial
background was immaterial. We agree with Lewontin (1993), who noted
that the circumstances of the crime suggested that the offender may have
been a member of the Abnaki tribe of Native Americans, although this still
does not require account to be taken of Mr. Passino’s pedigree (Weir and
Evett 1993).

THE TWO-TRACE PROBLEM

We now consider a case that is a little more complicated than the first. In
this case, examination of the crime scene reveals stains of two different types.
Assume that the investigator is justified in inferring that the stains were left
during commission of the offense, implying that there were two offenders
with different blood types. Assume, further, that information received by
the investigator leads to the detention of a single suspect, who provides a
blood sample. DNA typing yields the genotypes G1, G2 from the two crime
samples and GS from the suspect sample. The suspect’s type matches that
of one of the stains, GS = G1, but not the other.

In this case we can visualize the two propositions as

Hp: The suspect was one of the two men who left the crime
stains.
Hd: Two unknown men left the crime stains.

As before, we seek to evaluate

LR =
Pr(E|Hp, I)
Pr(E|Hd, I)

where now E = (GS , G1, G2). Making assumptions similar to those embod-
ied in Equation 2.3, this can be shown to be

LR =
Pr(G1, G2|GS ,Hp, I)
Pr(G1, G2|GS ,Hd, I)

Remember that GS = G1.

Numerator. This is evaluated by posing the question “If the suspect and
some unknown man left the crime stains, what is the probability that one
of the stains would be G1 and the other G2?” If we repeat the assumption
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that the types are determined without error, then with probability one, the
suspect would leave a stain that would give genotype G1. If we are told
that the proportion of people, in what we judge to be the most relevant
population, who would give observation G2 is P2, then the answer to the
question is 1× P2, i.e.,

Pr(G1, G2|GS ,Hp, I) = P2

Denominator. This is evaluated by posing the question “What is the
probability that two unknown people would leave stains giving observations
G1 and G2?” Given that the proportions of the two types in the relevant
population are P1 and P2 respectively, then it is tempting to reply, making
an obvious assumption, that the answer is P1 × P2. However, a moment’s
reflection is needed. Think, for a moment about tossing two coins–say a
dime and a quarter–and ask yourself the probability of two heads being
the result. The answer is straightforward: the dime will show a head with
probability 0.5, and the quarter will also show a head with probability 0.5.
If we specify that the tossing has been done properly, then these two events
are independent and the probability of two heads is their product: 0.25.
What now if you are asked the probability that the result of tossing the
two coins is one head and one tail? There are two ways in which this can
happen:

• The dime shows a head and the quarter shows a tail.

• The dime shows a tail and the quarter shows a head.

So the answer, that is another example of applying the law of total proba-
bility, is (0.5× 0.5) + (0.5× 0.5) = 0.5.

By exactly the same reasoning, the probability that two unknown men
would give us observations G1 and G2 is 2P1P2. You could also visualize
this by imagining the two men walking in through your door: the result you
seek occurs if the first man is G1 and the second man is G2 or if the first
man is G2 and the second man is G1. So

Pr(G1, G2|GS ,Hd, I) = 2P1P2

It follows that the likelihood ratio is

LR =
1

2P1

Note that the likelihood ratio is half what it would have been if there had
only been one stain. That the likelihood ratio is less in the second case is
intuitively reasonable.
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There is an interesting feature of this result. Note that if the proportion
P1 is greater than 0.5, the likelihood ratio is less than one. Even though
there is evidence that appears to confirm the prosecution hypothesis, it ac-
tually supports the defense hypothesis. In Chapter 9, when we discuss case
reporting, we will explain the unsatisfactory nature of phrases such as “con-
sistent with.” A classical forensic approach to this sort of case might have
been to report a match and say something like “the evidence is consistent
with the presence of the suspect’s blood.” We now see that this approach
does not offer a balanced interpretation of the evidence.

A likelihood ratio less than one when there is a match between a suspect
and the crime sample may appear counter-intuitive at first sight, but its
validity can be illustrated by a simple example. Imagine that two marks
have been made on a white board, one by a red pen and one by a green pen.
The two pens have been dropped into an opaque container that contains 98
other pens of the same shape and size. A person is told there are now 60
red pens and 40 pens that are not red in the container, and is asked to reach
into the container, withdraw a pen and speculate whether or not it was one
of the two pens used to mark the white board. While the person has the
pen in his hand, but before he has withdrawn his hand from the container
and observed the pen, it would be reasonable for him to assign a probability
of 1/50 that it was one of the two pens used. However, if he finds that the
chosen pen is red, the probability that it was one of those used is 1/60. Even
though the pen has the right color to have marked the white board, and so
“matches,” the new information (the color of the pen drawn) has actually
reduced the probability that it is one of the two being sought.

TRANSFER FROM THE SCENE

In the previous two cases, the offender or offenders left evidence at the crime
scene. In this case we consider interpretation when it is possible that the
offender inadvertently took evidence from the crime scene.

We imagine a crime in which a victim has bled profusely after being
stabbed. As a result of an investigation, a suspect is arrested and his outer
clothing taken for scientific examination. Blood staining on the clothing is
found to be of the same genotype G as the victim’s blood. The suspect
himself has a different genotype. The important difference between this and
the preceding cases is that not only does the genotype match have evidential
value, but also the very presence of blood staining on the suspect’s clothing
will need to be taken into account. We use E = (E1, E2) to denote the two
aspects of the bloodstain evidence:
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• E1: There is blood staining on the suspect’s clothing.

• E2: The blood staining on the suspect’s clothing has genotype G.

For generality, let GV and GS denote the genotypes of the victim and
suspect, respectively, remembering that GV = G and GS 6= G. We consider
two propositions:

Hp: The suspect is the person who stabbed the victim.
Hd: The suspect is not the person who stabbed the victim.

We will assume that the circumstances I make it clear that there was
only one person involved in the assault on the victim, and there are no other
mechanisms by which the victim’s blood could have been transferred to the
suspect. Then the likelihood ratio is

LR =
Pr(E,GV , GS |Hp, I)
Pr(E,GV , GS |Hd, I)

The first stages of simplification can be done using the multiplication law
as follows:

LR =
Pr(E,GV |GS ,Hp, I)
Pr(E,GV |GS ,Hd, I)

× Pr(GS |Hp, I)
Pr(GS |Hd, I)

There is no information in Hp or Hd that would influence the genotype of
the suspect, so the second ratio is one and we move to the next stage.

LR =
Pr(E|GV , GS ,Hp, I)
Pr(E|GV , GS ,Hd, I)

× Pr(GV |GS ,Hp, I)
Pr(GV |GS ,Hd, I)

By similar reasoning to that in the previous stage we argue that the second
ratio is one. Also, if Hd is true then E is independent of GV . Then

LR =
Pr(E|GV , GS ,Hp, I)

Pr(E|GS ,Hd, I)

We will now consider the numerator and denominator in turn.

Numerator. To assist with the numerator, we introduce a new proposi-
tion T that blood was transferred from the victim to the assailant’s clothing.
The complementary event T̄ is that blood was not transferred. Then we use
the law of total probability:

Pr(E|GV , GS ,Hp, I) = Pr(E|T,GV , GS ,Hp, I) Pr(T |GV , GS ,Hp, I)
+ Pr(E|T̄ , GV , GS ,Hp, I) Pr(T̄ |GV , GS ,Hp, I)

This may look forbidding, but it can be simplified by making some reason-
able assumptions:
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• The probability of transfer is independent of the genotypes GV and
GS .

• If T̄ is the case, the blood staining evidence is independent of GV .

The numerator of the likelihood ratio is then

Pr(E|GV , GS ,Hp, I) = Pr(E|T,GV , GS ,Hp, I) Pr(T |Hp, I)
+ Pr(E|T̄ , GS ,Hp, I) Pr(T̄ |Hp, I)

This is a situation in which the expert’s judgment would, presumably, be
welcomed concerning the probability that the suspect would be bloodstained
if he had stabbed the victim. We will denote the expert’s transfer prob-
ability as t = Pr(T |Hp, I). So

Pr(E|GV , GS ,Hp, I) = tPr(E|T,GV , GS ,Hp, I)
+ (1− t) Pr(E|T̄ , GS ,Hp, I) (2.6)

Note that we are recognizing two explanations for the presence of blood
staining: either blood was transferred during the commission of the crime
or none was transferred, in which case it must have been there beforehand.
In this latter case we assume that the probability of the stain evidence is
the same as if the defense hypothesis is true:

Pr(E|T̄ , GS ,Hp, I) = Pr(E|GS ,Hd, I) (2.7)

Note that the right-hand term of Equation 2.7 is the same as the denomi-
nator of the likelihood ratio. We can therefore divide Equation 2.6 by this
denominator and rearrange terms to get

LR = (1− t) + t
Pr(E|T,GV , GS ,Hp, I)

Pr(E|GS ,Hd, I)
(2.8)

The first of these terms, being a probability, must lie between zero and one.
The second term, involving a ratio of probabilities, can take values in excess
of one. When this second term is greatly in excess of one, the following will
not be misleading:

LR ≈ t
Pr(E|T,GV , GS ,Hp, I)

Pr(E|GS ,Hd, I)

The numerator of this ratio is the answer to the question “Given that the
suspect is the person who stabbed the victim and that blood was transferred,
what is the probability that a stain would be found and that it has genotype
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GV , given that the victim is genotype GV .” If we assume that the genotypes
are determined without error, then the answer to this question is one, so

LR ≈ t

Pr(E|GS ,Hd, I)
(2.9)

Denominator. The denominator of the ratio is the answer to the ques-
tion “If the suspect is not the person who stabbed the victim, what is the
probability that staining with genotype GV , different from his own type GS ,
would be found on his clothing?” Evett and Buckleton (1989) showed that
the question can be broken into two parts:

• What is the probability that the suspect would be found to have blood
on his clothing of a type different from his own?

• What is the probability that a nonself stain on the suspect’s clothing
would be of type GV ?

A survey conducted by Briggs (1978) addresses the first of these questions.
In a study of 122 suspects in a large murder investigation, four had clothing
with blood staining in sufficient quantity to be typed and of type differ-
ent from their own. Three of the four had “lightly” stained clothing and
the fourth had “extensive” staining with blood from at least three sources.
Clearly this small survey does not provide definitive probabilities for nonself
staining, but it may guide the thinking of a forensic scientist. Write b for
the probability sought in the first question.

The second question is more straightforward in that it relates to the dis-
tribution of genotypes in a population. Which population is meant? Strictly,
it is the population of stains found on clothing of people belonging to the
suspect’s population. There are no survey data for this population. The
forensic scientist is likely to have access to genotype databases constructed
from samples of individuals, and this will provide the best information avail-
able. Write PV for the estimated proportion of people with genotype GV .
The likelihood ratio in Equation 2.9 becomes

LR ≈ t

bPV
(2.10)

A more rigorous derivation was given by Aitken (1995).
The apparently simple Equation 2.10 raises issues relating to the role of

a forensic scientist. An extreme view would be that the scientist is little
more than a technician who reports a match and provides a frequency esti-
mate from some database. We believe that courts would look for a broader
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role for forensic science. Because of his or her training and expertise, the
forensic scientist must be better placed than judges or jury members to as-
sess the evidential issues underlying the presence of nonself blood stains on
a defendant’s clothing. Equation 2.10 provides a framework for exercising
scientific judgment, and it stimulates questions of the kind

• What is the probability that I would observe this particular pattern
of blood staining if the suspect is the person who stabbed the victim?

• What is the probability that I would observe this particular pattern of
blood staining if the suspect is not the person who stabbed the victim?

Even if the forensic scientist is uncomfortable in quantifying these probabil-
ities, he or she should interpret the evidence based on the comparison of the
two probabilities. The larger their ratio, the stronger is this aspect of the
evidence.

THE ISLAND PROBLEM

So far, we have been concentrating on the evaluation of the LR, but now
we take a broader look at the impact of transfer evidence by considering a
fairly simple model, based on the idea of a closed suspect pool of known
size. Several writers have studied this island problem in considerable
detail (Eggleston 1983; Dawid 1994; Balding and Donnelly 1995; and Dawid
and Mortera 1996).

The problem is one of a single stain at the crime scene, but now we specify
the background information I in more detail. The crime was committed on
a remote island where there have been no recent arrivals or departures. A
suspect has been arrested because of an anonymous tip-off: evidence that
cannot be put before a court. Both the genotype GS of suspect and genotype
GC of the crime stain are the same, and the probability that a person selected
at random from the island population will have this genotype is P . We also
know that the island has a population of (N + 1) individuals.

If the suspect is brought to court, then we consider two alternatives as
before:

Hp: The suspect left the crime stain.
Hd: Some other person left the crime stain.

If there is no evidence other than the genotype match to put before the court,
then disregarding the genotype evidence, he is a priori no more probable
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than any other person on the island to have left the crime stain. We can
express this by assigning the prior probability:

Pr(Hp|I) =
1

N + 1

Robertson and Vignaux (1995) argue convincingly that this concept is
compatible with the principle of the presumption of innocence. It follows
that the prior odds are:

Pr(Hp|I)
Pr(Hd|I)

=
1
N

Following earlier arguments for the single crime stain case and making
the same simplifying assumptions, we can say:

LR =
Pr(GC |GS ,Hp, I)
Pr(GC |GS ,Hd, I)

=
1
P

so the posterior odds are

Pr(Hp|GS , GC , I)
Pr(Hd|GS , GC , I)

=
1
P
× 1
N

=
1
NP

(2.11)

In the special case where P = 1/(N +1), the expected number of people
on the island with the genotype GC on the island is 1 and the posterior
odds are (N + 1)/N ≈ 1, or evens. The posterior probability, given the
genotyping evidence, is (N + 1)/(2N + 1) ≈ 0.5, which is in direct contrast
to the fallacy we discussed earlier of implying uniqueness from an expected
value of one. We return to this fallacy in Chapter 9.

Embodied in the assumptions we have made to arrive at the simple result
of Equation 2.11 is the notion that the match probability P is the same
for any unknown person that we consider as an alternative to the suspect.
This, however, might be an unreasonable assumption, particularly if there
are blood relationships between the inhabitants of the island, as we discuss
in Chapter 4. It is useful, therefore, to generalize the expression to allow for
varying match probabilities among the inhabitants. We will also allow for
varying prior probabilities, as follows.

Let π0 be the prior probability that the suspect left the crime stain,
i.e., Pr(Hp|I) = π0. For each of the other members of the population, let
πi, i = 1, . . . , N , denote the prior probability of Hdi

that he or she left the
crime stain. Then

Pr(Hd|I) =
∑

i

Pr(Hdi
|I) =

∑
i

πi = 1− π0
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We maintain the assumption that the probability of a match between the
suspect and the crime stain, given that he left the stain, is one:

Pr(GC |GS ,Hp, I) = 1

Let Pi denote the probability that the ith other person would match, i.e.,
have genotype GC :

Pr(GC |GS ,Hdi
, I) = Pi

Then we use the general form of Bayes’ theorem, as in Box 1.4, to write out
the posterior probability of Hp:

Pr(Hp|GS , GC , I) =
π0

π0 +
∑N

i=1(πiPi)

Balding and Nichols (1995) show that it is convenient to divide the top
and bottom of this expression by π0 and to write wi = πi/π0. Here wi can
be regarded as a weighting function that expresses how much more (or less)
probable the ith person is than the suspect is to have left the crime stain,
based on the non- DNA evidence. Then

Pr(Hp|GS , GC , I) =
1

1 +
∑N

i=1wiPi

It follows that the posterior odds are

Pr(Hp|GS , GC , I)
Pr(Hd|GS , GC , I)

=
1∑N

i=1wiPi

(2.12)

If all of the wi = 1 and all of the Pi = P , then we have 1/NP as before.
The formulae for the posterior probability and odds can be used to gain

some impression of the impact on the evidence of the knowledge that the
suspect has a close blood relative, such as a brother, who has not been
eliminated from the enquiry. For example, take P to be 1/1, 000, 000 for all
the inhabitants of an island of 10,000 people and assume that they all have
the same prior. Then the posterior odds in favor of Hp are very close to 100
to 1 on. Now imagine that the suspect has a single brother on the island,
and suppose that we calculate, by the methods we describe in Chapter 4,
that the probability that a full brother would also have genotype GC is 1/4.
If we still assume that all inhabitants have the same prior then the posterior
odds are approximately

1
1/4 + 1/100

∼ 4
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Knowledge that the suspect has a brother, who a priori has the same chance
as anyone else on the island of being the offender, therefore has a substantial
impact on the posterior odds. When P is less than 1 in a million, then the
posterior odds for an island of 10,000 people are greater than 100. However,
the posterior odds given the presence of a brother are still about 4. Therefore
the effect of the suspect having a brother becomes greater as P becomes
smaller. Note, however, that the assumption of equal prior probabilities,
even for a man and his brother, let alone all inhabitants of an island, may
not be at all realistic. Note, further, that the issue of a brother can be
addressed directly by typing the brother.

The island problem has also been used to resolve the issue of how match
probabilities should be reported in the event that a suspect has been found
as a result of searching a database of DNA profiles for a profile matching an
evidentiary profile (Chapter 9).

SUMMARY

The interpretation of DNA evidence rests on likelihood ratios that compare
the probabilities of the evidence under alternative propositions. Although
there may be occasions where simple probabilities of DNA types will be suf-
ficient, there are many occasions where they are not. It is preferable to have
a single approach for the interpretation of DNA evidence in all situations,
and the one presented in this chapter will avoid fallacious statements.



Chapter 3

Basic Statistics

INTRODUCTION

We now return to the problem we faced in Chapter 2, where it was necessary
for us to assign a numerical answer to the question “What is the probability
that we would observe type G if some person other than the suspect left
the crime stain?” Of course, it is important to understand in an individual
case what we mean by the phrase “some person other than the suspect.”
In general, the circumstances within which the crime was committed will
suggest some group of individuals to which the offender belongs, if that
person is not the suspect. We will refer to that group of individuals as
a population. In some situations the population might be quite tightly
defined, in other cases less so. But in nearly every case we do not have
information about all the members of the population. To illustrate some
of the issues, we consider that the crime was committed in a hypothetical
city, Gotham City, which has a populace of two million, and assume that
there is no eyewitness to the crime. We are interested in the probability
that some unknown person from Gotham City would give us observation G.
In this book we assume that G is a genotype and that we are interested in
the probability that a person has genotype G.

How are we to assign a probability to the event that an unknown member
of Gotham City is genotype G? One solution would be to type every member
of the population, but we can dismiss that immediately as unrealistic: even
if we had the funds to do it, and even if every person consented to give a
sample honestly (in real-life crime investigation screening exercises certain
people may endeavor to have someone provide a sample on their behalf–
Wambaugh 1989), it would take a long time, and by the time we had finished
the population would have changed through births, deaths, immigration, and

45
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emigration. In any case, are we really interested in all of the population?
Men and women? Could the “unknown person” be a three year old child?
Or an octogenarian? One thing is sure: whoever the unknown person is, he
or she is someone with criminal tendencies since we assume that a crime has
been committed. Would our time be better spent studying the genotypes of
all of the criminals in Gotham City? If so, how do we do that?

So the first, and most obvious, solutions are unrealistic. In nearly all real-
life situations we are going to do something else: rely on a sample of people.
In the present example it would seem desirable to know the genotypes of a
sample from the population of Gotham City. This is where statistics comes
in. So far we have been talking just about probability and probability theory.
The science of statistics involves using samples to make inferences about
populations.

What should we do in the context of our hypothetical case? Assuming
we have agreed that it is reasonable to take a sample of the population,
then how should we take the sample? The first concept we need to explore
is that of a random sample. The usual definition is that this is a sample
taken in such a way as to ensure that every member of Gotham City has
the same chance of being selected for inclusion in the sample. In Chapter
1, we remarked that this was an alternative to the definition in which ran-
domness was equated to uncertainty about the character (genotype) being
studied. Next we must address an issue we have already touched on, that
of representativeness. Remember that we are considering the idea of an
unknown member of the population who committed the offense, so maybe
our sample should be randomly drawn from the subset of the population
that consists of people who could realistically be considered to be potential
suspects for the crime (so we would presumably exclude individuals such as
three-year-olds, octogenarians, and perhaps the mayor and city councillors).
There are also issues of stratification. Presumably Gotham City consists of
people of various ethnic backgrounds: Caucasian, Black, Hispanic, Chinese,
Japanese, and so on. Should our random, representative sample be strati-
fied to reflect the proportions of the ethnic groups (Buckleton et al. 1987)?
Finally, there is the question of the sample size. This will be determined not
just from statistical considerations (to be explored below in the sections on
confidence intervals and Bayesian estimation) but also from considerations
of cost and practicality.

Of course, a real crime laboratory would not attempt, for reasons we have
touched on, to take a random, representative, stratified sample of individuals
to address the question of issue. In the vast majority of cases the laboratory
will have one or more convenience samples. Such a sample may be of
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laboratory staff members, or from blood donor samples with the cooperation
of a local blood bank, or from samples from victims and suspects examined
in the course of casework. In general, the laboratory will presumably have
endeavored to collect samples from the major ethnic groups within its area
of operation.

The theory we are going to describe in this section is that of drawing
inferences about populations from random samples. Yet we have seen that
in the forensic context, we will generally be dealing not with random, but
with convenience, samples. Does this matter? The first response to that
question is that every case must be treated according to the circumstances
within which it has occurred, and the next response is that it is always a
matter of judgment. The theory of statistics, upon which most of this book
is based, operates within a framework of assumptions, but it needs to be ap-
plied to real-life problems. The forensic scientist needs to judge whether the
assumptions appear reasonable in the individual case. The scientist should
consider the literature, but must also ask if there is any reason to believe
that knowledge of a person’s sex, age, socioeconomic status, political per-
suasion, or tendency to criminality would in any way provide information to
address the uncertainty about his genotype. In the last analysis, the scien-
tist must also convince a court of the reasonableness of his or her inference
within the circumstances as they are presented in evidence. This cause may
be helped by statements in the 1996 report of the United States National
Research Council (National Research Council 1996) that the loci used for
identification are unlikely to be correlated with traits associated with differ-
ent subsets of the population, and that frequencies of alleles at these loci do
not differ very much among different subpopulations of geographic areas.

Although the term “random sample” is being applied to genotypes, not
to people, we tend to ignore this distinction. Should the scientist consider his
convenience sample to be a random sample? To some extent that depends on
the typing system that he is considering. If it were feasible for him to identify
the most relevant subset of the population of Gotham City, pick a sample
at random from this subset, find the selected individuals, and persuade
them to provide body fluid samples, would this truly random sample look
much different from his current convenience sample? Certainly it would not
be precisely the same, but would the differences have any practical effect?
We believe that the scientist should be considered competent to address
questions of this nature and to make judgments about what are and are
not “practical effects.” If the scientist is satisfied in this regard then, we
maintain that he or she can proceed as though the convenience sample were
a random sample.
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Table 3.1: List of 50 FES genotypes.

10,10 10,12 11,12 12,12 10,11
10,13 11,12 10,11 11,12 10,11
11,12 8,12 10,10 10,11 10,11
10,11 10,11 10,12 10,11 11,11
11,11 10,13 12,13 10,12 11,12
10,11 11,11 10,13 11,12 11,11
11,12 10,11 11,12 11,12 11,12
10,11 11,12 10,11 11,11 11,11
10,11 10,10 10,11 11,11 10,12
10,10 10,11 11,11 8,11 10,12

Using our sample of individuals we will attempt to draw inferences about
a population in order to assign a value to the denominator of the likelihood
ratio. This value will be related, often in a very simple way, to the proportion
of people in the population who have genotype G. But, as we have seen, we
will not know that proportion, and indeed it is almost always unknowable,
for the reasons we have sketched in previous paragraphs. We will use our
sample, regarded as effectively random, to estimate the proportion.

Example

We will now make our example a little more concrete by saying that genotype
G is 11,12 at the HUMFES/FPS locus, which we will call FES for short.
Our sample consists of 50 Caucasians whose genotypes are in Table 3.1.
The integers 8, 10, 11, 12, and 13 indicate alleles, and the genotype of each
individual is given by the two alleles the individual possesses at this locus.
One allele has come from each of the individual’s parents.

We can summarize the data conveniently as the counts for all the 15
genotypes possible with 5 alleles. If previous samples had indicated the
possibility of allele 9, then we may want to include those genotypes that
include that allele even though they are absent for this sample. The genotype
counts are displayed in the body of Table 3.2 for the alleles specified in the
row and column margins.

In our sample 11 people out of 50 have the genotype 11,12. Is the
figure 11/50 = 0.22 the one that we should use to assign a value to the
denominator of the likelihood ratio? The short answer is that it is the
best information we have, but we must recognize that it is not the same
thing as the proportion P in the population. Not only, as we have seen, is
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Table 3.2: Genotype counts for the FES sample.

Allele Genotype counts
8 0
9 0 0

10 0 0 4
11 1 0 15 8
12 1 0 5 11 1
13 0 0 3 0 1 0

Allele 8 9 10 11 12 13

the notion of population rather vague, but also a sample can provide only
an estimate of the population proportion. We need to understand the
properties of estimators: How good an estimator of a population proportion
is a sample proportion? To understand such issues we need to study some
more theory, and we next introduce the binomial distribution.

BINOMIAL DISTRIBUTION

An Urn Model: Two Kinds of Balls

Equal proportions of the two kinds of ball. We will learn about the
binomial distribution by returning to the model in Chapter 1 of a large urn
that contains a number of balls. All of the balls are indistinguishable from
each other in size and shape. They differ in color, however, and for the
binomial (“two names”) we imagine that there are two colors: white and
black. We will be considering conceptual experiments that involve drawing
one ball at a time in such a way that our drawing process is completely
insensitive to the color of the ball. We can do this by not looking inside the
urn and by giving the balls a good stir between draws. The color we end
up with after a single draw is uncertain, though we know that the greater
the number of balls of a given color, the more likely we are to end up with
that color. Thus, to speculate about the outcome of a draw we would like
to know the proportions of the two colors in the urn. The proportions of
the two colors remaining in the urn would change if we did not return the
ball we drew to the urn. For this discussion we are going to return each ball
we draw after we have noted its color, and this is called sampling with
replacement.

If, before drawing a ball, we are told that half of the balls in the urn
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are black and half are white, then the following statement should seem
reasonable: “The probability that the ball will be black is 0.5.”

The first experiment we consider consists of drawing one ball, noting its
color and replacing it, and then drawing a second ball, and also noting its
color. If B and W denote the colors, then there are four possible outcomes:
BB, BW, WB, or WW. Each of these has a probability 0.5 × 0.5 = 0.25
because it seems reasonable to consider successive drawings from the urn as
independent of each other. Suppose we are interested only in the number of
each color, and we are indifferent to the order in which they appear. Then
we can write out the three outcomes (0,1, or 2 black balls) in tabular form:

Number of Possible Number
black balls drawings of ways Probability

0 WW 1 0.25
1 BW, WB 2 0.50
2 BB 1 0.25

The third column reminds us that there are two ways (BW, WB–each
with probability 0.25) in which we can get one black ball, but only one way
in which we can get none and only one way of getting two.

We can construct a similar table for the number of black balls seen when
three are drawn, noting that the probability for any particular sequence (e.g.
WWB) is now 0.5× 0.5× 0.5 = (0.5)3

Number of Number
black balls of ways Probability

0 1 0.125
1 3 0.375
2 3 0.375
3 1 0.125

If we wish to extend this sort of analysis to more and more balls, then
we can use Pascal’s triangle to work out the numbers of ways of getting
a given number of blacks. The first four rows of this triangle are shown in
Table 3.3, and each number in the triangle is seen to be the sum of the two
numbers to the left and right of it in the preceding line. Completing the
next line, corresponding to drawing six balls, should be a simple exercise for
the reader.

Let’s look at the fourth line in a little more detail. This is for the case
in which we are drawing five balls, and we see (Table 3.4) that there are 10
ways of drawing two black balls, for example.

Pascal’s triangle can be cumbersome when it comes to making such cal-
culations for drawing large numbers of balls. To derive a general formula,
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consider first that there are 5 ways of choosing an object from a set of five, 4
ways of choosing one from the remaining four, and so on. The total number
of orders for five objects is 5× 4× 3× 2× 1 and this product is written as
5! or 5 factorial. Within these 5! = 120 ways of choosing five balls, there
are 2! orders of the two black balls and 3! orders of the three white balls.
These 3! × 2! = 12 orders do not affect the total number of black balls, so
the number of ways of choosing two objects (to be black) from a list of five,
termed “5 choose 2” is written as

5C2 or
(

5
2

)
and has the value (

5
2

)
=

5!
2!3!

= 10

More generally, the number of ways of choosing x objects from a set of n
objects is (

n

x

)
=

n!
x!(n− x)!

Exercise 3.1 Calculate the number of ways of choosing 3 objects from 5, 5 from
12, 4 from 40, and 36 from 40.

In this model, if n balls are drawn, the probability of any particular
sequence of blacks and whites is (0.5)n. There are n!/x!(n − x)! ways of
arranging x black balls in a list of length n, so the probability of seeing a
total of x black balls in n drawings is

Pr(x) =
n!

x!(n− x)!
(0.5)n

Table 3.3: Pascal’s triangle.

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
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Table 3.4: Ten arrangements of three Ws and two Bs.

BBWWW WBWBW
BWBWW WBWWB
BWWBW WWBBW
BWWWB WWBWB
WBBWW WWWBB

Exercise 3.2 When balls are drawn from an urn containing equal numbers of
black balls and white balls, what is the probability of 3 out of 5 balls being black?
What is the probability that 5 out of 12 are white?

Unequal proportions of the two kinds of ball. Imagine the same
model, except that only 25% of the balls are black. If we draw two balls,
the probability of two blacks is now (0.25)2, that of two whites is (0.75)2,
and that of a black and a white 2× 0.25× 0.75 (remember the two orders).
The reader may like to confirm that these three probabilities sum to one.
The following table lists the probabilities of the four outcomes for drawing
three balls:

Number of Number
black balls of ways Probability

0 1 1× (0.75)3 = 0.421875
1 3 3× (0.25)× (0.75)2 = 0.421875
2 3 3× (0.25)2 × (0.75) = 0.140625
3 1 1× (0.25)3 = 0.015625

If we were to draw n balls, then the probability that x of them would be
black follows from the same kind of argument shown in this table:

Pr(x) =
n!

x!(n− x)!
(0.25)x(0.75)(n−x)

Finally, if the proportion of black balls is p, and the proportion of white
balls is 1− p, then the probability of drawing x black balls and n− x white
balls is

Pr(x|n, p) =
n!

x!(n− x)!
px(1− p)(n−x) (3.1)

and we have arrived at the binomial probability distribution.
Often the binomial model is used to describe a series of independent

experiments, or Bernoulli trials, each of which has only two outcomes:
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“success” with probability p, and “failure” with probability q = 1− p. The
connection with our balls-in-an-urn examples is straightforward if we regard
drawing a ball as a trial, and drawing a black ball as a success.

Notation. If we have a series of n independent dichotomous trials, each
with the same probability p of success, then the number of successes is a
random quantity. We say it is random because we don’t know its value
until after the experiment (when the observed outcome becomes our data).
Before we carry out any trials we can make a statement about the probability
that the random quantity will take any particular value x. The statement
is just the binomial probability in Equation 3.1. The collection of these
probabilities for all n+ 1 values of x (0, 1, . . . , n) is called the probability
density function, or pdf. Because x can take only discrete values, the pdf
is said to be a discrete pdf or probability mass function. Other random
quantities, such as measured lengths, can take all possible values over a
range and lead to continuous distributions.

The binomial distribution, and its probability density function, are com-
pletely described by the two quantities n and p. These are the parameters
of the distribution, which is written in shorthand as a B(n, p) distribution.

Exercise 3.3 Five dice are rolled. What are the probabilities of two sixes, or
more than two sixes?

Exercise 3.4 There are 50 unrelated people in a room. What are the probabil-
ities that none of them have a birthday in that week, or that exactly two of them
have a birthday in that week, or that more than two of them have a birthday in
that week?

Exercise 3.5 Construct tables, similar to those shown for drawing two or three
balls, that show the numbers of successes and the probabilities of those outcomes
for: (a) TheB(6, 0.1) distribution; (b) TheB(6, 0.5) distribution. Draw a histogram
for each of the distributions.

Relevance of the Binomial Model

In forensic science we do not have any particular interest in drawing balls
from urns. Instead, we are interested in making inferences about allelic
or genotypic proportions on the basis of samples that are typically much
smaller than the populations they represent. However, we have more work
to do before this model is of use to us. So far, the examples have involved
making inferences about the composition of a sample, given the parameters
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characteristic of the underlying population. In practice, what we are usually
trying to do is estimate the one or more parameters of the population given
the composition of the sample. We will return to this problem later.

Binomial Mean and Variance

It is often useful to summarize a distribution with two well-known parame-
ters: the mean and the variance. If we sample 100 people from a population
in which the proportion of genotype G is 0.2, then it seems intuitively rea-
sonable to expect around 20 G genotypes in the sample. We wouldn’t be
surprised at 18 or 22, and we know that we cannot guarantee exactly 20.
But 20 seems to be about the right number. This number is, in fact, the
expected value or mean.

More generally, the mean of a B(n, p) pdf is np. The mean need not
correspond to a value that could be obtained in a particular sample. Suppose
a sample of 20 people is taken from a population in which 47% of the people
support the government on some issue. Using the symbol E to indicate
expectation, the expected number of supporters is

E(x) =
20∑

x=0

x× Pr(x|n = 20, p = 0.47)

= 0× Pr(x = 0|n = 20, p = 0.47) + . . .

+ 20× Pr(x = 20|n = 20, p = 0.47)
= 9.4

Although the expected number in the sample is 9.4, this clearly cannot be
the actual number in any sample. However, the sum of all possible numbers
of supporters in a sample, from 0 to 20, each multiplied by its binomial
probability, is 9.4. We wouldn’t be surprised at 9 or 10 supporters in a
sample of size 20, but we might be surprised by 18. Inference about the range
of values that can be expected depends on the spread of the distribution.
The best known measures of spread (or dispersion as it is more correctly
called) are the variance, and its square root is known as the standard
deviation or sd. Variance is defined as the expected value of the squared
difference between values of a variable and its mean. Symbolically

Var(x) = E(x− Ex)2

From this definition, the variance of a B(n, p) variable is np(1− p). The sd
is the square root of this.
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The general symbols for mean and variance are µ and σ2, so for the
binomial distribution we can write

µ = E(x) = np

σ2 = E(x− µ)2 = np(1− p)

Exercise 3.6 Calculate the mean, variance and sd of a B(400, 0.8) distribution.

POISSON DISTRIBUTION

The binomial distribution provides the probability of x occurrences of an
event when there are n opportunities for that event to occur. For example,
the number of cars that are red, out of every 10 cars that pass a certain spot
on a road, might be described by this distribution. If we simply want the
number of red cars that pass the spot per hour, without specifying how many
cars in total there are, then the Poisson distribution may be used. Like
the binomial, it gives probabilities for x occurrences of an event, but unlike
the binomial the number of opportunities for the event is not specified, and
need not be finite.

If the expected number of events is λ, then the Poisson probability of x
events is

Pr(x|λ) =
λxe−λ

x!
(3.2)

There is no limit to how big x may be, but it cannot be negative. The
variance of the Poisson distribution is also λ, i.e.,

µ = σ2 = λ

The probability that the event occurs at all, e.g., that any red cars pass
the spot, is the probability that x is greater than zero. This is one minus
the probability that x is zero:

Pr(x > 0|λ) = 1− Pr(x = 0|λ)
= 1− e−λ

What is the corresponding result for the binomial distribution? For the
binomial with parameters n, p:

Pr(x > 0|p) = 1− Pr(x = 0|p)
= 1− (1− p)n

≈ 1− e−np, for large n
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Table 3.5: Outcomes for draws of three balls.

Number of Number of Number of Number
black balls white balls red balls of ways Probability

3 0 0 1 1/27
2 1 0 3 3/27
2 0 1 3 3/27
1 2 0 3 3/27
1 1 1 6 6/27
1 0 2 3 3/27
0 3 0 1 1/27
0 2 1 3 3/27
0 1 2 3 3/27
0 0 3 1 1/27

For this reason, we can regard the Poisson as a limiting form of the binomial
as n becomes large but np stays at the value λ. We will sometimes use
the Poisson for very rare events, such as the occurrence of particular DNA
profiles.

Exercise 3.7 In Gotham City, we have estimated that the proportion for a
particular genotype G is 10−6. Taking this as the true value for the proportion,
and recalling that the population of Gotham City is two million, calculate the
probabilities that zero, one, two, and more than two men in the city have this
genotype. Assume equal numbers of men and women.

MULTINOMIAL DISTRIBUTION

An Urn Model: Three Kinds of Balls

Equal proportions of the three kinds of balls. Imagine now that the
urn contains equal proportions of black, white, and red balls. Under the
same conditions of drawing as before, the probability of a given color on
any particular draw is 1/3. Let us start by imagining drawing three balls
with replacement. There is only one way of drawing three black balls, so the
probability of this is (1/3)3. We can regard this as a Bernoulli trial in which
black is a success and either of the other colors is a failure, so the treatment
of three of a kind is simple. Other outcomes are more complicated, however,
because of the wider range of possibilities, shown in Table 3.5.

Note that, when the order of balls is considered, there are a total of 3×
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3×3 = 27 outcomes because each of the three balls drawn can be any of three
colors. Clearly, we are dealing with a more complicated distribution than
the binomial, but this is the distribution that underlies sampling whenever
we have more than two types. When each of the balls has equal proportions
in the urn, each of the 27 outcomes is equally likely, so the probabilities of
the 10 samples (ignoring order) are just the appropriate multiples of 1/27
as shown in the table.

Unequal proportions of the three kinds of balls. When the propor-
tions of two kinds of balls are no longer equal, the various outcomes are no
longer equally probable. The same happens with more than two kinds of
ball. If the proportions of black, white, and red balls in the urn are pb, pw

and pr, then drawing balls BWW, for example, has probability pb×pw×pw.

Exercise 3.8 Using Table 3.5 as a model, calculate the probabilities for each
of the 10 possible combinations of colors in a sample of three balls when the color
probabilities are: black pb = 0.5; white pw = 0.3; red pr = 0.2.

More generally, if each trial has several different outcomes, the multi-
nomial (“many names”) distribution is appropriate. Label the different
possible types resulting from each trial by i where i = 1, 2, . . . ,m (m was
three for the example of black, white, and red balls). Write the probability
of each type at each trial by pi, and the count of each of the types in a sam-
ple of size n as xi. Then the probability of the set of counts {x1, x2, . . . , xm}
is

Pr(x1, x2, . . . , xm) =
n!

x1!x2! . . . xm!
px1
1 p

x2
2 . . . pxm

m

This looks formidable but it is no more than a generalization of the formula
for the pdf of the binomial distribution. Indeed, the binomial pdf can be
written as

Pr(x1, x2) =
n!

x1!x2!
px1
1 p

x2
2

where now x1, x2 are used instead of x, n−x. For three categories (or colors
of ball in the urn model), the trinomial pdf is

Pr(x1, x2, x3) =
n!

x1!x2!x3!
px1
1 p

x2
2 p

x3
3
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There is a very convenient mathematical shorthand for writing the product
of similar quantities. Instead of writing x1!x2! . . . xm!, we can say

∏m
i=1 xi!

and the multinomial pdf reduces to

Pr({xi}) =
n!∏m

i=1 xi!

m∏
i=1

pxi
i

Fortunately, we won’t have to do much work with the multinomial. When we
deal with allele distributions we can often reduce the problem to considering
one allele at a time and simply use the binomial distribution.

Exercise 3.9 Verify that the pdf for the trinomial gives the same results as
found in Exercise 3.8.

Exercise 3.10 By combining “white, red” into a single category “not-black,”
verify that the trinomial formula gives the same results as does the binomial for
probabilities of obtaining zero, one, two, or three black balls in a sample of three
balls. Use the same probabilities as in Exercise 3.8.

NORMAL DISTRIBUTION

A B(n, 0.5) distribution is symmetrical. See, for example, the bar chart for
the B(10, 0.5) distribution shown in Figure 3.1. The horizontal axis shows
the number x of successes and the vertical axis shows the probability of x.
Note that the sum of the heights of the bars is 1, reflecting the fact that
it is certain that one of these 11 outcomes (x = 0, 1, . . . , 10) will happen.
Now look at the B(100, 0.5) chart in Figure 3.2. The meanings of the two
axes remain the same, but the scales have changed. However, the sum of
the heights of the bars is still one.

Now look what happens when we replace the bars for B(100, 0.5) with a
line that joins up the midpoints of their top sides, as shown in Figure 3.3.
This line looks like a smooth curve and, of course, the larger the value of
n, the smoother the line becomes. The line increasingly approximates a
continuous distribution called a normal or Gaussian distribution. If the
vertical axis is scaled so that the area under the curve is one, and if x is the
value along the horizontal axis, then the equation of this curve is

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

(3.3)

The function f(x) is the normal pdf with mean µ and variance σ2, denoted in
a shorthand notation as N(µ, σ2), and its values are shown on the vertical
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Figure 3.1: Bar chart for B(10, 0.5) distribution.
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Figure 3.2: Bar chart for B(100, 0.5) distribution.
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Figure 3.3: Join of midpoints of bars for B(100, 0.5) distribution.
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axis. As we go through the book we will encounter pdf’s for unknown
quantities that can take different ranges of values. As the ranges change
on the horizontal scale we will see that the vertical scale ranges must also
change in order to keep the area under the pdf equal to one.

The particular normal distribution approximating the binomial B(n, p)
has parameters µ = np and σ2 = np(1− p). The approximation is good for
large n and for p values close to 0.5. It will not be good for very small p
values because those binomial distributions are quite asymmetrical and the
normal is always symmetrical.

Because the normal distribution is for continuous random quantities,
such as height, the pdf gives probabilities for ranges of values, rather than
for single values [f(x) is not equivalent to Pr(x)]. Strictly, we cannot give
the probability of an unknown person in a population being exactly 1.67
m tall, but we can give the probability, for example, that the person has a
height between 1.665 m and 1.675 m tall.

For a discrete quantity, the probabilities for all possible values sum to
one. For a continuous quantity there are an infinite number of possible
values (just as there are an infinite number of points on a line) and any one
value has a zero probability. Probabilities for ranges of continuous quantities
are represented by areas under the pdf between the limits for the range, and
the total area under a pdf is equal to one (mathematically, the integral of
the pdf over its range is one).

Equation 3.2 is not convenient for giving numerical values, and we use
tables of values instead. Although there are infinitely many different normal
distributions, corresponding to all the possible means and variances, they
can all be rescaled into the standard normal that has a mean of zero and
a variance of one, N(0, 1). Values x of any quantity whose uncertainty is
described by a N(µ, σ2) distribution can be rescaled to z, with an N(0, 1)
distribution, by

z =
x− µ

σ
∼ N(0, 1) (3.4)

As we will soon see, the standard normal distribution has the useful
property that about 95% of the distribution lies within two standard devi-
ations of its mean. The distribution is described in Appendix Table A.1.
Entries in the body of that table provide the probability of z being greater
than the value specified in the margins. The table shows that the probabil-
ity of z being greater than 1.00 is 0.1587. To find the probability of z being
between 2.00 and 3.00 we use the table to find the probability (0.0228) of z
being greater than 2.00 and subtract from that the probability (0.0013) of
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Figure 3.4: Shaded areas are probabilities of −1 < z < 0 and 2 < z < 3.

z being greater than 3.00. The difference of 0.0215 is the probability for the
range 2.00 to 3.00 (Figure 3.4).

Symmetry of the standard normal pdf means that the probability of z
being less than −1.5, for example, is the same as that of z being greater
than +1.5 (0.0668). Symmetry also means that the probability of z being
between zero and −1.00 is the same as for the range zero to +1.00, and this
value is the difference between the probability (0.5000) of z being greater
than zero, and the probability (0.1587) of z being greater than 1.00. This
difference is 0.3413 (Figure 3.4).

The most commonly used z value is 1.96. We see in Table A.1 that
the area to the right of this value is 0.0250, and therefore the area to the
left of 1.96 is 0.9750. This means that 1.96 is the 97.5th percentile of
the standard normal distribution. Symmetry means that a total of 5% of
the area under the standard normal curve lies outside the range ±1.96. In
other words, there is a probability of 95% that a random quantity with the
standard normal distribution will have a value between ±1.96. Equation 3.4
extends this result to mean that there is 95% probability that a random
quantity with any normal distribution will have a value within 1.96 standard
deviations of the mean for that distribution (i.e., approximately within two
standard deviations of the mean).

The standard normal approximation to the binomial variable is obtained
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from

z =
x− np√
np(1− p)

∼ N(0, 1)

and this allows probability statements to be made about counts x of a dis-
crete binomial quantity by making use of the continuous normal distribution.
For large values of n, it is much easier to refer to tables like Table A.1 than
it is to evaluate n!.

As an example, consider sample allele proportions for the ABO blood
group system. For a sample of size 16 alleles from a population in which
allele A has proportion 0.50, the probabilities of x A alleles (x = 0, 1, . . . , 16)
are given by the B(16, 0.5) distribution and are shown in Table 3.6. These
values show that the probability of obtaining 6 or fewer As is 0.2272. The
corresponding normal approximation to the probability is found by calcu-
lating the values of z corresponding to the range x ≤ 6. These values are

z =
6− np√
np(1− p)

≤ 6− 8√
16× 0.5× 0.5

= −1.0

Table A.1 shows that the area under the standard normal curve to the
right of 1.0 is 0.1587, so the area to the left of −1.0 is also 0.1587. The
normal-approximation probability of 0.1587 is somewhat different from the
exact value of 0.2272. However, the quality of the normal approximation
is improved with a continuity correction that reduces the magnitude of the
numerator of z by 0.5. (Positive values of the numerator are reduced by 0.5
and negative values are increased by 0.5.) This makes z = −0.75, and the
tabulated probability is then 0.2266, which is very close to the exact value.

The quality of the normal approximation to the binomial diminishes as
p deviates from 0.5. For p = 0.20, the population proportion of the B
allele, Table 3.6 shows the binomial probability of 6 or fewer Bs is 0.9733,
and the corresponding z value is z = +1.72 (after applying the continuity
correction). The tabulated normal probability is 0.9573.

INDUCTION

So far, we have considered only problems of deduction. Given a particular
distribution we can make deductive statements about the outcome of a given
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Table 3.6: Probabilities for B(16, p) distribution.

p = 0.50 p = 0.20

x Pr(x|p)
∑x

y=0 Pr(y|p) Pr(x|p)
∑x

y=0 Pr(y|p)

0 0.0000 0.0000 0.0281 0.0281
1 0.0002 0.0003 0.1126 0.1407
2 0.0018 0.0021 0.2111 0.3518
3 0.0085 0.0106 0.2463 0.5981
4 0.0278 0.0384 0.2001 0.7982
5 0.0667 0.1051 0.1201 0.9183
6 0.1222 0.2272 0.0550 0.9733
7 0.1746 0.4018 0.0197 0.9930
8 0.1964 0.5982 0.0055 0.9985
9 0.1746 0.7728 0.0012 0.9998

10 0.1222 0.8949 0.0002 1.0000
11 0.0667 0.9616 0.0000 1.0000
12 0.0278 0.9894 0.0000 1.0000
13 0.0085 0.9979 0.0000 1.0000
14 0.0018 0.9997 0.0000 1.0000
15 0.0002 1.0000 0.0000 1.0000
16 0.0000 1.0000 0.0000 1.0000
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experiment. We may not be able to predict the outcome with certainty but
we can calculate probabilities of the various outcomes using mathematical
methods that are, in principle at least, straightforward and noncontroversial.
We now turn to a more difficult class of problem. Given the outcome of an
experiment, how do we make inferences about the underlying distribution?
For example: from a sample of n people, if we have found x occurrences of
genotype G, what can we say about the proportion of genotype G in the
population that has been sampled? This is the Gotham City example that
we started to discuss earlier in the chapter and to which we return shortly.
Here is another type of problem: From a sample of n genotypes, what
can we say about whether the Hardy-Weinberg formulation (see Chapter 4)
may be used for the population that has been sampled? These are examples
of another kind of inference: induction. There are different schools of
thought about how questions of the above type should be addressed. Leaving
aside disagreement between philosophers, in the world of statistics there
are the two main schools of thought that we have already referred to as
frequentist and Bayesian. Their approaches to the solution of these
problems are different, and we will attempt to explain both perspectives for
the task of estimating an unknown proportion.

MAXIMUM LIKELIHOOD ESTIMATION

We return to the example in which we were attempting to assign a proba-
bility to the proposition that an unknown person in Gotham City would be
genotype 11,12 at the FES locus. To do that we were attempting to estimate
the proportion of people in the population who were that genotype (bearing
in mind our discussion of the difficulties of deciding what the word popula-
tion meant in this context). There was information available in a sample of
50 people (Table 3.1), 11 of whom were 11,12. Would the sample proportion
11/50 = 0.22 serve as a good estimate of the population proportion? The
short answer is yes.

We assume that the binomial distribution governs probabilities for sam-
ples from the population. If G denotes the FES 11,12 genotype, and p is
the population proportion of this type, the probability of seeing 11 people
of type G in a sample of 50 is given by the binomial B(50, p) pdf:

Pr(x = 11|p) =
50!

11!39!
(p)11(1− p)39 (3.5)

where we have made explicit the conditioning on p. In this form we have a
function of x, based on a fixed value of p. However, another way of regarding
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Figure 3.5: Likelihood L(p|x = 11).

it is as a function of p, based on fixed value of x. We emphasize this by
writing Equation 3.5 in the following way:

L(p|x = 11) = K(p)11(1− p)39 (3.6)

We have now defined the function of p on the right-hand side in a different
way: it is called the likelihood of p given that we know x to be 11. The
likelihood is the same functional form as the pdf, up to an arbitrary constant
of proportionality K. The distinction between probability and likelihood is
very subtle, but also very important. We have replaced the combinatorial
term in Equation 3.5 by the constant K. The shape of the likelihood curve
is the same as that of the right hand side of Equation 3.5, although the
vertical scale is altered. This shape is shown in Figure 3.5, where there is no
vertical scale because we do not want to assign K any particular value–we
are interested only in the location of the maximum of the curve. Note that,
in this context, likelihood is neither a probability nor a pdf. The likelihood
curve is continuous because p can take any value between 0 and 1.

Figure 3.5 has a peak at p = 0.22, meaning that 0.22 is the “most
likely” value of the parameter given the data. The method of maximum
likelihood estimation takes this most likely value as the estimate of the
parameter. The estimate is indicated by a caret, and the Box 3.1 confirms
that it is given by the sample proportion

p̂ =
11
50

= 0.22

Generally, for x copies of type G in a sample of size n from a population in
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Box 3.1: Maximization of likelihood
Although plotting the likelihood function is very informative, it is usually more
direct to maximize the likelihood analytically. The estimate is that value that
makes the first derivative zero and the second derivative negative. We write the
likelihood of p as L(p|x) or just L. For any count x of G genotypes,

L(p|x) = K(p)x(1− p)n−x

and it is easier to work with logarithms

lnL = ln(K) + x ln(p) + (n− x) ln(1− p)

Maximizing L is equivalent to maximizing lnL. Differentiating lnL with respect to
p:

∂ lnL
∂p

=
x

p
− n− x

1− p

∂2 lnL
∂p2

= − x

p2
− n− x

(1− p)2

The first derivative is zero when p = x/n, and the second derivative is always nega-
tive. Therefore the sample proportion p̂ = x/n is the maximum likelihood estimate.

which the proportion of type G is p,

p̂ =
x

n

The maximum likelihood of a binomial (or multinomial) proportion is
always the sample proportion. Why do we go to so much bother to ar-
rive at this obvious estimate? There are more complicated situations when
the parameter to be estimated is not a binomial proportion, and seeking to
maximize the likelihood gives a general method of proceeding. Furthermore,
maximum likelihood estimators have many desirable properties when com-
pared to other estimators. We need to realize that the estimates themselves
can take many values with differing probabilities, so that they have their
own pdf’s. For large samples, a maximum likelihood estimate has a normal
distribution (Box 3.2), and therefore there is a 95% probability that it will
be within 1.96 standard deviations of its mean. Moreover, for large samples,
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Box 3.2: Asymptotic normality of maximum likelihood estimates
As the sample size becomes very large, the asymptotic normality of maximum
likelihood estimates φ̂ of parameters φ can be expressed as

φ̂ ∼ N
(
E(φ̂),Var(φ̂)

)
where E(φ̂) is the expected value and Var(φ̂) is the variance of the estimate.

this mean value is just the parameter being estimated. That is, if φ̂ is the
maximum likelihood estimate of some parameter φ, for large samples

E(φ̂) = φ

meaning that φ̂ is an unbiased estimate of φ. In the particular case of the
binomial proportion, the result holds for all sample sizes

E(p̂) = p

CONFIDENCE INTERVALS

How much uncertainty is associated with population proportions estimated
by maximum likelihood? In reports of public opinion surveys, we often read
statements such as “47% of people surveyed support the Government, plus
or minus 3 percentage points (based on a random sample of 1,000 registered
voters).” This implies that 47% of the people questioned supported the
Government, but that in the population as a whole the proportion is some-
where between 44% and 50%. The range (44%, 50%) is called a confidence
interval.

To see how these intervals are calculated, we return to the normal dis-
tribution. If z has the standard normal distribution, we have seen that the
probability that z has a value between ±1.96 is 0.95 (Figure 3.6). For any
other quantity x that has a normal distribution with a mean of µ and a
variance of σ2, the same argument shows that with 95% probability x lies
between µ ± 1.96σ. This is a statement about x when µ and σ are known.
In practice, it is the value of x that is known and the parameter values that
are unknown. Suppose first that σ is known, µ is not known, and a value of
x is available. Then a similar line of reasoning leads to the interval x±1.96σ
being a 95% confidence interval for µ.
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Figure 3.6: Normal distribution, showing extreme 5% of values.

The notion of confidence intervals is one belonging to frequentist statis-
tics and it requires some care in interpretation. In the frequentist framework,
probability statements cannot be made about µ because it is a fixed quan-
tity. Instead, the interval is variable and we say there is 95% probability
that the interval contains µ. In other words the procedure we follow to cal-
culate the interval is expected to produce an interval that includes µ in 95%
of the times we apply the procedure.

To provide confidence intervals for means, it is more usual to use sample
means than single observations. The sample mean x̄ of a sample of n
observations xi is defined as x̄ =

∑
i xi/n, and it has a variance of σ2/n

when the variance of the distribution for the x values is σ2. The confidence
interval for µ is

95% C.I. for µ = x̄± 1.96s/
√
n

where s is the sample standard deviation for x and s/
√
n is the sample stan-

dard deviation for x̄. Strictly, use of an estimate for the standard deviation
makes this an approximate 95% confidence interval. The approximation is
good for large values of n; otherwise we need to use the t-distribution in-
stead of the normal distribution. This is explained in statistics textbooks,
and we will avoid the issue.

Earlier in the chapter we showed that the normal distribution can provide
a good approximation to the binomial. If the probability of an event is p, the
probability of x events occurring in n trials is given exactly by the binomial
distribution B(n, p) and approximate values of the probability can be found
from the normal distribution N(µ, σ2) where µ = np, σ2 = np(1 − p). For
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the sample proportion p̂ = x/n, the normal distribution is N(p, p(1− p)/n).
Therefore, the 95% confidence interval for p, when p̂ = x/n is the sample
proportion, is

p̂± 1.96
√
p̂(1− p̂)/n (3.7)

What about our public opinion survey? In that example, p̂ = 0.47 and
n = 1000. Substituting these into Equation 3.7 does indeed give a confidence
interval of 0.47± 0.03, as suggested above.

It is important to avoid the common misconception that a confidence
interval provides a probability statement about the unknown quantity. A
95% confidence interval of (0.22, 0.28) for an allele proportion, for example,
should not be interpreted as meaning that there is 0.95 probability that the
proportion lies in the interval. The correct interpretation is that, “in the
long run,” 95% of such confidence intervals will contain the population pro-
portion. The phrase “in the long run” means that we cannot talk about this
particular instance; it means that if we follow the same procedure in a large
number of similar situations then the percentage of occasions in which the
interval contains the correct proportion is 95%.

Exercise 3.11 For the FES data in Table 3.2, calculate a 95% confidence limit
for the proportion of: (a) Homozygotes of type 11,11; (b) Heterozygotes of type
12,13.

BAYESIAN ESTIMATION

We now consider estimating the proportion of FES 11,12 genotypes in Gotham
City from a Bayesian perspective. We have seen that the method of maxi-
mum likelihood gives an estimate of 11/50 = 0.22.

As in the frequentist approach, we wish to make inferences about the
unknown quantity p using the sample data. One of the features of the
Bayesian approach is the recognition that we may well have some prior
information about p. So let us start by reflecting on our knowledge before
the sample had been collected. Let us first imagine that we had absolutely no
knowledge of p. This would be a rather unrealistic state of affairs because
there would have been some previous work to demonstrate that the FES
locus was polymorphic, and that would have shed at least some light on the
value, but let us discount that knowledge for the time being and imagine that
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Figure 3.7: Uniform distribution.

we are unable to favor any particular value for p. One way of representing
our state of knowledge employs the uniform distribution that has the
continuous pdf shown in Figure 3.7. We use the notation π(p) for the pdf
of a parameter.

Note that the value of the pdf π(p) in Figure 3.7 is one for all values of p
and this satisfies the condition that the area under the graph between p = 0
and p = 1 is one. Assigning a probability density to p is very different from
the frequentist view, which does not permit probability statements about
unknown parameters such as p. Using π(p) to describe our uncertainty about
the unknown parameter p is central to the Bayesian view of the problem.

Once we have a sample, we have to ask how that changes our knowledge
of the pdf of p, and the solution is found in the application of Bayes’ theorem.
In Chapter 1, we saw how the theorem was used for weighing two hypotheses
against each other:

Posterior odds = Likelihood ratio × Prior odds

If we are considering the probability of one of several hypotheses, then
the last equation in Box 1.4 can be expressed as

Posterior probability ∝ Likelihood× Prior probability (3.8)

When dealing with probability density functions we are essentially dealing



BAYESIAN ESTIMATION 71

with an infinite number of hypotheses, and Bayes’ theorem works in the
same way.

Let π(p) denote the prior pdf for p, and let π(p|x) denote the posterior
pdf. Also, let Pr(x|p) denote the probability of the data x given p. Then,
for any value of p, Bayes’ theorem leads to

π(p|x) ∝ Pr(x|p)π(p) (3.9)

The term Pr(x|p), apart from a constant of proportionality, is the same as the
likelihood L(p|x) we met in the section on maximum likelihood estimation.
It is defined by Equation 3.5 for the specific value x = 11, and was shown in
Figure 3.5 for that x value. Now, however, instead of taking the p value that
maximizes the curve as the estimator of p, we will take the additional, and
important, step of combining the curve with the prior distribution as shown
in Equation 3.9. The basis of the combination is simple multiplication of the
two functions for every value of p. We do not describe the additional step of
integration needed to provide the constant of proportionality in Equation 3.9
that ensures that the posterior pdf has an area underneath it of one. The
posterior distribution is shown in Figure 3.8. In Box 3.3 we consider a more
general class of prior distributions–the Beta distribution.

A few features of Figure 3.8 are worth discussing. First, note that the
vertical scale runs from zero to 10 and the maximum value is about 7: this
is a consequence of the requirement that the total area under of the curve
be one. Note that this was not the case with the graph of the likelihood
function–which is not a pdf. Note also that it is useful to summarize the
curve by means of percentiles, which are values that divide distributions
into hundreths. The median divides a distribution in half, and 90% of a
distribution lies between the 5th and 95th percentiles.

So our posterior knowledge, based on the sample of 50, and assuming
complete prior ignorance for p, can be summarized by a median value of
0.23 and 5th and 95th percentiles of 0.14 and 0.33 respectively. It would be
logically legitimate for us to say that there is a 0.9 probability that p lies
between 0.14 and 0.33, but we should be cautious. All of our calculations
have been based on assumptions. We assumed that our sample of 50 was
representative of the population relevant to answering the question posed
by the denominator of the likelihood ratio; and we have also assumed that
the conditions for binomial sampling have been satisfied. So we could make
the probability statement about p if we wished, but we should also make
the conditioning clear. The problem with this, particularly in the forensic
setting, is that while we can quantify things within the framework of our
assumptions, it is generally not possible for us to quantify the effects of those



72 CHAPTER 3. BASIC STATISTICS

0.0 0.2 0.4 0.6 0.8 1.0
p

0

2

4

6

8

10

π(p|x)

5th per-
centile

median

95th percentile

.........................................................................
...........
.........
...........
........
.........
.........
.........
........
.........
........
.........
.........
........
.........
........
.........
........
........
.........
........
.........
........
.........
........
.........
........
.........
.........
........
.........
.........
........
...........
.............


Figure 3.8: Posterior distribution for p, given x = 11 and the uniform prior in
Figure 3.7.
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Box 3.3: General Beta prior
Instead of a uniform prior, we can consider the Beta distribution Be(α, β) for p.
The pdf is

f(p) =
Γ(α+ β)
Γ(α)Γ(β)

pα−1(1− p)β−1, 0 ≤ p ≤ 1

The gamma function Γ(x) generally has to be evaluated numerically, but if x is
an integer, Γ(x) = (x − 1)!. When α = β = 1, the Beta reduces to the uniform
distribution.
Multiplying the Beta by the binomial distribution B(2n, p) for a sample of 2n alleles,
and canceling the terms not involving p gives

π(p|x) =
pα+x−1(1− p)β+2n−x−1∫ 1

0
pα+x−1(1− p)β+2n−x−1dp

=
Γ(α+ β + 2n)

Γ(α+ x)Γ(β + 2n− x)
pα+x−1(1− p)β+2n−x−1

The posterior distribution is also a Beta distribution, but with parameters modified
by the data. In other words, the Beta is a conjugate distribution for the
binomial. Although the whole posterior distribution is now available for p, it may
be convenient to take a single feature of this distribution to serve as a Bayesian
estimator of p. For example, the mean of this distribution is

E(p|x) =
α+ x

α+ β + 2n

and the maximum of the posterior pdf is at

max π(p|x) =
α+ x− 1

α+ β + 2n− 2
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Table 3.7: Frequencies of genotypes in the sample of 423 British Caucasians.

8 0
9 0 0

10 5 0 37
11 3 3 120 66
12 3 0 54 66 26
13 0 0 11 17 12 0

8 9 10 11 12 13

assumptions and their reliability in real-world situations.
The reader may, at this stage, be rather discouraged by the size of the

90% probability interval for p but should bear in mind that we have assumed
complete ignorance for our prior, and this is rarely the case in practice. We
will now illustrate how this may be improved.

We may believe that the Caucasians in Gotham City are different from
Caucasians elsewhere in the world, but the extensive data collected by Bu-
dowle and Monson (1993) shows that variation at restriction fragment length
polymorphism (RFLP) loci is small, and studies of short tandem repeat
(STR) data, though less extensive at the time of writing, suggest a similar
picture. So in the light of such work, we may agree that Caucasian data
collected by other workers is relevant to our problem of determining the
proportion of Gotham City Caucasians who are genotype G. To illustrate
how this can effect our evaluation, we take data for the FES locus from 423
British Caucasians collected by the Forensic Science Service as reported by
Gill and Evett (1995). The data are displayed in Table 3.7.

We see that there were 66 observations of genotype 11,12 in the sample of
423. Note that the maximum likelihood estimator from this sample for p is
therefore 0.16, rather than the 0.22 observed from the Gotham City sample.
We could, if we thought it appropriate, use this sample to form our prior
distribution for p, which would look like the curve in Figure 3.9. Note that
both the horizontal and vertical scales have changed, and this marks the
greater knowledge that the sample of 423 brings. The likelihood function
for our data (x = 11) has not changed, and the posterior distribution is
calculated as before. It is shown in Figure 3.10.

The posterior distribution is scarcely sharper than the prior, because
the new sample is a lot smaller than the original sample, but its peak is
slightly to the right, reflecting the fact that the genotype is more frequent
in the Gotham City sample. The posterior median is now 0.164, and the
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Figure 3.9: Prior distribution for p, based on a previous sample of 423 Caucasians
in which 66 were of genotype 11,12.
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Figure 3.10: Posterior distribution (solid line) for p, given the prior distribution
(dotted line) in Figure 3.9.
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90% probability range is from 0.137 to 0.193.
Would this be a legitimate procedure to follow in the Gotham City exam-

ple? Well, here we come once again to unquantified issues of the scientist’s
judgment. Is it right that the British Caucasian data should dominate the
median frequency so powerfully? There is no simple answer to this, and here
we must once again recognize the limit of the powers of statistics. Statis-
tics enables quantifiable statements to be made only within a framework of
assumptions; in any given situation it is the role of the scientist to make
qualitative judgments.

Summary of Estimation

So far in this chapter we have concerned ourselves with problems of estima-
tion, using as an example that of drawing inferences about the proportion
of people in Gotham City who are of a certain genotype. We have seen
that the method of maximum likelihood gives a single point estimate. The
frequentist view also leads to the notion of a confidence interval that, in
the long run, will contain the unknown value with a specified probability.
We also saw that the Bayesian view of the estimation problem is to give a
probability distribution for the proportion of interest. We now turn to a
related issue: hypothesis testing.

TESTING HYPOTHESES

The Bayesian approach is directed to establishing a posterior probability
for a hypothesis, or a posterior probability distribution for an unknown
quantity. The frequentist approach is quite different in that it does not
permit probability statements about hypotheses. In the same way, it is not
permissible to establish a probability distribution for an unknown quantity.
Instead, the frequentist approach is directed toward significance testing, the
essential nature of which can be illustrated by the “goodness-of-fit” test.

Goodness-of-Fit Test

We illustrate goodness-of-fit testing by means of a simple example involving
roulette wheels. Apart from the zero and double zero, roulette wheels have
36 numbers: 18 red and 18 black, and we will base our discussion on a wheel
with just the 36 red or black numbers. A gambler suspects that the roulette
wheel in his local casino is being operated in an unfair manner, so that red
numbers come up more frequently than black numbers.
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If 20 consecutive spins of the wheel result in 16 reds, is this evidence
that the roulette wheel is unfair? The classical approach to this question is
to set up a null hypothesis that is to be tested by the data. In this case, the
null hypothesis is that the wheel is fair. For goodness-of-fit testing, the first
step is to calculate the numbers of reds and blacks that would be expected
if the null hypothesis were true; in this case these numbers are both 10.
Next, a test statistic is devised. For categorical data, the simplest test is the
chi-square goodness-of-fit test. This procedure compares observed and
expected counts in all categories, squares the differences to remove sign, and
divides by expected numbers to give greatest weight to largest proportional
differences. The test statistic is written as X2:

X2 =
∑

categories

(Observed− Expected)2

Expected

When the null hypothesis is true, this statistic has a chi-square distribution
that, in this example, has one degree of freedom (df). The degrees
of freedom can be determined as the number of expected counts that can
be assigned without reference to other expected counts. In this case, the
expected number of reds could be set to any number from zero to 20, but
then the expected number of blacks is specified. The shape of the 1 df chi-
square distribution is shown in Figure 3.11, where f(X2) is the probability
density for the X2 statistic. The shaded area indicates the probability of
obtaining that value of X2, or a greater value, when the null hypothesis is
true. These areas are displayed in Table A.2, and show that the value 3.84
delimits the largest 5% of the distribution (it is not a coincidence that 3.84 is
the square of 1.96, because the square of a quantity with a standard normal
distribution has a chi-square distribution with 1 df). A X2 value greater
than 3.84 would occur with probability less than 0.05 if the null hypothesis
is true, so such values are used to reject the null hypothesis at the 5%
significance level or with a 5% P-value. Note that X2 will be large
if there are many more reds than expected, or if there are many less reds
than expected. Large departures from expectation in both directions lead to
rejection, and the test procedure is said to be two-tailed. The term “two-
tailed” refers to the hypotheses–in this case, the alternative to the hypothesis
being tested has two regions: either more or less reds than expected. The
term does not refer to the single tail of the chi-square distribution shown in
Figure 3.11.

Does the observation of 16 red numbers in 20 spins of a roulette wheel
support the hypothesis that the wheel is fair? The observed and expected
counts in all categories (reds and blacks) are shown in Table 3.8, along
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Figure 3.11: Chi-square distribution with 1 df.

with the goodness-of-fit test statistic calculations. The value of X2 = 7.2
is very large compared to 3.84, and Table A.2 shows that it belongs to the
least probable set of large values if the wheel is fair, where “least probable”
means that set having a probability between 0.005 and 0.01. The analysis
would be reported as X2 = 7.2(P < 0.01).

The goodness-of-fit test applies to more than two categories. The 36
numbers on a roulette wheel are divided into three dozens: première, milieu,
and dernière. A number from each of these three is equally likely when a
fair wheel is spun. What can be said about a wheel that in 20 spins gave
5, 7, and 8 numbers in the three dozens? The calculations are set out in
Table 3.9. As two of the expected numbers can be assigned before the third
one is automatically set, there are 2 df for the chi-square test statistic in
this case, and the distribution is shown in Figure 3.12. The statistic must
be greater than 5.99 to cause rejection at the 5% significance level. The
calculations in Table 3.9 show that the 5, 7, 8 split is far from causing
rejection. It is interesting to note that the examples in both Tables 3.8 and
3.9 follow from the same set of 20 numbers:
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Table 3.8: Goodness-of-fit calculations for two categories.

Category Observed (o) Expected (e) )o− e) (o− e)2/e

Red 16 10 6 3.6
Black 4 10 −6 3.6

Total 20 20 0 7.2

Table 3.9: Goodness-of-fit calculations for three categories.

Category Observed (o) Expected (e) (o− e) (o− e)2/e

première 5 6.67 −1.67 0.41
milieu 7 6.67 0.33 0.01

dernière 8 6.67 1.33 0.13

Total 20 20 0 0.55
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Figure 3.12: Chi-square distribution with 2 df.

22 (R) 13 (R) 32 (B) 31 (R)
16 (B) 9 (B) 25 (B) 26 (R)
33 (R) 8 (R) 28 (R) 11 (R)
17 (R) 29 (R) 20 (R) 22 (R)
2 (R) 4 (R) 29 (R) 13 (R)

Different conclusions are reached about “unbiased” by focusing on different
measures of bias.

Although the chi-square goodness-of-fit test is easy to apply, it can give
misleading results when expected counts are small. A category in which the
expected count was 0.1 but the observed count was 1, for example, would
contribute 8.1 to the test statistic and would be likely to lead to rejection
of the hypothesis even though 1 is one of the two closest integers to 0.1.
There have been several ad-hoc rules put forward to reduce the chance of
spurious significant results, but a better procedure is to avoid the chi-square
goodness-of-fit test whenever small expected counts occur. The probability
tests described below offer one means of avoidance.
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Exercise 3.12 A roulette wheel gave 3 black numbers in 10 spins. Would you
reject the hypothesis that the wheel was fair?

Exact Test

Now that computing power is widely available, many statistical tests are
being conducted as exact tests or probability tests introduced by
Fisher (1935). Briefly, these tests assume the hypothesis is true and calculate
the probability of the observed outcome or a more extreme (less probable)
outcome. Low values of this probability suggest that the hypothesis is not
true.

Returning to the example of 16 reds in 20 spins of a roulette wheel, the
probabilities of all 21 possible outcomes, grouped into ten pairs plus the
most probable outcome, are shown in Table 3.10. We represent the number
of reds by x, and because the binomial distribution is symmetrical in this
case, we have chosen to group the 20 outcomes of x ≤ 9, x ≥ 11 into ten
pairs: (20,0), . . . , (11,9). The two outcomes in each pair have the same
probability, so the probability of each pair is twice the probability of either
member of the pair. The outcome of 16 reds has a probability of 0.0046 if
the wheel is fair. This outcome, or a more extreme outcome, referring to
the 10 outcomes of 20, 19, 18, 17, and 16 as well as 0, 1, 2, 3, and 4, has a
1.18% probability of occurring if the wheel is fair. Therefore the outcome of
16 belongs to the least probable 1.18% of the outcomes, and 0.0118 is called
the P -value for the outcome.

The alternative to the hypothesis of fairness is two-tailed, meaning that
we will reject if there are too few or two many reds. With this exact test,
we are also using the two tails of the binomial distribution, unlike the use
of just one tail of the chi-square distribution. A rejection region of 5%
is constructed by looking for the most extreme 2.5% in each tail of the
binomial. Both these tails of the binomial have outcomes a long way from
the hypothesized value of x. For the chi-square distribution, only the upper
tail has these extreme departures from the hypothesized value.

If we consider that 0.0118 is a low probability, then we would reject the
hypothesis at the 1.18% significance level, but we acknowledge that, in so
doing, we may be making an incorrect decision. The hypothesis may be
true. Notice a very important feature of the frequentist view: We cannot
say there is a 1.18% chance of being wrong in this case. What we do say is
that if we imagine performing a very large number of tests like this one on
roulette wheels, following the same decision rule for each test, then we would
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Table 3.10: Probabilities and cumulative probabilities for B(20, 0.5).

Cumulative
x Probability probability

20 or 0 2 × 0.0000 0.0000
19 or 1 2 × 0.0000 0.0000
18 or 2 2 × 0.0002 0.0004
17 or 3 2 × 0.0011 0.0026
16 or 4 2 × 0.0046 0.0118
15 or 5 2 × 0.0148 0.0414
14 or 6 2 × 0.0370 0.1154
13 or 7 2 × 0.0739 0.2632
12 or 8 2 × 0.1201 0.5034
11 or 9 2 × 0.1602 0.8238

10 0.1762 1.0000

be in error in 1.18% of those tests in which the wheel was really true. Such
errors are called type I errors. We return to the philosophy of hypothesis
tests in Chapter 5.

A more conventional significance level is 5%, and the closest such value
in Table 3.10 is 0.0414, which corresponds to rejection of the null hypothesis
when x is greater than 14 or less than 6.

As another illustration of the exact test procedure, suppose a die is rolled
20 times and the quantity x is the number of times a 6 is observed. If the
die is unbiased, each roll has a probability 1/6 of showing a 6, and the
probabilities for each value of x follow from the binomial formula

Pr(x|unbiased die) =
20!

x!(20− x)!

(
1
6

)x (5
6

)20−x

They are shown, in numerical order, in Table 3.11 along with the cumulative
probability for that x or a less probable (more extreme) x. From the cumu-
lative probability column it can be seen that the hypothesis of an unbiased
die will be rejected at the 5% level if x ≥ 7. A better statement is that for
x ≥ 7, the significance level is 0.04, and for x = 0, x ≥ 7 the significance
level is 0.06. Even though the probability for the event x = 0 is less than
0.05, this event does not belong to the least probable 5% of the values.

Exercise 3.13 Repeat Exercise 3.12, using an exact test.
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Table 3.11: Probabilities of a 6 in 20 rolls of a fair die.

x Prob.(x) Cum. prob.
≥12 0.0001 0.0001
11 0.0001 0.0002
10 0.0005 0.0007
9 0.0022 0.0029
8 0.0084 0.0113
7 0.0259 0.0372
0 0.0261 0.0633
6 0.0647 0.1280
1 0.1043 0.3323
5 0.1294 0.4617
2 0.1982 0.6599
4 0.2022 0.8621
3 0.2379 1.0000

Summary of Hypothesis Testing

In classical statistics, data are used to test hypotheses about specified values
of some parameters. Originally this meant that a test statistic was calculated
from the data and a hypothesis was either rejected or not rejected. The
decision was based on comparing the calculated statistic with a tabulated
set of critical values. The widespread availability of computing has brought
about a move toward probability-based tests and the reporting of P -values
instead of reject/not reject statements.

SUMMARY

When random samples are taken for discrete data, statistical inference rests
on the binomial and multinomial distributions. Estimation of the parame-
ters of these distributions, whether from a frequentist or a Bayesian view-
point, rests on the likelihood function. Hypothesis testing, an aspect of
frequentist inference, can be accomplished with exact tests.



Chapter 4

Population Genetics

INTRODUCTION

Until such time as DNA profiles are regarded as being sufficiently distinctive
to establish individuality, forensic arguments are going to assign probabilities
on the basis of proportions of marker types in a population. For biological
markers that are largely determined by heritable units, this requires an
understanding of population genetics.

The field of population genetics dates back to the beginning of this cen-
tury, and the famous Hardy-Weinberg law was published in 1908. The field
was concerned initially with the study of proportions of genes, or at least
of characters controlled by genes. Understanding of what constitutes a gene
has undergone many changes in recent years, and it is quite clear that most
of the biological markers used for human identification should not be re-
garded as “genes.” Nevertheless, they are dependent on portions of the
human genome that are transmitted from parent to child and so fall into
the domain of population genetics.

For simplicity, in this chapter we will use the term gene to refer to any
heritable unit. The alternative forms of genes are called alleles.

IDEAL POPULATIONS

Population genetics theory, in common with other branches of science, is
based on a model that incorporates a series of assumptions. Also in com-
mon with other branches of science, the models that are simple enough for
tractable mathematical analysis are not true in the real world. With every
model there is a compromise between simplicity and reality. For popula-
tion genetics the basis of the simplest models is the concept of an ideal

85
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Figure 4.1: Representation of the two processes of genetic and statistical sampling.
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population, and the model we will be using is summarized in Figure 4.1.
The starting idea is that of a reference population from which the present
population is assumed to have descended. The reference population is gen-
erally taken to incorporate the characteristics of infinite size and random
mating. In this context the word “random” is used to mean that when any
particular individual looks for a mate then every other member of the pop-
ulation has the same chance of being selected; also the mate choice of any
one individual is not influenced by the mate choice of any other individual.
Of course, in human populations there are two sexes but this does not affect
the principles of what follows. Note that we immediately meet a contra-
diction because the conditions of infinite size and random mating compete
with each other: pure random mating cannot occur in an infinite population
because of the obvious problem that an infinite number of members of the
population will be an infinite physical distance apart and so cannot possibly
mate with each other! Nevertheless, this model is considered to be reliable
for most real-world problems.

Next, we imagine a series of replicate populations of size N descending
separately from the single reference population. In Figure 4.1 the unit of
time is a single generation, which is another abstraction, of course, because
in real human populations several generations coexist at any one time. These
hypothetical replicate populations undergo the same evolutionary forces as
the one we are studying, but differ from it because the alleles uniting to
form each generation are drawn randomly from the previous generation.
This random genetic sampling makes the replicate populations different
from each other. Population genetic theory has been developed to describe
the variation between such replicate populations.

In practice, we rarely study complete populations; our observations are
made on n individuals who have been sampled randomly from populations,
and this statistical sampling also gives different genetic constitutions for
each sample. We have already seen that statistical theory is concerned with
making inferences about populations from samples.

NOTATION

Suppose gene A can take several different forms, or alleles, Ai. An
individual can receive similar or dissimilar alleles from his or her parents.
When the two alleles cannot be distinguished, so that the genotype of the
individual is, for example, AiAi, that individual is said to be homozygous.
Different alleles, say AiAj , make the individual heterozygous.

At any particular mating, an individual transmits to the child just one of
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the two alleles he has for each gene. The choice of which one is transmitted is
generally considered to be random in the sense that each of the two alleles has
the same probability of being transmitted. Homozygotes AiAi can transmit
only Ai alleles, but heterozygotes can transmit either Ai or Aj with equal
probability. This simple model, postulated by Mendel in 1865, forms the
basis of paternity testing. If a mother of genotype A1A2 has a child with
genotype A2A3 then it is clear that the child must have received an A3 allele
from its father. Men without this allele, e.g., A1A1, A1A2, or A2A2 men,
can be excluded as being the father of that child. The genes of most use
in identification are those that have very many different alleles. Whenever
a suspect does not possess the alleles found in crime scene material, that
suspect can be excluded from having provided the material. As another
example, whenever two body parts do not share all alleles, they cannot
have come from the same body. As the number of different alleles gets
larger, it is less likely that two or more people will share alleles simply by
chance. To quantify this statement, we need the proportions of various allele
combinations in a population.

For a given population we are interested in the proportion pi of alleles
that are type Ai. This proportion is given various names by different writers;
it is commonly called the allele frequency, though strictly speaking, it is
not a frequency but a relative frequency. We will generally use the term
allele proportion. Likewise, we will refer to genotype proportions. The
first problem that we meet in estimating pi is that observations are usually
made on genotypes rather than on single alleles. Fortunately there is a
simple translation from genotypic to allele proportions in those cases where
neither allele masks the appearance of the other. For such codominant
alleles, both alleles present in heterozygotes can be recognized.

Codominant Allele Proportions

Proportions of codominant alleles follow from genotypic proportions by a
simple counting rule. We now need to use a slightly more complicated
notation for genotype proportions than was suitable for Chapters 1 to 3.
We use Pii to denote the proportion of AiAi homozygotes and Pij for the
proportion of AiAj heterozygotes. By convention, heterozygote proportions
will be written with the subscripts in alphabetical or numerical order. If
we are considering a gene which has three alleles, A1, A2, and A3, then
the three heterozygotes will be written as A1A2, A1A3, and A2A3 and the
homozygotes as A1A1, A2A2, and A3A3. We will never write a heterozygote
as A2A1, for example.
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Box 4.1: Allele proportions

For alleles indexed by i, the proportion pi for a gene with an arbitrary number of
alleles, is

pi = Pii +
1
2

∑
j 6=i

Pij (4.1)

The summation term needs some explaining:
∑

j 6=i means we sum over all values of
j that differ from i. In this case we sum over all heterozygous genotypes containing
allele Ai. We have said that heterozygote subscripts are written in order and this
implies the additional convention that the sum includes each heterozygote only
once: i.e., AiAj and AjAi do not both occur in the sum. For a locus with three
alleles:

p1 = P11 +
1
2
(P12 + P13)

p2 = P22 +
1
2
(P12 + P23)

p3 = P33 +
1
2
(P13 + P23)

We know that all alleles in the homozygotes A1A1 are A1, and half of
those in the heterozygotes A1A2 and A1A3 are also A1. So this immediately
gives us an exact relationship between the allele and genotype proportions
as follows:

p1 = P11 +
1
2
P12 +

1
2
P13

Note that this relationship embodies no assumptions about conditions for
random mating and so on. The relation is generalized for any number of
alleles in Equation 4.1 in Box 4.1.

Exercise 4.1 Find the proportions of the three alleles from the following set of
genotypic proportions:

A1A1 A1A2 A2A2 A1A3 A2A3 A3A3

0.36 0.36 0.09 0.12 0.06 0.01
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Dominant Allele Proportions

Dominant alleles prevent their recessive counterparts from being ob-
served, and this makes the translation of genotype proportions to allele
proportions difficult. One of the most common examples is provided by
the ABO blood group system. Alleles A and B are both dominant to O,
and this results in only four recognizable phenotypes from the six possible
genotypes:

Genotype AA AO BB BO AB OO
Phenotype A A B B AB O

Simple counting procedures cannot now provide the allele proportions from
the phenotype proportions. The counting procedure would require knowl-
edge of the six genotype proportions.

RANDOM MATING

As we have seen, the simplest assumptions in population genetics are those
that are clearly not true. Chief among these is that populations are infinite
in size and mate at random, but the consequences of this theory are so
powerful that we explore them in some detail. One of the consequences is
that knowledge of the genotype of one member of a mating pair provides
no information about the genotype of the other member of the pair: this
is what we have called independence. If a person with genotype AiAj is
selected from a population in which such types have proportion Pij , then a
second person drawn at random from the population has the same chance
of having this genotype. The proportion did not change after selecting the
first person, as it would if the genotypes were dependent or if the population
were finite.

What are the consequences of mating at random between members of an
infinite population? To see this, consider a gene with two alleles A1 and A2,
with proportions p1 and p2, respectively, and three genotypes A1A1, A1A2,
and A2A2. There are nine possible mate pairs, each of which has a certain
probability of having the three offspring genotypes, as shown in Table 4.1.

It is the assumption of random mating, and the consequent indepen-
dence, that allows the probability of each mate pair to be written in the
third column as the product of the two separate genotype probabilities.
The last three columns show, for each parental combination, the probability
of each of the three possibilities for the children of that combination.

Now we introduce the term P ′
11 as the proportion of the A1A1 genotypes

among the children, i.e., the second generation. We can calculate P ′
11 from
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Table 4.1: Demonstration of Hardy-Weinberg law.

Children
Mother Father Probability A1A1 A1A2 A2A2

A1A1 A1A1 P11 × P11 1 0 0
A1A2 P11 × P12 1/2 1/2 0
A2A2 P11 × P22 0 1 0

A1A2 A1A1 P12 × P11 1/2 1/2 0
A1A2 P12 × P12 1/4 1/2 1/4
A2A2 P12 × P22 0 1/2 1/2

A2A2 A1A1 P22 × P11 0 1 0
A1A2 P22 × P12 0 1/2 1/2
A2A2 P22 × P22 0 0 1

the terms in rows 1, 2, 4, and 5 of the table, using the law of total proba-
bility, as follows:

P ′
11 = (1)P 2

11 + (1/2)P11P12 + (1/2)P12P11 + (1/4)P 2
12

= [P11 + (1/2)P12]2

Now we can apply Equation 4.1, which tells us that the expression in the
brackets is simply p1, so

P ′
11 = p2

1

If we define P ′
12 as the proportion of A1A2 children, then from rows 2 through

8 in Table 4.1

P ′
12 = (1/2)P11P12 + (1)P11P22 + (1/2)P12P11 + (1/2)P 2

12

+ (1/2)P12P22 + (1)P22P11 + (1/2)P22P12

= 2[P11 + (1/2)P12][P22 + (1/2)P12]
= 2p1p2

Similarly we can show that the proportion of A2A2 children is P ′
22 = p2

2.
This shows that the offspring genotype proportions are specified completely
by parental allele proportions as

P ′
11 = (p1)2, P ′

12 = 2p1p2, P
′
22 = (p2)2 (4.2)
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This is a demonstration of the Hardy-Weinberg law. We can now use
Equation 4.2 to calculate p′1, the proportion of allele A1 among the children:

p′1 = P ′
11 +

1
2
P ′

12

= p2
1 + p1p2

= p1(p1 + p2)
= p1

The allele proportions are unchanged in the second generation. Note
that the assumption of random mating has led to the Hardy-Weinberg law
for the genotypes of the children, even though we made no assumption about
relationships between the genotypic and allele proportions in the parental
generation. We did invoke the counting rule of Equation 4.1, but that always
holds for codominant alleles. For the more general case of an unspecified
number of alleles the Hardy-Weinberg law is

Pii = p2
i

Pij = 2pipj , j 6= i

}
(4.3)

Note that we now have two separate ways of relating allelic and geno-
typic proportions: Equations 4.1 and 4.3. As we have seen, Equation 4.1
is always true and codominant allelic proportions can always be found from
genotypic proportions in this way. Equation 4.3 enables genotypic propor-
tions to be found as products of allelic proportions, but this should gener-
ally be regarded as only an approximation. The Hardy-Weinberg law was
demonstrated above under the assumptions of random mating in an infinite
population, without other forces such as selection, mutation, or migration.
Under these circumstances, the law holds in all generations after the first,
and so describes an equilibrium situation. As will be shown in the next
section, however, the law may hold even if these circumstances do not occur,
i.e., it can hold when there is selection (Lewontin and Cockerham 1959) or
when there is nonrandom mating (Li 1988).

Exercise 4.2 Assuming Hardy-Weinberg equilibrium, find the three genotypic
proportions for a gene with allele proportions of 0.7 and 0.3 for A1 and A2.

Exercise 4.3 Assume Hardy-Weinberg equilibrium to find the proportions of
the four blood group types, A,B,AB, and O when the allele proportions are pA =
0.2, pB = 0.1, and pO = 0.7.
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DISTURBING FORCES

In the previous section we showed that, in infinite random-mating popu-
lations, allele proportions do not change from the parent to offspring gen-
erations and, if the conditions for Hardy-Weinberg equilibrium apply, then
they will remain constant through all generations. Proportions can change
if there are disturbing forces, such as selection, mutation, and migration.

Selection

Selection refers to the differential abilities of genotypes to contribute to
the next generation. One mode of selection is viability selection, which
involves the ability of an individual to survive to adulthood. If these abilities
depend on the genotype of an individual, allele proportions will be altered.
To illustrate the kinds of arguments that can be made, suppose the three
genotypes A1A1, A1A2, and A2A2 at locus A have viabilities w11, w12,
and w22. This changes the genotype proportions from P11, P12, P22 at the
beginning of the generation to P ′

11, P
′
12, and P ′

22 at the end of the generation,
where

P ′
11 = w11P11/w̄

P ′
12 = w12P12/w̄

P ′
22 = w22P22/w̄

Dividing by the mean viability w̄ ensures that the proportions still add
to one:

w̄ = w11P11 + w12P12 + w22P22

Allele proportions will change over time until an equilibrium is estab-
lished. The equilibrium may reflect the loss of an unfavorable allele: p1 will
become zero if w22 > w12 > w11 for example. In the special case of het-
erozygote advantage, w11 < w12 > w22, it can be shown (Box 4.2) that
a polymorphic equilibrium will be established. This is a situation where
heterozygotes are the “fittest” and will always remain in the population. As
long as they remain, it is guaranteed that both alleles will also remain in
the population.

Lewontin and Cockerham (1959) showed that if w11w22 = w2
12 then the

Hardy-Weinberg relation also holds after selection:

P ′
11 = (p′1)

2, P ′
12 = 2p′1p2, P

′
22 = (p′2)

2
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Box 4.2: Allele proportion changes under selection

The allele proportions after selection are

p′1 = P ′
11 + (P ′

12/2)
= [w11P11 + (w12P12/2)]/w̄

p′2 = [w22P22 + (w12P12/2)]/w̄

and if the original genotype proportions obey the Hardy-Weinberg law, P11 =
p2
1, P12 = 2p1p2, P22 = p2

2,

p′1 = p1[w11p1 + w12p2]/w̄
p′2 = p2[w22p2 + w12p2]/w̄

If an equilibrium is established, there is no change in proportion, p′1 = p1, and the
equilibrium value is written as p̂1. Then

w̄ = w11p̂1 + w12p̂2 = w22p̂2 + w12p̂2

and this can be rearranged to provide

p̂1 = (w12 − w22)
(w12 − w11) + (w12 − w22)

p̂2 = (w12 − w11)
(w12 − w11) + (w12 − w22)

 (4.4)

These equilibrium allele proportions are valid, lying between zero and one, for
heterozygote advantage: (w12 − w11) > 0, (w12 − w22) > 0.
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Although this is a very restrictive situation, it makes the point that con-
sistency with Hardy-Weinberg proportions does not mean that selection is
absent.

In spite of this elegant theory, there are very few cases known where hu-
man genes exhibit these kinds of single-gene selective forces. The one case
that recurs in textbooks is that of sickle-cell anemia. Sickle-cell hemoglobin
is produced by a single substitution in the DNA sequence for β-hemoglobin.
If A represents the normal form and S represents the sickle form, then
AA individuals are normal. Affected homozygotes SS suffer from a severe
hemolytic anemia, and their reproductive fitness is very low under primi-
tive living conditions. The AS heterozygotes are clinically healthy, and it
appears that they are at a reproductive advantage in the primitive condi-
tions because they are protected against Falciparum malaria. Some studies
(Allison 1954) have estimated the following selection coefficients, measured
relative to that for heterozygotes:

wAA = 0.7961
wAS = 1.0000
wSS = 0.1698

Substituting these values into Equation 4.4 in Box 4.2 provides

p̂S =
0.2039

0.8302 + 0.2039
= 0.1972

This value has some support in empirical studies.
For some human diseases, one homozygote has a fitness of essentially

zero. With cystic fibrosis, for example, it has been rare for victims to survive
beyond childhood. If the disease allele is D and the normal form A, then
this means that wDD = 0. It is the DD people who have the disease. For the
disease allele to be maintained in the population, a possible mechanism is
heterozygote advantage. Setting the fitness of the heterozygote AD to 1, this
translates into a selective disadvantage for the AA homozygote, wAA = 1−s,
where s is a positive quantity less than one, and Equation 4.4 gives

p̂D =
s

1 + s

The proportion of affected people born in the population will be

P̂DD = p̂2
D

Some studies in mice suggest that the cystic fibrosis alleles confer protection
against cholera. Other possibilities have also been suggested. The resulting
advantage to individuals carrying the disease allele may be sufficient to have
maintained the allele in the population.
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Box 4.3: Allele proportion changes under mutation to and from the allele

The proportion of the A1 allele will change as follows:

p′1 = (1− µ)p1 + νp2

The first term shows the reduction in proportion caused by alleles mutating from
A1 to A2, and the second term shows the increase in proportion caused by alleles
mutating from A2 to A1. Likewise

p′2 = µp1 + (1− ν)p2

Note that in the offspring generation the two proportions still sum to one.
At equilibrium p̂1 = p′1 = p1, and p̂2 = p′2 = p2. Making this substitution provides

p̂1 = ν
µ+ ν

p̂2 = µ
µ+ ν

 (4.5)

Mutation

Selection can change the proportions only of existing alleles. Human genetic
diversity is caused, ultimately, by the introduction of new alleles from mu-
tation. A convenient definition of mutation refers to the event that a child
carries an allele different from those in its parents. In the present context,
the change is spontaneous rather than being caused by some mutagen.

A simple mathematical model for a locus with two alleles A1 and A2

assigns the probability µ that any A1 allele will mutate to the other allele
A2 during transmission from parent to child. Likewise, ν is the probability
that A2 will mutate to A1. The probabilities µ and ν are called mutation
rates. This might be an appropriate model for restriction sites, which
can be lost by a single base change but may need several base changes to
be created from a random sequence. The mutation rates toward and away
from restriction sites are different. The consequences of these opposing
mutation rates are shown in Box 4.3, and eventually the population reaches
an equilibrium with allele frequencies given in Box 4.3 by Equation 4.5.

Another combination of events leading to a polymorphic equilibrium
would be the continued introduction of an allele by mutation and selection
against that allele. As an example, suppose that A2 is detrimental. This
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can be expressed by assigning fitnesses as follows:

w11 = 1, w12 = 1− hs,w22 = 1− s

The quantity h is sometimes called the degree of dominance. Then the
proportion of A2 will become small over time but it will not be lost from the
population if there is continuing mutation, at rate µ, to that allele. We show
in Box 4.4 that an equilibrium proportion is reached with the approximate
value

p̂2 ≈


√
µ
s , h = 0

µ
hs, h 6= 0

Mutation rates are generally quite small, and are unlikely to be as high as
0.01. The selection coefficients can also be quite small: if h = 0 and s is four
times the mutation rate, the allele frequency p1 will eventually become 0.5.
There is no way that the magnitudes of selection and mutation rates can
be deduced simply from allele frequencies in the current population, and
estimation of very small coefficients will be difficult without large sample
sizes.

A quite different population genetic model of mutation supposes that
every mutation results in a new type of allele, as might be appropriate when
alleles refer to long stretches of DNA. This is the infinite alleles model.
If mutation were the only force acting, each allele would quickly become
very rare. However, there is a process, genetic drift, which can counter
the increase in genetic variation brought about by mutations, and this will
be discussed later.

Migration

Alleles do not occur in the same proportions in different populations. For
the ABO blood group gene, for example, allelic proportions in some different
countries are shown in Table 4.2. Differences between populations will tend
to diminish over time as a consequence of gene flow. This may come
about because of migration of people between populations, or because of
marriage between people from different populations.

One migration model, which may be appropriate for an idealized version
of the United States Caucasian population, is called the island model.
The population consists initially of a series of separate subpopulations, in
this case descended from different European countries. The model has a
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Box 4.4: Allele proportion changes under selection and mutation

From Box 4.2, selection changes the proportion of A1 from p1 to p∗1 according to

p∗1 = p1[p1 + (1− hs)p2]/w̄

Because the A2 allele will be in low proportion, there will be a very low contribution
of mutation from A2 to A1. Ignoring this contribution:

p′1 ≈ (1− µ)p∗1
= p1(1− hsp2)(1− µ)/w̄

At equilibrium, p′1 = p1 = p̂1, and this equation becomes

(1− hsp̂2)(1− µ) = w̄ = 1− 2hsp̂2(1− p̂2)− sp̂2
2

If allele A2 is recessive, h = 0, and

sp̂2
2 = µ

but if h 6= 0 and p̂2 is considered to be small enough that p̂2
2 ≈ 0

hsp̂2(1 + µ) ≈ µ

and the 1 + µ term can be approximated by 1 to give the result in the text.
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Table 4.2: ABO allele proportions in samples from different countries.

Country pA pB pO

Argentina 0.024 0.015 0.961
Australia 0.333 0.000 0.667
Austria 0.294 0.107 0.599
Bolivia 0.028 0.004 0.967
Burundi 0.192 0.119 0.689
Chad 0.113 0.144 0.744
Chekoslovakia 0.205 0.222 0.573
Chile 0.056 0.003 0.941
Costa Rica 0.001 0.001 0.998
Egypt 0.222 0.104 0.674
Haiti 0.125 0.180 0.695
Hungary 0.297 0.141 0.562
Iraq 0.230 0.156 0.605
Jordan 0.220 0.146 0.634
Malaysia 0.178 0.203 0.619
Samoa 0.258 0.130 0.610
Scotland 0.214 0.070 0.716
Solomon Is. 0.274 0.058 0.668
Spain 0.292 0.065 0.642

Source: Roychoudhury and Nei (1988).
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Box 4.5: Allele proportion changes under island-model migration

The equation for change in allele proportion is rearranged as

p′ = (1−m)p+ [1− (1−m)]p̄

If we write p′′ for the proportion in the second generation, then the same equation
gives

p′′ = (1−m)p′ + [1− (1−m)]p̄
= (1−m)2p+ [1− (1−m)2]p̄

If we continue this process, at generation t we find that the proportion in the
subpopulation becomes pt:

pt = (1−m)tp+ [1− (1−m)t]p̄

As t becomes large, (1−m)t approaches zero, so ultimately the proportion becomes
simply p̄.

proportion m of the alleles in each subpopulation migrating out each gen-
eration, and an equal proportion m migrating in from the rest of the entire
population. If p̄ is the average proportion of allele A in the entire population,
and if p is the proportion in a particular subpopulation in some generation,
then in the next generation

p′ = p−mp+mp̄

where the first term represents the initial proportion, the second represents
a loss of that allele by migration away from the subpopulation, and the third
represents migration into the subpopulation from the rest of the population.
This is really for an “infinite island” model, so that p̄ is the same whether
or not the particular subpopulation is included in the average. The quantity
m is the migration rate. In the absence of any other forces, migration will
keep the average proportion p̄ constant over time, and each subpopulation
p will move toward this average value. This can be thought of as a redistri-
bution of all the A alleles so that they become equally represented in every
subpopulation. Details are shown in Box 4.5.

Exercise 4.4 If a population consists of five equal-sized subpopulations, with
proportions for some allele A of 0.1, 0.3, 0.5, 0.7, and 0.9, what are the proportions
of the allele in the generation after the initial one when the migration rate is 10%
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per generation?

The gene flow process appropriate for the (idealized) US African-American
population may be described by another model: that of admixture. There
has been interbreeding between Caucasian and African-American popula-
tions to the point that the present African-American population has a dif-
ferent genetic constitution from that in the African populations of origin.
Suppose the proportion of allele A in the ancestral African population was
pa, and that a fractionm of the alleles in the present day admixed population
came from the Caucasian population. If the allele proportion in the Cau-
casian population is pc, then the proportion pm in the admixed population
is

pm = (1−m)pa +mpc

so that

m =
pm − pa

pc − pa

Vogel and Motulsky (1986) give an example for the fya allele of the Duffy
blood group system. In the present–day African-American population of
Oakland, California the allele proportion is 0.0941, in western African pop-
ulations it is essentially zero, and in the Oakland Caucasian population it
is 0.4286. Hence

m =
0.0941− 0
0.4286− 0

= 0.2195

This figure of about 20% has also been found for alleles in the ABO blood
group system. Chakraborty, Kamboh, et al. (1992) found a figure of about
25% for some data from Pittsburgh.

Heterogeneous Populations

A concept related to migration and admixture is that of population het-
erogeneity. Regardless of intermarriage or migration, allele and genotypic
proportions can be calculated for each subpopulation separately or for the
combined population. When allele proportions are different in the subpopu-
lations, there may appear to be Hardy-Weinberg disequilibrium in the pop-
ulation as a whole even if there is equilibrium in each subpopulation. This
phenomenon is known as the Wahlund effect and could arise if each
subpopulation had random mating but very little gene exchange with other
subpopulations. The principle can be illustrated with a simple example.
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Suppose a population consists of two equal-sized subpopulations with
proportions of alleles A,B, and C at locus HBGG:

Subpopulation Total
Allele 1 2 population
A 0.6 0.4 0.5
B 0.3 0.1 0.2
C 0.1 0.5 0.3

The proportions shown for the total population are the averages of those
in the two subpopulations. Assuming Hardy-Weinberg proportions in each
subpopulation, the genotypic proportions are now shown. Once again, the
total population values are the averages of those in the two subpopulations.

Subpopulation Total
Genotype 1 2 population (HW)

AA 0.36 0.16 0.26 (0.25)
BB 0.09 0.01 0.05 (0.04)
CC 0.01 0.25 0.13 (0.09)
AB 0.36 0.08 0.22 (0.20)
AC 0.12 0.40 0.26 (0.30)
BC 0.06 0.10 0.08 (0.12)

The last column of this table shows, in parentheses, the genotypic pro-
portions expected if the total population were in Hardy-Weinberg equilib-
rium. These are obtained by multiplying the total allele proportions. Note
that all homozygotes have higher proportions than would be predicted by
the Hardy-Weinberg law. No general statement can be made for heterozy-
gotes, although on average they will have lower proportions than predicted.
They can, however, have higher proportions, as is the case for AB. It would
be wrong, for example, to change homozygote proportions to allow for het-
erogeneous populations but not to change heterozygote proportions as was
suggested by the 1996 NRC report (National Research Council 1996) in its
Recommendation 4.1. A general treatment is given in Box 4.6.

Exercise 4.5 Suppose a population consists of proportions 0.5, 0.3, and 0.2 of
three subpopulations, each of which is in Hardy-Weinberg equilibrium for gene A,
but with different proportions, 0.4, 0.6, and 0.2 respectively, for allele A. What are
the proportions of the A allele and the AA genotype in the combined population?

INBREEDING

We now begin to discuss population genetic theory for populations that are
not infinite and in which mating is not at random. Individuals with common
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Box 4.6: Wahlund effect
Suppose subpopulations are each in Hardy-Weinberg equilibrium, but with different
proportions for their alleles. In subpopulation i the proportion of allele A1 is p1i

and the proportion of the A1A1 homozygote is P11i = p2
1i. If the whole population

consists of a proportion mi of individuals belonging to subpopulation i, then p1,
the proportion of A1 in the combined population, is

p1 =
∑

i

mip1i

The proportion P11 of the A1A1 homozygote in the combined population is

P11 =
∑

i

miP11i

=
∑

i

mip
2
1i

= (
∑

i

mip1i)2 +
∑

i

mi(p1i − p1)2

= p2
1 +

∑
i

mi(p1i − p1)2

The second term on the right hand side is positive, so it follows that

P11 > p2
1

For A1A2 heterozygotes, a similar argument leads to

P12 =
∑

i

miP12i

=
∑

i

mi2p1ip2i

= 2p1p2 + 2
∑

i

mi(p1i − p1)(p2i − p2)

but the second term on the right hand side can be positive or negative.
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ancestors are said to be related, and their children are inbred. If no
further qualifications are made, then all humans are both inbred and related
to everyone else simply because the population is finite. Each of us has two
parents and four grandparents. If we all had eight distinct grandparents,
16 distinct great-grandparents, and so on, it would take only a few hundred
years back in time before we would have more ancestors among us than there
were people living on the planet at that time. Obviously then our parents
have some ancestors in common, but conventional definitions of inbreeding
refer only to children whose parents are related through people in the past
few generations.

Inbreeding in Pedigrees

The genetic consequences of inbreeding follow directly from basic Mendelian
principles. An individual receives half of his or her genetic material from
each parent, and transmits half of this total to each child. For each gene,
an individual receives two alleles, one from each parent, and is generally
equally likely to transmit either of these two alleles to a child. The random
element in such transmission means that statements about inbreeding are
usually expressed as probabilities. Because related people share ancestors,
there is a chance that they each receive a copy of the same allele from one
ancestor. Figure 4.2 shows the pedigree for a person I whose parents X and
Y are half sibs. The parent that X and Y have in common is H. We first
assume that H is not inbred and that all three grandparents G,H, and J
of I are unrelated to each other. In the figure, we have labeled the alleles
transmitted from H to X and Y as h1 and h2, respectively. There is a
probability of 0.5 that these two alleles are copies of the same allele–i.e.,
they both descend from just one of the alleles received by H from his or her
parents. We write the probability of this event of identity by descent,
ibd, as

Pr(h1 is ibd to h2) = Pr(h1 ≡ h2)
= 0.5

We will also use ibd for the phrase “identical by descent.” Individuals X and
Y , in turn, transmit alleles a and b to their child I, and we are interested in
the probability of these two alleles being ibd. For this to occur, first h1 and
h2 must be ibd, and then X must transmit a copy of h1 (with probability
0.5), and Y a copy of h2 (with probability 0.5):

Pr(a ≡ b) = Pr(a ≡ h1, b ≡ h2|h1 ≡ h2) Pr(h1 ≡ h2)
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Figure 4.2: I is child of half sibs X and Y

= Pr(a ≡ h1, b ≡ h2) Pr(h1 ≡ h2)
= Pr(a ≡ h1) Pr(b ≡ h2) Pr(h1 ≡ h2)
= 0.5× 0.5× 0.5
= 0.125

Note that the two events of a being a copy of h1 and b being a copy of h2

are independent, and they do not depend on the event h1 ≡ h2. We define
the probability that I receives a pair of ibd alleles from his or her parents
as the inbreeding coefficient FI of I. So, in this case,

FI = Pr(a ≡ b) = 0.125

Now if H had parents who were related, he or she would have a nonzero
inbreeding coefficient FH , and there would be two ways in which h1 and h2

could be ibd:

• With probability 0.5, they descended from the same single allele of the
two alleles carried by H.

• With probability 0.5, they descended from the two different alleles in
H, and with probability FH , these alleles were ibd.
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Therefore

Pr(h1 ≡ h2) =
1
2

+
1
2
FH

so that, following the same argument as before,

Pr(a ≡ b) = Pr(a ≡ h1, b ≡ h2|h1 ≡ h2) Pr(h1 ≡ h2)
= Pr(a ≡ h1, b ≡ h2) Pr(h1 ≡ h2)
= Pr(a ≡ h1) Pr(b ≡ h2) Pr(h1 ≡ h2)
= 0.5× 0.5× (1 + FH)/2
= (1 + FH)/8

A general approach is to specify some initial or reference population, in
which all members are assumed to be unrelated, and then to measure in-
breeding relative to that generation. It is generally accepted, for example,
that Finland was settled by a relatively small group of people about 4,000
years ago. It would be convenient to quantify inbreeding for the present pop-
ulation as the probability that a random person in the population (assumed
to have descended from the initial group) receives two alleles that trace back
to a single allele among the founders. Alleles that trace to distinct founding
alleles will be considered not ibd since we assumed there was no relatedness
among the founders.

The argument given for half sibs leads to path-counting equations for
inbreeding coefficients. Suppose the parents X and Y of individual I have a
common ancestor A. One of these ancestors is shown in Figure 4.3, although
there may be several and they need not all be in the same generation. Also
suppose that there are nA people in the loop from one parent through A
and back to the other parent. Then, summing over all common ancestors A
of X and Y , the inbreeding coefficient of I is

FI =
∑
A

(
1
2

)nA

(1 + FA) (4.6)

Each person in the loop, apart from A but including the parents X and Y ,
introduces another probability of 0.5 for the transmission of an allele from
A. The two alleles that common ancestor A gives to the two sides of the
loop have a probability (1 + FA)/2 of being ibd.

In the half sib case of Figure 4.2, parent H is the only common ancestor
of X and Y and nH = 3 for the path XHY , so FI = 1/8 as before. In
Figure 4.4, full sibsX and Y have two parents G andH in common. The two
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Figure 4.3: The parents X and Y of I have a common ancestor A.
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paths are XGY and XHY , each with three individuals, so the inbreeding
coefficient of their child I would be (1/2)3 + (1/2)3 = 1/4, providing G
and H are not inbred. In Figure 4.5, first cousins X and Y have four
distinct parents, G,H, J and K, two of whom are full sibs, so they have two
grandparents A and B in common. The two paths XHAJY and XHBJY
each have five individuals. The inbreeding coefficient of the children of first
cousins is therefore (1/2)5+(1/2)5 = 1/16, and this is the maximum amount
of inbreeding tolerated by most marriage laws.

Just as the concepts of inbreeding and relatedness are closely connected,
so are the probabilities of these events. The usual measure of relatedness
for individuals X and Y is the coancestry coefficient θXY , defined as
the probability that two alleles, one taken at random from each of X and
Y , are ibd. If a and b are the alleles from X and Y , then

θXY = Pr(a ≡ b|a, b have come from X and Y )

If individuals X and Y have a child I,

FI = θXY (4.7)

so we have shown in the preceding examples that θXY is 1/4 for full sibs,
1/8 for half sibs, and 1/16 for first cousins.

There is one additional relation needed to characterize inbreeding in
pedigrees or in populations. That is the probability of two alleles from the
same individual being ibd. For individual X we have already defined FX

as the probability that X receives two ibd alleles. Now we introduce the
probability θXX that X transmits two ibd alleles, and this is

θXX = Pr(a ≡ b|a, b are both from X)

In the examples we have done so far, we have assumed that each individual
is not inbred, and if X is not inbred then θXX = 0.5. However, there
will be occasions where we need to allow for inbred individuals. Consider
individual X in Figure 4.6, who receives alleles c and d from his parents
and who transmits alleles a and b to two of his children. There are four
possibilities, each of which has probability 1/4:

• a and b are both copies of c.

• a is a copy of c, and b is a copy of d.

• a is a copy of d, and b is a copy of c.

• a and b are both copies of d.
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Figure 4.4: I is child of full sibs X and Y .
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Figure 4.6: Pr(a ≡ b) is coancestry of an individual with itself.

Using the law of total probability,

θXX = Pr(a ≡ b)

=
1
4
[Pr(c ≡ c) + Pr(c ≡ d) + Pr(d ≡ c) + Pr(d ≡ d)]

Now Pr(c ≡ c) = Pr(d ≡ d) = 1 and Pr(c ≡ d) = Pr(d ≡ c), which is just
the inbreeding coefficient of X. Making these substitutions

θXX =
1
2
(1 + FX) (4.8)

We have already met the result in Equation 4.8 in setting up the path-
counting rule for inbreeding coefficients. The alleles the individual I received
eventually traced back to common ancestor A, and the probability of them
then being ibd is θAA = (1 + FA)/2.

Inbreeding in Populations

We have defined the inbreeding coefficient and coancestry by referring to
specific individuals. However, when we are dealing with groups of people
we use average values of F and θ, written without subscripts. We have to
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return to the idea of picking people at random from the population. In this
sense, F is the probability that a ≡ b given that a and b are the two alleles
of a person chosen at random from the population.

F = Pr(a ≡ b|a, b are the two alleles of a person chosen at random)

Similarly, θ is the probability that a ≡ b given that a and b are two alleles,
one from each of two people selected at random from the population.

θ = Pr(a ≡ b|a, b are from two people chosen at random)

Sometimes θ is written as FST .
In a finite population, there is an increasing chance over time that any

pair of alleles will be identical by descent, simply because some alleles in each
generation will not be passed to the next generation whereas other alleles will
have multiple copies passed on. To quantify this increase in inbreeding, it is
convenient first to set up equations for monoecious populations in which
selfing is allowed. Any individual can mate with any other, and can even
self-mate by providing both copies of each allele to a child. In this system,
there is complete random pairing of alleles in each generation. Many plant
species are monoecious.

If the population has a level of inbreeding of F , what will be the inbreed-
ing level in the next generation? Because of our assumption of completely
random mating in populations of size N , the probability that a member of
the next generation has a single parent X is 1/N , and the probability he
or she has distinct parents X and Y is 1 − 1/N . If the individual has a
single parent X, then the probability he or she will receive two ibd alleles
is the coancestry of X with itself, and we saw in Equation 4.8 that this is
(1 + FX)/2. If the individual has two parents, X and Y , then the proba-
bility he or she receives two ibd alleles is their coancestry θXY = θ. Recall
that F and θ refer to random individuals or random pairs of individuals,
respectively, in the population. So, if we now use a and b to denote the
alleles received by an individual in the next generation, we can define the
new inbreeding coefficient, F ′, as

F ′ = Pr(a ≡ b)
= Pr(a ≡ b|a, b came from the same individual)

× Pr(a, b came from the same individual)
+ Pr(a ≡ b|a, b came from different individuals)
× Pr(a, b came from different individuals)

=
1 + F

2
× 1
N

+ θ ×
(

1− 1
N

)
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Because the special conditions we have set include selfing, the descent
status of a pair of alleles is the same whether they are in the same or different
individuals; that is, under these conditions F = θ. Therefore, we can write
F ′ = θ′ and rearrange the last equation to give

θ′ =
1

2N
+
(

1− 1
2N

)
θ

If there is no inbreeding or relatedness in the generation t = 0, and if
θ1, θ2, . . . , θt denote the inbreeding and coancestry coefficients in subsequent
generations, then

θ1 =
1

2N

θ2 =
1

2N
+
(

1− 1
2N

)
1

2N
= 1−

(
1− 1

2N

)2

and so on, until

θt = 1−
(

1− 1
2N

)t

(4.9)

In Figure 4.7 we show how F = θ changes over time for three values of N
for this case of random mating. We will see that the increase in F or θ
accompanies a decrease in genetic variation within a population, and this is
the process of genetic drift referred to earlier. Clearly the rate of increase
is very low for large values of N . Note that N is the “effective” size of
the population, referring to the size of the group of possible parents of an
individual. In this simplified model, the effective number can be regarded
as the size of the population from which a person chooses a mate. This will
be much smaller than the census size of the population, and the historical
value is generally thought to be about 100,000 for human populations.

Exercise 4.6 Simulate the process of genetic drift for five generations for a
population of size 5 initiated with 10 different alleles. In each generation, number
the alleles from 1 to 10, and note their allelic state. Take 10 successive digits from
an arbitrary starting point in a table of random numbers, and regard these as the
parental alleles. For example, if the parental generation is

Number 1 2 3 4 5 6 7 8 9 10
Allele A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

and Appendix Table A.3 of random numbers is entered in column 12 of row 31, the
set of random digits is 9309 16023 0 and generation one will have alleles

Number 1 2 3 4 5 6 7 8 9 10
Allele A9 A3 A10 A9 A1 A6 A10 A2 A3 A10
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Figure 4.7: Change in θ over time with drift.
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Already, four alleles have been lost. The next set of random digits in Table A.3 is
6062 10840 2, so generation two will have alleles

Number 1 2 3 4 5 6 7 8 9 10
Allele A6 A10 A6 A3 A9 A10 A2 A9 A10 A3

and now there are only five allelic types remaining.

Exercise 4.7 Calculate the actual inbreeding coefficient for the simulations in
Exercise 4.6 as the proportion of individuals with ibd alleles in each generation. To
do this, take alleles 1 and 2 to represent individual 1, alleles 3 and 4 to represent
individual 2, and so on. The theoretical values are 0.00, 0.10, 0.19, 0.27, 0.34, and
0.41 for t = 0, 1, 2, 3, 4, and 5.

The calculations in Box 4.7 show that the Equation 4.9 is approximately
true even when selfing is not possible. Numerical results for the two sets of
expressions are shown in Table 4.3. It can be seen that, for large population
sizes, there is no discernible difference in the inbreeding levels for the two
mating systems. More elaborate theory can be developed for separate sexes,
but the result is the same - population genetic theory for human populations
can be approximated by theory for monoecious populations.

Genetic drift, unlike mutation or selection, does not change the overall
average, or expected, allele proportions. The average proportion of an
allele over many replicate populations (see Figure 4.1) remains the same,
although it will certainly change within any single population. There is
therefore a great deal of variation generated between populations. A se-
ries of finite isolated populations, each descending from the same reference
population, will drift apart over time.

Genotype Proportions in Inbred Populations

Another way of expressing the phenomenon of genetic drift is to express
genotypic proportions in terms of allelic proportions and the inbreeding co-
efficient. An individual will be homozygous if it receives two copies of the
same allele. With probability F these two are ibd, and therefore are both
allele A if either one is A. With probability (1 − F ) the two are not ibd,
and each has chance pA of being allele A:

PAA = FpA + (1− F )p2
A
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Box 4.7: Avoidance of selfing

What relevance does Equation 4.9 have for human populations, where selfing is not
possible? As a partial demonstration that it is a very good approximation, consider
a population of size N where mating is at random but selfing is not possible. A
child in generation t+ 1 must receive alleles from distinct parents in generation t,
and these alleles have chance θ of being ibd:

Ft+1 = θt

Alleles received by different children, however, can come from the same or different
parents with probabilities 1/N and (N − 1)/N , so that

θt+1 =
1
N

1 + Ft

2
+
N − 1
N

θt

Putting these two equations together provides

Ft+2 =
1

2N
+
N − 1
N

Ft+1 +
1

2N
Ft

For the case where individuals in the initial population are noninbred and unrelated,
this leads to

Ft = 1−
[
(1− λ2)λt

1 − (1− λ1)λt
2

λ1 − λ2

]
Here λ1, λ2 = [(N − 1)/N ±

√
(1 + 1/N2)]/2 and when N is large,

λ1 ≈ (1 − 1/2N), λ2 ≈ 0. In that case the result reduces to Equation 4.9,
derived for random mating when selfing is allowed.

Table 4.3: Inbreeding coefficients for monoecious populations of size N = 100, 000.

Generation With selfing Without selfing
t F = θ F θ

1, 000 0.0050 0.0050 0.0050
10, 000 0.0488 0.0488 0.0488
100, 000 0.3935 0.3935 0.3935
1, 000, 000 0.9933 0.9933 0.9933
10, 000, 000 1.0000 1.0000 1.0000
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or, generally,

Pii = p2
i + pi(1− pi)F

Pij = 2pipj(1− F )

}
(4.10)

showing that genotypic proportions can be expressed as the Hardy-Weinberg
values plus a deviation due to drift. In fact, this deviation can be due to
any system of inbreeding–meaning a mating system in which an individ-
ual can receive ibd allele pairs. Note that these equations assume the initial
population to be in Hardy-Weinberg equilibrium. For random-mating popu-
lations, the ibd status of pairs of alleles is the same whether they are carried
by the same or different individuals, and then F = θ. For this reason,
Equations 4.10 are sometimes written with θ replacing F .

For alleles that are both harmful and recessive, such as the ∆F508 allele
responsible for most cases of cystic fibrosis, inbreeding increases the pro-
portion of people with the harmful trait by virtue of having two copies of
the deleterious allele. These two alleles are not masked by a normal al-
lele. The ∆F508 allele in Caucasian populations has a proportion of about
p = 0.05. Among individuals whose parents are unrelated, the probability of
having two copies of the allele, and therefore having cystic fibrosis, is about
p2 = 0.0025. Among people whose parents are cousins, however, with prob-
ability (1−F ) = 15/16 the genotype probability is p2, and with probability
F = 1/16 it has the higher value of p. The total probability of the disease
among these inbred people is more than doubled, to 0.0055.

Homozygotes have two alleles that have the same chemical composition,
and so are identical in state. Such alleles may or may not be ibd.
Heterozygotes have alleles that are not identical in state, and these alleles
cannot be ibd.

Drift and Mutation

A previous section showed that mutation and selection could act in opposite
ways to lead to an equilibrium proportion for an allele. A different type of
equilibrium can be established between drift and mutation. Genetic vari-
ation is lost by drift, as alleles tend to become fixed, whereas variation
can continually be introduced by mutation of the form that every mutant
is a new type of allele. Equilibrium now refers to a constant amount of
variation–the proportion of any particular allele will be changing. Every
allele introduced by mutation will eventually be lost or fixed. Any fixation
is temporary, however, as further mutations will introduce other alleles.
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A convenient way to characterize such populations is by use of the in-
breeding coefficient. The transition equation for changes due to drift

F ′ =
1

2N
+ (1− 1

2N
)F

has to be modified. Alleles can remain ibd only if neither of them mutates,
and this happens with probability (1 − µ)2, where µ is the mutation rate.
Therefore

F ′ = (1− µ)2
[

1
2N

+ (1− 1
2N

)F
]

At equilibrium, the inbreeding coefficient is no longer changing and has the
value

F̂ =
(1− µ)2/2N

1− (1− µ)2(1− 1/2N)

≈ 1
1 + 4Nµ

An alternative expression is

Ĥ ≈ 4Nµ
1 + 4Nµ

where Ĥ is the proportion of heterozygotes in the equilibrium population.

FOUR-ALLELE DESCENT MEASURES

So far, we have considered the genotypes of individuals or of collections of
individuals. There are occasions, such as in the “brother’s defense” discussed
later, where it is necessary to consider the genotypes of pairs of individuals.
These pairs may be relatives, such as brothers, or they may both belong to
some specific subpopulation. For pairs of people, it is necessary to introduce
more ibd measures. Whereas the genotypic proportion of possibly inbred
individuals requires the use of a descent measure defined for pairs of alleles,
the genotypic proportions for pairs of relatives require descent measures for
three or four alleles being ibd. Suppose individual X has alleles a and b at
locus A and Y has alleles c and d. There are fifteen possible ibd relations
among the four alleles, as shown in Table 4.4, along with their probabilities
δ. The fifteen probabilities add to one.

We need to explain the notation. For each δ, the subscript indicates
which alleles are ibd, and alleles not in the subscript are neither ibd to
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Table 4.4: Descent relations among alleles for two individuals: X with alleles a
and b and Y with alleles c and d.

Probability
Alleles ibd1 General Full sibs2

none δo 1/4
a ≡ b δab 0
c ≡ d δcd 0
a ≡ c δac 1/4
a ≡ d δad 0
b ≡ c δbc 0
b ≡ d δbd 1/4

a ≡ b ≡ c δabc 0
a ≡ b ≡ d δabd 0
a ≡ c ≡ d δacd 0
b ≡ c ≡ d δbcd 0
a ≡ b, c ≡ d δab.cd 0
a ≡ c, b ≡ d δac.bd 1/4
a ≡ d, b ≡ c δad.bc 0
a ≡ b ≡ c ≡ d δabcd 0

Total 1 1
1Alleles not specified are not ibd.
2a, c from mother; b, d from father.

each other nor to the alleles specified. For example, the quantity δab is the
probability that a ≡ b are ibd and that c and d are neither ibd to each other
nor to a and b. The equivalence sign ≡ is being used to indicate ibd. The
quantity δab.cd is the probability that a ≡ b, c ≡ d but that the two pairs a, b
and c, d are not ibd to each other. Finally, δabcd is the probability that all
four alleles are ibd.

As an example consider the case whereX and Y are full sibs with parents
G and H, as was shown in Figure 4.4. We redraw the pedigree in Figure 4.8
to show the four alleles a, b, c and d. If G and H are not inbred and are
unrelated, there are only four possible ibd relationships with nonzero prob-
abilities: a ≡ c, b ≡ d; a ≡ c, b 6≡ d; a 6≡ c, b ≡ d; and a 6≡ c, b 6≡ d. Each of
these has probability 1/4, as shown in Table 4.4.

What is the relationship between the four-allele descent measures δ and
the two-allele measure θ introduced earlier? Recall that θXY was defined as
the probability of a random allele from X being ibd to a random allele from
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Figure 4.8: Pedigree of full sibs X and Y .

Y . When X has alleles a and b and Y has alleles c and d this means that

θXY =
1
4
[Pr(a ≡ c) + Pr(a ≡ d) + Pr(b ≡ c) + Pr(b ≡ d)]

so that

θXY =
1
4
[(δac + δabc + δacd + δac.bd + δabcd)

+ (δad + δabd + δacd + δad.bc + δabcd)
+ (δbc + δabc + δbcd + δbc.ad + δabcd)
+ (δbd + δabd + δbcd + δbd.ac + δabcd)] (4.11)

Noninbred Relatives

Now suppose that neither of two individuals X(a, b) and Y (c, d) is inbred.
Then any probability involving a ≡ b or c ≡ d is zero, and there are only
seven measures to consider: δ0, δac, δad, δbc, δbd, δac.bd, and δad.bc. Further-
more, if there is symmetry between a, b and c, d then there are only three
distinct values for these seven measures, according to whether the two indi-
viduals have zero (δ0), or one (δac, δad, δbc, δbd), or two (δac.bd, δad.bc) alleles
identical by descent. There are occasions when it is better to work with all
seven δ measures, however.

For noninbred relatives, Equation 4.11 reduces to

θXY =
1
4
[(δac + δad + δbc + δbd) + 2(δac.bd + δad.bc)]
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For full sibs, therefore (as before),

θXY =
1
4
[(

1
4

+ 0 + 0 +
1
4
) + 2(

1
4

+ 0)] =
1
4

Another useful summary measure in the noninbred case is the two-allele-pair
measure ∆Ẍ+Ÿ . This is the average of the two probabilities that X and Y
have two pairs of ibd alleles:

∆Ẍ+Ÿ =
1
2
(δac.bd + δad.bc)

When X and Y are full sibs,

∆Ẍ+Ÿ =
1
2
(
1
4

+ 0) =
1
8

The probabilities that noninbred relatives X and Y have 0, 1, or 2 pairs
of ibd alleles can be summarized as

0 pairs : 1− 4θXY + 2∆Ẍ+Ÿ

1 pair : 4(θXY −∆Ẍ+Ÿ )
2 pairs : 2∆Ẍ+Ÿ

 (4.12)

Joint Genotypic Probabilities

The descent status of the four alleles that two individuals have between them
puts constraints on the possible genotypes of the individuals (Cockerham
1971). If all four alleles were ibd, for example, both individuals would need
to be of the same homozygous genotype. The converse relation is more
complicated because homozygous individuals need not have alleles that are
ibd. We now consider all possible pairs of genotypes for individuals related
to any degree (specified by the descent measures in Table 4.4).

Two homozygotes. What is the probability that X and Y are both ho-
mozygous AiAi? In the third column of Table 4.5 we show contributions to
this probability from each of the 15 ibd relationships. With probability δ0,
there is no identity by descent among the four alleles, so each is of indepen-
dent origin, and each has probability pi of being of type Ai. In the second
row of Table 4.5, only alleles a and b are ibd and have the same origin.
This means that there are three alleles with independent origin: ab, c, and
d, and each has probability pi of being of type Ai. The probability of two
AiAi genotypes in this ibd situation is therefore p3

i . The overall probability



FOUR-ALLELE DESCENT MEASURES 121

is arrived at by combining third-column terms over rows of Table 4.5 using
the law of total probability, and is

Pr(AiAi, AiAi) = δabcdpi + (δabc + δabd + δacd + δbcd)p2
i

+ (δab.cd + δac.bd + δad.bc)p2
i

+ (δab + δac + δad + δbc + δbd + δcd)p3
i + δ0p

4
i

The probability with which two individuals are homozygous, but for differ-
ent alleles, can be derived in a similar manner, using the fourth column of
Table 4.5. For any of the rows in which the individuals share ibd alleles,
there is zero probability that they could be homozygous for different alleles.
Adding the fourth-column terms over rows gives

Pr(AiAi, AjAj) = δab.cdpipj + δabpip
2
j + δcdp

2
i pj + δ0p

2
i p

2
j

When neither X nor Y is inbred, the last two results simplify to

Pr(AiAi, AiAi) = p4
i + 4θXY p

3
i (1− pi) + 2∆Ẍ+Ÿ p

2
i (1− pi)2 (4.13)

Pr(AiAi, AjAj) = (1− 4θXY + 2∆Ẍ+Ÿ )p2
i p

2
j (4.14)

Under the assumption of no inbreeding, it is quicker to derive these last two
results directly from Equations 4.12.

One homozygote and one heterozygote. For one homozygous and one
heterozygous individual, we need to distinguish between the cases when the
individuals share an allele and when they do not. We also need to allow for
both orderings of alleles within heterozygotes, and the calculations follow
from Table 4.6.

Adding columns 2 and 3 in Table 4.6, multiplying by column 1, and then
summing over rows, we get

Pr(AiAi, AiAj) = 2δ0p3
i pj + (2δab + δac + δad + δbc + δbd)p2

i pj

+ (δabc + δabd)pipj

and adding over rows for column 1 multiplied by column 4 (doubled to take
account of both heterozygote orders AjAk, AkAj), we get

Pr(AiAi, AjAk) = 2δ0p2
i pjpk + δabpipjpk
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Table 4.5: Probabilities of X(a, b) and Y (c, d) being the same homozygote AiAi

or different homozygotes AiAi, AjAj .

IBD1 Pr(IBD) Pr(AiAi, AiAi|IBD) Pr(AiAi, AjAj |IBD))

none δo p4
i p2

i p
2
j

a ≡ b δab p3
i pip

2
j

c ≡ d δcd p3
i p2

i pj

a ≡ c δac p3
i 0

a ≡ d δad p3
i 0

b ≡ c δbc p3
i 0

b ≡ d δbd p3
i 0

a ≡ b ≡ c δabc p2
i 0

a ≡ b ≡ d δabd p2
i 0

a ≡ c ≡ d δacd p2
i 0

b ≡ c ≡ d δbcd p2
i 0

a ≡ b, c ≡ d δab.cd p2
i pipj

a ≡ c, b ≡ d δac.bd p2
i 0

a ≡ d, b ≡ c δad.bc p2
i 0

a ≡ b ≡ c ≡ d δabcd pi 0

1IBD : ibd relationship
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Table 4.6: Probabilities of X(a, b) being homozygous AiAi and Y (c, d) being het-
erozygous AiAj or AjAk.

Pr(AiAi, AiAj |IBD)
Pr(IBD) c = Ai, d = Aj c = Aj , d = Ai Pr(AiAi, AjAk|IBD))

δ0 p3
i pj p3

i pj p2
i pjpk

δab p2
i pj p2

i pj pipjpk

δcd 0 0 0
δac p2

i pj 0 0
δad 0 p2

i pj 0
δbc p2

i pj 0 0
δbd 0 p2

i pj 0
δabc pipj 0 0
δabd 0 pipj 0
δacd 0 0 0
δbcd 0 0 0
δab.cd 0 0 0
δac.bd 0 0 0
δad.bc 0 0 0
δabcd 0 0 0
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If X is not inbred, and since heterozygote Y cannot be inbred, these two
equations become

Pr(AiAi, AiAj) = 2(1− 4θXY + 2∆Ẍ+Ÿ )p3
i pj

+ 4(θXY −∆Ẍ+Ÿ )p2
i pj (4.15)

Pr(AiAi, AjAk) = 2(1− 4θXY + 2∆Ẍ+Ÿ )p2
i pjpk (4.16)

and these results also follow directly from Equations 4.12.

The same two heterozygotes. When two individuals have the same
heterozygous genotype, our approach requires an accounting for all four
orders of the two alleles within each. Combining the last four columns of
Table 4.7, multiplying by column 1, and summing over rows leads to

Pr(AiAj , AiAj) = 4δ0p2
i p

2
j

+ (δac + δad + δbc + δbd)pipj(pi + pj)
+ 2(δac.bd + δad.bc)pipj

This can be rewritten in a way that reflects the fact that heterozygotes
cannot be inbred:

Pr(AiAj , AiAj) = 4(1− 4θXY + 2∆Ẍ+Ÿ )p2
i p

2
j

+ 4(θXY −∆Ẍ+Ÿ )pipj(pi + pj)
+ 4∆Ẍ+Ÿ pipj (4.17)

This equation could also be derived directly from Equations 4.12.

Two different heterozygotes. Finally we consider the case of two het-
erozygotes that have one or no alleles in common. With one allele in com-
mon,

Pr(AiAj , AiAk) = 4δ0p2
i pjpk

+ (δac + δad + δbc + δbd)pipjpk

which, after recognizing that both individuals must be noninbred, gives

Pr(AiAj , AiAk) = 4(1− 4θXY + 2∆Ẍ+Ÿ )p2
i pjpk

+ 4(θXY −∆Ẍ+Ÿ )pipjpk (4.18)
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Table 4.7: Probabilities of X(a, b) and Y (c, d) being heterozygous AiAj .

Pr(AiAj , AiAj |IBD)
a = Ai, b = Aj a = Ai, b = Aj a = Aj , b = Ai a = Aj , b = Ai

Pr(IBD) c = Ai, d = Aj c = Aj , d = Ai c = Ai, d = Aj c = Aj , d = Ai

δ0 p2
i p

2
j p2

i p
2
j p2

i p
2
j p2

i p
2
j

δab 0 0 0 0
δcd 0 0 0 0
δac pip

2
j 0 0 p2

i pj

δad 0 pip
2
j p2

i pj 0
δbc 0 p2

i pj pip
2
j 0

δbd p2
i pj 0 0 pip

2
j

δabc 0 0 0 0
δabd 0 0 0 0
δacd 0 0 0 0
δbcd 0 0 0 0
δab.cd 0 0 0 0
δac.bd pipj 0 0 pipj

δad.bc 0 pipj pipj 0
δabcd 0 0 0 0



126 CHAPTER 4. POPULATION GENETICS

When the two heterozygotes share no alleles, only the complete non-
identity probability δ0 is needed. Multiplying by four to account for all four
orders of alleles within individuals gives us

Pr(AiAj , AkAl) = 4δ0pipjpkpl

and, because the individuals are both noninbred,

Pr(AiAj , AkAl) = 4(1− 4θXY + 2∆Ẍ+Ÿ )pipjpkpl

as may also be seen from Equations 4.12.

Genotypes of Two Sibs

As an application of these results, consider the possible genotype pairs for
two sibs X and Y that have noninbred and unrelated parents, so they them-
selves are not inbred. The descent measure values are shown in Table 4.4,
and the probabilities for any of the six possible pairs of genotypes (regardless
of order) can be found from Equations 4.13 to 4.18:

AiAi, AiAi p2
i (1 + pi)2/4

AiAi, AjAj p2
i p

2
j/2

AiAi, AiAj p2
i pj(1 + pi)

AiAi, AjAk 2p2
i pjpk

AiAj , AiAj pipj(1 + pi + pj + 2pipj)/2
AiAj , AiAk pipjpk(1 + 2pi)
AiAj , AkAl 2pipjpkpl

These are not the same as simply multiplying together the proportions of
each of the two genotypes. Relatives are more likely than random members
of the population to have the same genotype. Adding together the first
and fifth of these equations and then summing over all alleles Ai, Aj gives
the probability that two (untyped) sibs have the same genotype without
specifying that genotype. This probability is

Pr(sibs the same) =
1
4

(
1 + 2

∑
i

p2
i + 2(

∑
i

p2
i )

2 −
∑

i

p4
i

)

This expression tends to 1/4 as the number of alleles increases and the
proportion of each one becomes small.

Exercise 4.8 Find the probability with which a noninbred uncle and his non-
inbred nephew both have A1A2 genotypes if they belong to a population in Hardy-
Weinberg equilibrium with proportions p1 and p2 for alleles A1 and A2.
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MATCH PROBABILITIES

We now return to an assumption that we made when considering trans-
fer evidence in Chapter 2. Recall that we arrived at Equation 2.3 as the
expression for the LR in a single crime scene stain case:

LR =
1

Pr(GC |GS ,Hd, I)

We assumed that knowledge of the suspect’s genotype GS did not influence
our uncertainty about the offender’s genotype. Cases arise, however, where
that assumption is not correct. It is not correct, for example, when it is
suggested that the offender is a close relative of the suspect. It is also not
correct when the suspect and offender should realistically be considered both
members of the same subpopulation within the population from which the
database for estimating allele proportions has been constructed. In these
cases, knowledge of the suspect’s genotype does influence our uncertainty
about that of the offender and we now explain how to take account of this
knowledge.

To maintain consistency with notation of the previous section, we refer
to the offender as X and the suspect as Y . Consider first the case where the
suspect has been found to have heterozygous genotype AiAj and matches the
genotype of the stain presumed to have come from the offender. We require
Pr(GX = AiAj |GY = AiAj), which in Chapter 2 we wrote as Pr(GC =
AiAj |GS = AiAj ,Hd, I). From the third law of probability, we note that

Pr(GX = AiAj |GY = AiAj) =
Pr(GX = AiAj , GY = AiAj)

Pr(GY = AiAj)
(4.19)

The joint probability in the numerator of the right hand side of this equation
was found in the previous section.

Full Sibs

If X and Y are full sibs, we have found that

Pr(GX = AiAi, GY = AiAi) = p2
i (1 + pi)2/4

Pr(GX = AiAj , GY = AiAj) = pipj(1 + pi + pj + 2pipj)/2

The unconditional probabilities that GY is AiAi or AiAj are p2
i or 2pipj , so

from Equation 4.19

Pr(GX = AiAi|GY = AiAi) = (1 + pi)2/4
Pr(GX = AiAj |GY = AiAj) = (1 + pi + pj + 2pipj)/4
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Other Relatives

To evaluate joint genotype probabilities for relatives other than sibs, we show
the four-allele descent measures in Table 4.8 for many common relationships.
Determining the match probabilities is left as an exercise.

Exercise 4.9 Determine the probability with which one relative has a specific
homozygous or heterozygous genotype given that the other relative has this type,
for each of the following pairs of relatives: (a) Parent-child; (b) Grandparent-
grandchild; (c) Half sibs; (d) Uncle-nephew; (e) First cousins.

Unrelated Members of the Same Subpopulation

In the previous sections we have used δ terms that were specific for a precisely
defined relationship between two individuals. We now consider the case
where X and Y are unrelated individuals that have been selected at random
from a subpopulation. In this situation, we can work with average values for
the δ terms provided mating is at random in the subpopulation. This means
that the ibd relationships among a set of alleles do not depend on how the
alleles are arranged within individuals: δab has the same value whether a
and b are in the same or different individuals, for example. For alleles at the
same locus, the four average measures are:

• θ is the probability that any two alleles a and b, selected at random
from a subpopulation, are ibd: θ = Pr(a ≡ b).

• γ is the probability that any three alleles a, b, and c, selected at random
from a subpopulation, are ibd: γ = Pr(a ≡ b ≡ c).

• δ is the probability that any four alleles a, b, c, and d, selected at
random from a subpopulation, are ibd: δ = Pr(a ≡ b ≡ c ≡ d).

• ∆ is the probability that any two pairs of alleles a, b and c, d, selected
at random from a subpopulation, are ibd: ∆ = Pr(a ≡ b and c ≡ d).

It can be shown (Weir 1994) that these 4 summary measures allow the 15
descent measures for 4 alleles a, b, c and d in Table 4.4 to be evaluated from

δ0 = 1− 6θ + 8γ + 3∆− 6δ
δab = δac = δad = δbc = δbd = δcd = θ − 2γ −∆ + 2δ

δabc = δabd = δacd = δbcd = γ − δ
δab.cd = δac.bd = δad.bc = ∆− δ

δabcd = δ



MATCH PROBABILITIES 129

Table 4.8: Descent measures for common relationships.

Parent- Grandparent- Full Half Uncle- First
Probability child1 -grandchild2 sibs3 sibs4 nephew5 cousins6

δ0 0 1/2 1/4 1/2 1/2 3/4
δab 0 0 0 0 0 0
δcd 0 0 0 0 0 0
δac 1/2 1/4 1/4 0 1/4 0
δad 0 0 0 0 0 0
δbc 1/2 1/4 0 1/2 1/4 1/4
δbd 0 0 1/4 0 0 0
δabc 0 0 0 0 0 0
δabd 0 0 0 0 0 0
δacd 0 0 0 0 0 0
δbcd 0 0 0 0 0 0
δab.cd 0 0 0 0 0 0
δac.bd 0 0 1/4 0 0 0
δad.bc 0 0 0 0 0 0
δabcd 0 0 0 0 0 0

θXY 1/4 1/8 1/4 1/8 1/8 1/16
∆Ẍ+Ÿ 0 0 1/8 0 0 0

1 child Y receives c from parent X.
2 grandchild Y receives c from grandparent X.
4 X and Y receive a, c from one parent and b, d from the other.
4 common parent transmits b to X and c to Y .
5 nephew Y receives b from full sib of uncle X.
6 X receives b and Y receives c from full sibs.
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Substituting these values of the 15 descent measures into Tables 4.5 and
4.7 provides the following joint probabilities for random individuals X and
Y in the same subpopulation:

Pr(GX = AiAi, GY = AiAi) = (1− 6θ + 8γ + 3∆− 6δ)p4
i

+ 6(θ − 2γ −∆ + 2δ)p3
i

+ (4γ + 3∆− 7δ)p2
i + δpi

Pr(GX = AiAj , GY = AiAj) = 4(1− 6θ + 8γ + 3∆− 6δ)p2
i p

2
j

+ 4(θ − 2γ −∆ + 2δ)pipj(pi + pj)
+ 4(∆− δ)pipj , i 6= j

The single-individual genotypic proportions for a random-mating popu-
lation are

Pr(GY = AiAi) = p2
i + pi(1− pi)θ

Pr(GY = AiAj) = 2pipj(1− θ)

so that the probabilities of the genotype of X conditional on the genotype
of Y are

Pr(GX = AiAi|GY = AiAi) = [(1− 6θ + 8γ + 3∆− 6δ)p3
i

+ 6(θ − 2γ −∆ + 2δ)p2
i

+ (4γ + 3∆− 7δ)pi + δ]/[pi + (1− pi)θ]

Pr(GX = AiAj |GY = AiAj) = 2[(1− 6θ + 8γ + 3∆− 6δ)pipj

+ (θ − 2γ −∆ + 2δ)(pi + pj)
+ (∆− δ)]/(1− θ), i 6= j

For populations in an evolutionary equilibrium, meaning that the quan-
tities θ, γ, δ, and ∆ are not changing over time, Li (1996) showed that

γ =
2θ2

1 + θ

δ =
6θ3

(1 + θ)(1 + 2θ)

∆ =
θ2(1 + 5θ)

(1 + θ)(1 + 2θ)
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and substituting these into the above conditional probabilities leads to the
results of Balding and Nichols (1994):

Pr(GX = AiAi|GY = AiAi) =
[2θ + (1− θ)pi][3θ + (1− θ)pi]

(1 + θ)(1 + 2θ)
(4.20)

Pr(GX = AiAj |GY = AiAj) =
2[θ + (1− θ)pi][θ + (1− θ)pi]

(1 + θ)(1 + 2θ)

It is Equations 4.20 that should be used in the general case when the
assumption Pr(GC |GS ,Hd, I) = Pr(GC |Hd, I) is dubious. The equation
forms the basis of one of the recommendations of the 1996 report of the
United States National Research Council. It is meant to be used when two
people, the suspect and the person who left the crime sample, both belong
to the same subpopulation but allele proportions are not available for that
subpopulation. The quantity θ describes the degree of relationship of pairs
of alleles within the subpopulation relative to the total population. Allele
independence, e.g., Hardy-Weinberg equilibrium, is assumed to hold within
subpopulations, but differences in allele proportions among subpopulations
mean that there are departures from independence in the whole popula-
tion. In other words, this treatment explicitly allows for inbreeding and
relatedness for all individuals in the population, so that Hardy-Weinberg
equilibrium is assumed not to hold at the population level. However, in-
breeding levels and relatedness levels for individuals in different families will
generally be low.

Effects of θ Corrections

What effect does the use of Equations 4.20 instead of the simple product
rule have on the interpretation of matching DNA profiles? The largest effect
is the conceptual one of including information on the suspect’s genotype in
determining the probability of the offender having that type. The numerical
effects are small unless allele proportions are small and θ is large.

For heterozygotes AiAj in a population with allele proportions pi =
pj = p and with structure characterized by θ, the likelihood ratio is (from
Equations 4.20)

LR =
(1 + θ)(1 + 2θ)
2[θ + (1− θ)p]2
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Some numerical values of this expression are

θ = 0 θ = 0.001 θ = 0.01 θ = 0.03
p = 0.01 5, 000 4, 152 1, 295 346
p = 0.05 200 193 145 89
p = 0.10 50 49 43 34

For homozygotes AiAi, with pi = p, the effects tend to be slightly greater.
The likelihood ratio is

LR =
(1 + θ)(1 + 2θ)

[2θ + (1− θ)p][3θ + (1− θ)p]

and some numerical values are

θ = 0 θ = 0.001 θ = 0.01 θ = 0.03
p = 0.01 10, 000 6, 439 863 157
p = 0.05 400 364 186 73
p = 0.10 100 96 67 37

The NRC recommendation (National Research Council 1996) of using θ =
0.03 in some cases therefore halves the likelihood ratio for DNA profiles per
locus when allele proportions are 0.10.

The Relative Nature of Coancestries

It appears that Equations 4.20 offer a solution to the problem of allowing for
the effects of population structure on matching probabilities. It is necessary,
however, to note that the parameter θ is a relative measure and that the
pi terms are allele proportions in the reference population. To explain this
remark, it is helpful to return to the expressions for genotype proportions
at a locus.

Central to our evolutionary model is the assumption of random mating
within subpopulations. If allele Ai has proportion piS in a subpopulation,
then, for example, AiAi homozygotes have proportion p2

iS
in that subpopu-

lation and this is not altered by the fact of having seen the genotype once
already in the subpopulation. However, we generally do not have informa-
tion about the values of the piS . If we take expectations over all replicates
of the evolutionary process, we have an expected homozygote proportion of

E(p2
iS

) = p2
i + pi(1− pi)θS (4.21)

as given by Cockerham (1969). In this expression, pi is the average of the
allele proportion over all replicates of the evolutionary process (the separate
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columns in Figure 4.1) and could be called the reference population propor-
tion. The quantity θS measures the relationship of two alleles within the
subpopulation assuming that there is no relationship for alleles in different
subpopulations. We expect this quantity to increase, or at least remain
constant, over time.

We can allow for dependence among subpopulations of the kind that
would occur for a set of (say) Caucasian subpopulations that have a single
ancestral population P . Alleles from two such subpopulation are more likely
to be identical than would be two alleles from subpopulations from different
racial groups. In general, we would expect that subpopulations that have
had a greater time of evolutionary separation would have a lesser amount
of relationship. If P is the population from which a current collection of
subpopulations descended, and if the coancestry in that population was θP ,
then we can modify Equation 4.21 to be conditional on the allele proportions
piP at that time:

E(p2
iS
|piP ) = p2

iP
+ piP (1− piP )βS (4.22)

(Cockerham 1969) where β = (θS − θP )/(1 − θP ). Taking expectations
over values of piP , i.e. over replicates of the evolutionary process up until
the time of subpopulation divergence, leads us from Equation 4.22 back to
Equation 4.21 provided we assume zero coancestry in the initial reference
population.

The situation we face in forensic science is of having a sample from a
population that is actually an amalgamation of several subpopulations. Be-
cause the individual piS values are not available, we base our theoretical
predictions on expected values such as that in Equations 4.21 or 4.22. If βS

was the same for every subpopulation in the population, then the quantity
piP (1−piP )βS would be the variance of allele proportions among the subpop-
ulations from the same population. We will see in Chapter 5 that βS can be
estimated from data from the subpopulations, and this quantity is termed
the coancestry of a subpopulation relative to the population. To estimate
the quantity θS by itself, however, we would need data from subpopulations
that had been separated ever since the initial reference population (Cocker-
ham and Weir 1987).

Similar remarks apply to Equations 4.20. If θ is the coancestry of the
subpopulation of interest, relative to subpopulations that have been sep-
arated so long that they are independent, then reference proportion pi is
the average allele proportion over all subpopulations. The power of Equa-
tions 4.20 is that they offer a theoretical means of describing the effects of
variation among subpopulations.
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ARBITRARY SETS OF ALLELES

In the previous sections we have considered genotype probabilities under the
assumption of independence among alleles at a locus, and then the effects
of departures from independence caused by inbreeding. We also considered
joint genotypic probabilities when pairs of individuals are related or are both
members of the same population. We now extend that treatment to allow the
probability of any set of alleles at a locus to be determined. This will provide
an alternative derivation of the conditional probabilities in Equations 4.20,
and will allow extensions to more than two people as may be needed for
parentage cases (Chapter 6) or the interpretation of mixed stains (Chapter
7).

We need to return to the discussion at the beginning of this chapter.
We made the distinction there between genetic and statistical sampling.
Statistical sampling refers to the variation among repeated samples from
the same population. If a population has allele Ai in proportion pi, then
the probabilities with which random samples of size 2n alleles have sample
proportions p̃i are given by the multinomial distribution (Chapter 3) and
this forms the basis of much of the work in Chapter 5. Genetic sampling
refers to the variation among replicates of the evolutionary process, and
there is no analog to the binomial that holds for all evolutionary scenarios.

When the population can be regarded as having reached an evolutionary
equilibrium, then allele proportions follow the Dirichlet distribution (Wright
1951). This means that the probability of a population having alleles Ai with
proportions qi is given by

Pr({qi}) =
Γ(γ.)∏
i Γ(γi)

∏
i

q
(γi−1)
i

where the parameters γi are given by γi = (1 − θ)pi/θ and γ. is their sum
γ. =

∑
i γi = (1− θ)/θ. Here reference proportion pi is the allele proportion

averaged over all replicate populations, and θ is the same quantity that has
been discussed in the previous section. It is assumed to be nonzero. The
gamma function Γ(x) generally has to be evaluated numerically, but has the
property that Γ(x+ 1) = xΓ(x). If x is an integer, Γ(x) = (x− 1)!.

A property of the Dirichlet distribution is that the probability of a set
of alleles, in which type Ai occurs ti times and

∑
i ti = t. is

Pr(
∏
i

Ati
i ) =

Γ(γ.)
Γ(γ. + t.)

∏
i

Γ(γi + ti)
Γ(γi)

(4.23)
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and this result holds no matter how the alleles are distributed among geno-
types. For a single allele, the equation reduces to

Pr(Ai) =
γi

γ.
= pi

as it should. For two copies of Ai,

Pr(A2
i ) =

γi(γi + 1)
γ.(γ. + 1)

= pi[(1− θ)pi + θ] (4.24)

and for one copy of each of Ai and Aj ,

Pr(AiAj) =
γiγj

γ.(γ. + 1)
= (1− θ)pipj (4.25)

The probability of a heterozygote AiAj is twice the probability of the allele
set Ai, Aj because of the two allele orders AiAj and AjAi.

For sets of four alleles, if they are all of type Ai,

Pr(A4
i ) =

γi(γi + 1)(γi + 2)(γi + 3)
γ.(γ. + 1)(γ. + 2)(γ. + 3)

=
pi[(1− θ)pi + θ][(1− θ)pi + 2θ][(1− θ)pi + 3θ]

(1 + θ)(1 + 2θ)
(4.26)

and this can be regarded as the probability with which two individuals in
the population are both homozygous AiAi. If two of the alleles are Ai and
two are Aj ,

Pr(A2
iA

2
j ) =

γi(γi + 1)γj(γj + 1)
γ.(γ. + 1)(γ. + 2)(γ. + 3)

=
pi[(1− θ)pi + θ]pj [(1− θ)pj + θ]

(1 + θ)(1 + 2θ)
(4.27)

and this is one-fourth the probability with which two individuals, X and Y ,
are heterozygous AiAj (allowing for the two possible orders of alleles per
individual). Combining Equations 4.24 and 4.26 gives

Pr(GX = AiAi|GY = AiAi) =
Pr(A4

i )
Pr(A2

i )

=
[(1− θ)pi + 2θ][(1− θ)pi + 3θ]

(1 + θ)(1 + 2θ)
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as has been given in Equation 4.20. The conditional probability for het-
erozygotes Pr(GX = AiAj |GY = AiAj), also given in Equation 4.20, follows
from dividing Equation 4.27 by Equation 4.25.

The full power of the Dirichlet approach becomes apparent for sets of
more than four alleles, for which there is no exact descent measure formula-
tion. To anticipate a result needed in Chapter 6, the probability of a woman
and an alleged father, if he is not the child’s father, both being homozygous
AiAi and the woman’s child receiving paternal allele Ai is

Pr(AiAi, AiAi, Ai) = Pr(A5
i )

=
γi(γi + 1)(γi + 2)(γi + 3)(γi + 4)
γ.(γ. + 1)(γ. + 2)(γ. + 3)(γ. + 4)

=
pi[(1− θ)pi + θ][(1− θ)pi + 2θ]

(1− θ)(1 + θ)

× [(1− θ)pi + 3θ][(1− θ)pi + 4θ]
(1 + 2θ)(1 + 3θ)

A result of the type needed in Chapter 7 is for the interpretation of a mixed
stain having alleles Ai, Aj , and Ak from a victim and her attacker. If the
victim is heterozygous AiAj and a man suspected of being the attacker is
heterozygous AiAk, a probability needed if the actual attacker is homozy-
gous AkAk is

Pr(AiAj , AiAk, AkAk) = Pr(A2
iAjA

3
k)

=
γi(γi + 1)γjγk(γk + 1)(γk + 2)

γ.(γ. + 1)(γ. + 2)(γ. + 3)(γ. + 4)(γ. + 5)

=
pi[(1− θ)pi + θ]pj

(1 + θ)

× pk[(1− θ)pk + θ][(1− θ)pk + 2θ)]
(1 + 2θ)(1 + 3θ)(1 + 4θ)

PAIRS OF LOCI

All the theory to this point has been for a single genetic locus, whereas the
human genome contains many thousands of loci. For purposes of human
identification, it will obviously be better to use as much information, mean-
ing as many loci, as possible. Some of the complications in going from one
to many loci can be illustrated by considering two loci.
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Table 4.9: Gamete probabilities from genotypes at two loci.

Gametic Gamete
Genotype arrangement A1B1 A1B2 A2B1 A2B2

A1A1B1B1 A1B1/A1B1 1 0 0 0
A1A1B1B2 A1B1/A1B2 1/2 1/2 0 0
A1A1B2B2 A1B2/A1B2 0 1 0 0
A1A2B1B1 A1B1/A2B1 1/2 0 1/2 0
A1A2B1B2 A1B1/A2B2 (1− c)/2 c/2 c/2 (1− c)/2
A1A2B1B2 A1B2/A2B1 c/2 (1− c)/2 (1− c)/2 c/2
A1A2B2B2 A1B2/A2B2 0 1/2 0 1/2
A2A2B1B1 A2B1/A2B1 0 0 1 0
A2A2B1B2 A2B1/A2B2 0 0 1/2 1/2
A2A2B2B2 A2B2/A2B2 0 0 0 1

Consider locus A with alleles A1 and A2 and locus B with alleles B1, and
B2. At locus A an individual may have genotype A1A1, A1A2, or A2A2,
and at locus B the same individual may have genotype B1B1, B1B2, or
B2B2. Taking both loci into account, there will therefore be nine different
genotypes: A1A1B1B1, A1A1B1B2, . . . , A1A2B2B2. These are displayed in
Table 4.9. Individuals transmit one allele per locus to their children, so that
there are four possible types of gamete or haplotype: A1B1, A1B2, A2B1,
and A2B2. Genotypes are formed by the union of maternal and paternal
gametes.

If an individual is homozygous at one or both loci there is no ambigu-
ity about the types of gametes that the individual received. For example,
an A1A1B1B2 must have been formed from the union of A1B1 and A1B2

gametes, although it will not be known which one came from which parent.
The gametic origins of the genotype can be emphasized by writing the geno-
type with a slash separating the gametes: A1B1/A1B2. All eight genotypes
that are homozygous at one or both loci can be represented by one such
gametic arrangement.

There is ambiguity with double heterozygotes: A1A2B1B2. These geno-
types arise from two different gametic pairings: A1B1/A2B2 andA1B2/A2B1,
as indicated in the middle element of the array in Table 4.9. It is not possible
to distinguish these two only on the basis of the individual’s genotype.
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Linkage

For the transmission of gametes, there are three cases to consider. Doubly
homozygous individuals received two copies of the same gamete and can
transmit only that kind: A1A1B1B1 can transmit only A1B1 for example.
Individuals who are homozygous at one locus and heterozygous at the other
have received two different gametes, and can transmit each of these two with
equal probability: A1A1B1B2 individuals transmit A1B1 and A1B2 equally
often.

Because of the possibility of recombination between loci, however,
doubly heterozygous individuals can transmit four kinds of gametes–the two
parental types that the individual received and the two recombinant
types that are different from both parental types. We write the probability
of recombination as c and note that each recombinant gamete is transmitted
with the same probability of c/2 and each parental gamete is transmitted
with probability (1− c)/2. Loci that are on different chromosomes, or that
are far apart on the same chromosome, are said to be unlinked. For such
loci, double heterozygotes produce all four types of gamete with equal prob-
ability. This corresponds to c = 0.5, and the mechanism by which recombi-
nation takes place usually ensures that 0 ≤ c ≤ 0.5 for all pairs of loci. Loci
that are (virtually) at the same position on a chromosome are said to be
completely linked and have zero recombination fraction, c = 0. For such
loci, double heterozygotes can transmit only the two parental gametes–each
with a probability of 0.5. To summarize this discussion, we show gametic
probabilities in Table 4.9.

Linkage disequilibrium

Partly because of the linkage phenomenon, the probability with which an
individual receives a specific A allele may be related to the probability with
which it receives a specific allele at locus B. This phenomenon is known as
linkage disequilibrium, even though it can exist between the alleles at
unlinked loci. Formally, the coefficient DAB of linkage disequilibrium for
alleles A and B at loci A and B is defined as the difference between the AB
gamete proportion and the product of A and B allele proportions pA, pB:

DAB = PAB − pApB

Even though the two alleles may have proportions that do not change over
time, the proportion of the pair AB will change. In Box 4.8 we show how
linkage disequilibrium decays as recombination rearranges pairs of alleles at
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Table 4.10: Proportions of two-locus genotypes.

Locus B

Locus A B1B1 B1B2 B2B2 Total

A1A1 1 : PA1B1
A1B1

2 : PA1B1
A1B2

3 : PA1B2
A1B2

PA1A1

A1A2 4 : PA1B1
A2B1

5 : PA1B2
A2B1

+ PA1B1
A2B2

6 : PA1B2
A2B2

PA1A2

A2A2 7 : PA2B1
A2B1

8 : PA2B1
A2B2

9 : PA2B2
A2B2

PA2A2

Total PB1B1 PB1B2 PB2B2 1

different loci. The value DAB in one generation changes to D′
AB in the next:

D′
AB = (1− c)DAB

The linkage disequilibrium decays by a maximum amount of one-half each
generation for unlinked genes, and this rate is quite fast. The derivation
in Box 4.8 makes use of the notation displayed in Table 4.10 for two-locus
genotype proportions.

Disequilibrium in Admixed Populations

One way in which linkage disequilibrium can be created is by the amalgama-
tion of two populations, in the same way that the Wahlund effect generates
Hardy-Weinberg disequilibrium. Even if two subpopulations are each in
linkage equilibrium there may be linkage disequilibrium in the combined
population. The amount of disequilibrium is proportional to the differences
between subpopulations of allele proportions at the two loci. If the two
subpopulations are indexed by α and β, and allele proportions are pAα, pAβ

for allele A and pBα, pBβ for allele B, then in the whole population the
disequilibrium is

DAB = mαmβ[pAα − pAβ][pBα − pBβ]

where mα and mβ are the proportions of the whole population in the two
subpopulations. This result is derived in Box 4.9.
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Box 4.8: Decay of linkage disequilibrium

The gamete proportion for any pair of alleles can be expressed as the product of
allele proportions plus a linkage disequilibrium coefficient:

PA1B1 = pA1pB1 +DA1B1 PA1B2 = pA1pB2 +DA1B2

PA2B1 = pA2pB1 +DA2B1 PA2B2 = pA2pB2 +DA2B2

When these gamete proportions are summed over all the alleles at one locus, they
give the allele proportions at the other locus. If A2 indicates the sum of all alleles
other than A1 at the A locus, and B2 indicates the sum of all alleles other than B1

at the B locus,

PA1B1 + PA1B2 = pA1 PA2B1 + PA2B2 = pA2

PA1B1 + PA2B1 = pB1 PA1B2 + PA2B2 = pB2

and these equations imply that DA1B1 = DA2B2 and DA1B1 = −DA1B2 = −DA2B1 .
Summing the probabilities of gamete A1B1 in Table 4.9, and using the notation of
Table 4.10, the proportion of A1B1 gametes in an offspring population is

P ′
A1B1

= PA1B1
A1B1

+
1
2
(PA1B1

A1B2
+ PA1B1

A2B1
+ PA1B1

A2B2
)− c

2
(PA1B1

A2B2
− PA2B1

A1B2
)

= PA1B1 − c(PA1B1PA2B2 − PA1B2PA2B1)
= PA1B1 − cDA1B1

where the second step depends on random mating, implying that two-locus genotype
proportions are the products of gamete proportions, and the third step depends
upon the relation found above among the four linkage disequilibrium coefficients.
Subtracting the (constant) product of allele proportions from each side of the tran-
sition equation gives

P ′
A1B1

− pA1pB1 = PA1B1 − pA1pB1 − cDA1B1

so that

D′
A1B1

= (1− c)DA1B1



PAIRS OF LOCI 141

Box 4.9: Linkage disequilibrium in subdivided populations

The proportions PABα
, PABβ

for AB gametes in subpopulations α, β reflect the
linkage equilibrium within each one, and are therefore the products of the allele
proportions in those subpopulations:

PABα = pAαpBα PABβ = pAβpBβ

In the combined population, therefore:

PAB = mαPABα +mβPABβ

= mαpAαpBα +mβpAβpBβ

= [mαpAα +mβpAβ ][mαpBα +mβpBβ ]
+mαmβ [pAα − pAβ ][pBα − pBβ ]

= pApB +mαmβ [pAα − pAβ ][pBα − pBβ ]

which leads to the result for the linkage disequilibrium coefficient given in the text.
Now suppose the population consists of a number of subpopulations, the ith being
in proportion mi. The linkage disequilibrium in the whole population, when each
subpopulation is in linkage equilibrium, is

DAB =
∑

i

mi(pAi − pA)(pBi − pB)

Here pAi and pBi are the allelic proportions in the ith subpopulation, and pA and
pB are the overall proportions. Note that this linkage disequilibrium can be either
positive or negative.
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Exercise 4.10 Suppose a population consists of proportions 0.8 and 0.2 of two
subpopulations, each of which is in Hardy-Weinberg and linkage equilibrium for
genes A and B but with different proportions, 0.4 and 0.2 respectively, for allele
A and different proportions 0.2 and 0.6 for allele B. What is the proportion of
AB gametes and the coefficient DAB of linkage disequilibrium in the combined
population?

Multilocus Genotypic Proportions

At a single locus, we have seen that the Hardy-Weinberg law allows geno-
typic proportions to be expressed as products of allele proportions. The
DNA profiles used in forensic science are almost always multilocus, and it
is very convenient to be able to express profile proportions as products of
the proportions of the alleles at each locus in the profile. Suppose the loci
are A, B, C, . . ., and that the profile of interest has alleles A1 and A2 at
locus A, B1 and B2 at locus B, alleles C1 and C2 at locus C and so on. The
product rule generalizes the Hardy-Weinberg law to

Pr(A1A2B1B2C1C2 . . .) = 2HpA1pA2pB1pB2pC1pC2 . . .

with H being the number of loci that are heterozygous in the profile. It is
often stated that this result assumes both Hardy-Weinberg equilibrium and
linkage disequilibrium, but in fact more is required. Linkage disequilibrium,
as discussed here, is defined to refer to pairs of alleles–one per locus. The
product rule requires complete independence among all alleles in the profile.
In Chapter 5 we discuss how to address this issue from multilocus data.

SUMMARY

Forensic evidence involving DNA profiles cannot be interpreted fully unless
the genetic nature of the evidence is taken into account. At the simplest
level, this may amount to invoking assumptions of independence of the con-
stituent alleles within a profile, but a much richer theory of population
genetics is available to the forensic scientist. This theory enables such com-
plications as population structure and relatedness to be folded into the the
calculation of likelihood ratios that we believe are at the heart of interpreting
scientific evidence.



Chapter 5

Statistical Genetics

INTRODUCTION

We now return to the single-stain transfer case we discussed in Chapter
2 and consider further evaluation of the likelihood ratio in Equation 2.5.
Recall that we used G to denote the matching genotypes of the suspect and
the crime stain.

LR =
1

Pr(G|Hd, I)

The probability in the denominator was assigned the value P , the proportion
of the population who have genotype G. Then

LR =
1
P

We are now going to combine the ideas developed in Chapters 3 and 4
to assign a value to P for a multilocus genotype using estimates of allele
proportions.

One of the issues that has arisen in connection with DNA evidence statis-
tics is that of the apparent disparity between the extreme smallness of a
DNA genotype proportion and the limited size of the sample used for esti-
mating the proportion. For example, how can a sample of 100 people provide
credible probabilities that may be only one in a million?

To answer this question it is necessary to invoke both genetic and sta-
tistical reasoning. In this chapter we will explain such reasoning by means
of an example based on the five-locus AmpliTypeR (“Polymarker”) profile
shown in Table 5.1.

143
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Table 5.1: An AmpliTypeR profile.

Locus Genotype

LDLR AB
GYPA BB
HBGG BC
D7S8 AB
Gc BC

ESTIMATING PROPORTIONS

We will see in Table 5.3 that there are three genotypes for LDLR, three for
GYPA, six for HBGG, three for D7S8 and six for Gc. This means that there
are 972 five-locus genotypes that can potentially be revealed by the Poly-
marker system. The proportions of these genotypes will vary considerably,
with some being relatively common and many being very rare. The simplest
estimate of the proportion of any particular genotype in a population is just
its proportion in a sample from that population, and this is the maximum
likelihood estimate discussed in Chapter 3. Unless the sample is extremely
large, however, most of these genotypes will not be found in the sample even
if they are present in the population.

We can explain this last point as follows. Consider any one of the geno-
types; as we have seen in Chapter 3, the number of individuals in a sample
with that particular genotype has a binomial probability distribution. The
two parameters of the distribution are the known sample size n and the
unknown population proportion P of people with that type. We first use
the binomial distribution to calculate the probability of there being no in-
dividuals in the sample with the genotype in question:

Pr(Zero copies of genotype in the sample) =
n!

0!n!
P 0(1− P )n

= (1− P )n

From this we can calculate the probability of there being one or more copies
of this genotype in the sample:

Pr(At least one copy of the genotype in the sample) = 1− (1− P )n

In Table 5.2 we show, for different values of P , the approximate sample size
required for this probability to be at least 0.95. Evidently, databases of
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a few hundred, or even a few thousand, are not going to ensure that rare
genotypes are seen.

Table 5.2: Approximate sample sizes n needed to have 0.95 probability of detecting
a genotype for which the proportion is P .

P n

1 1
0.1 30
0.01 300
0.001 3,000
0.000,1 30,000
0.000,01 300,000
0.000,001 3,000,000

The solution to the problem of estimating small multilocus genotype pro-
portions rests on the assumption of independence between the constituent
parts of the profile. If it is reasonable to assume independence between loci,
a multilocus genotype proportion can be estimated reliably by multiplying
together the constituent single-locus genotype proportions.

To illustrate the process, we use data collected by Cellmark Diagnostics
from a sample of 103 people who were typed at the Polymarker loci. Ta-
ble 5.3 is in five parts, each one corresponding to the locus shown in column
1. The second column shows the designations of the single-locus genotypes,
and the numbers of people in the sample who have that genotype are shown
in the third column. These counts are divided by the total of 103 to give
the proportions shown in the fourth column. We know these sample propor-
tions are estimates of the corresponding population proportions, and we can
gain some idea of their precision by estimating their standard deviations. In
Chapter 3 we saw that an estimated proportion P̂ , based on a sample of size
n, has a probability distribution with a standard deviation of

√
P (1− P )/n,

where P is the population proportion. We cannot use this equation directly
because we don’t know P , but statistical theory tells us that replacing P
by P̂ provides a good estimate of the standard deviation. These estimates,√
P̂ (1− P̂ )/n, are shown in the fifth column of Table 5.3.
The next thing we can do is recover the allele counts at each locus by the

simple counting method described in Chapter 4. If these counts are divided
by the total number of alleles, 2× 103, we obtain sample allele proportions,
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Table 5.3: Sample genotype proportions P̂ (and standard deviations) for Poly-
marker loci.

Observed values Product estimates
Locus Genotype Count P̂ (Std. dev.) P̂ (Std. dev.)

LDLR AA 17 0.165 (0.037) 0.191 (0.030)
AB 56 0.544 (0.049) 0.492 (0.009)
BB 30 0.291 (0.045) 0.317 (0.039)

GYPA AA 31 0.301 (0.045) 0.290 (0.037)
AB 49 0.476 (0.049) 0.497 (0.005)
BB 23 0.223 (0.041) 0.213 (0.032)

HBGG AA 30 0.291 (0.045) 0.312 (0.039)
AB 55 0.534 (0.049) 0.488 (0.010)
AC 0 0.000 (0.000) 0.005 (0.005)
BB 17 0.165 (0.037) 0.191 (0.030)
BC 1 0.010 (0.010) 0.004 (0.004)
CC 0 0.000 (0.000) 0.000 (0.000)

D7S8 AA 31 0.301 (0.045) 0.296 (0.038)
AB 50 0.485 (0.049) 0.496 (0.006)
BB 22 0.214 (0.040) 0.208 (0.032)

Gc AA 4 0.039 (0.019) 0.064 (0.015)
AB 11 0.107 (0.030) 0.100 (0.016)
AC 33 0.320 (0.046) 0.277 (0.026)
BB 8 0.078 (0.026) 0.040 (0.011)
BC 14 0.136 (0.034) 0.218 (0.026)
CC 33 0.320 (0.046) 0.301 (0.038)

Source: Cellmark Diagnostics.
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Box 5.1: Standard deviation of estimated allele proportions

Allele proportions are linear combinations of genotype proportions. If the sample
proportion of allele Ai is p̂i, and the sample proportion of genotype AiAj is P̂ij ,
then the variance of p̂i is

Var(p̂i) = Var(P̂ii +
1
2

∑
j 6=i

P̂ij)

= Var(P̂ii) +
∑
j 6=i

Cov(P̂ii, P̂ij) +
1
4

∑
j 6=i

Var(P̂ij)

=
1
2n

(pi + Pii − 2p2
i )

where Cov denotes covariance, that is, the expected value of the product of two
quantities minus the product of their expected values. When the Hardy-Weinberg
relationship holds, so that Pii = p2

i , this reduces to

Var(p̂i) =
1
2n
pi(1− pi)

as expected for a sample from a binomial distribution B(2n, pi).

and these, in turn, are estimates of the population proportions. If we denote
estimates of the proportions for alleles A and B in a system such as LDLR by
p̂A, and p̂B, and if the three estimated genotype proportions are P̂AA, P̂AB,
and P̂BB, then we have

p̂A = P̂AA +
1
2
P̂AB

p̂B = P̂BB +
1
2
P̂AB

Allele proportion estimates are shown in Table 5.4, and once again the pre-
cision of the estimates can be gauged by the estimated standard deviations
also displayed in this table. Theoretical expressions for these standard de-
viations are derived in Box 5.1.
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Table 5.4: Sample allelic proportions p̂ (and standard deviations) for Polymarker
loci, using data in Table 5.3.

Locus Allele p̂ (Std. dev.)

LDLR A 0.437 (0.033)
B 0.563 (0.033)

GYPA A 0.539 (0.035)
B 0.461 (0.035)

HBGG A 0.558 (0.033)
B 0.437 (0.033)
C 0.005 (0.005)

D7S8 A 0.544 (0.035)
B 0.456 (0.035)

Gc A 0.252 (0.028)
B 0.199 (0.031)
C 0.549 (0.056)
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Box 5.2: Standard deviation of estimated genotype proportions

The variance of products of sample proportions is not known exactly, but can be
approximated by the following formulae (using Fisher’s formula based on a Taylor
series expansion: Weir 1996). If pi is the proportion for allele Ai

Var(p̂2
i ) ≈ 1

2n4p3
i (1− pi)

Var(2p̂ip̂j) ≈ 1
2n4pipj(pi + pj − 4pipj)

 (5.2)

Sample allele proportions are substituted into these equations, and the square
roots of the results are shown in Table 5.3.

THE PRODUCT RULE

So far we have made no assumptions about the conditions for independence
of alleles within and between loci. If we can assume that the conditions
for independence of alleles within loci exist in the sampled population, then
we can use the Hardy-Weinberg formula to estimate population genotype
proportions from the estimated allele proportions:

PAA =̂ p̂2
A

PAB =̂ 2p̂Ap̂B

PBB =̂ p̂2
B

 (5.1)

Here the symbol =̂ means “is estimated by.” These product estimates are
displayed in column 6 of Table 5.3.

In the last column of Table 5.3 we give estimated standard deviations
for the genotype proportions estimated as the products of allele proportions.
The standard deviations are calculated by a method described in Box 5.2.
Table 5.3 therefore shows the outcomes of two methods for estimating the
population proportions of single-locus genotypes. The first estimate, in col-
umn 3, is from directly counting the number of times each genotype occurs in
the sample. The second estimate, in column 5, is from applying the product
rule to estimated allele proportions.

Which method of estimating genotype proportions is better? This is
not a simple question and the answer depends on the meaning given to
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“better” in this context. The counting method involves no independence as-
sumptions, but the product rule method gives smaller standard deviations.
Therefore the former estimates are intrinsically more accurate, although less
precise, whereas the latter estimates are more precise but may be less accu-
rate, depending on the validity of the independence assumption. These are
very fine distinctions, and we would not expect them to be of any practical
interest in forensic casework.

If independence of alleles is assumed both within and between loci, then
the multilocus genotype proportion is estimated as the product of the sample
proportions for all the alleles in the profile, multiplied by a factor of two for
every locus that is heterozygous in the profile. This is the product rule.
For the profile in Table 5.1 this product is 4.5 × 10−5 which is about two-
thirds the value of the product of the five single-locus genotype proportions,
and we expect it to have a smaller standard deviation than that of the
product of genotype proportions.

Bayesian Approach

Bayesian methods can also be used to estimate genotype proportions as
products of allele proportions on the basis of the Hardy-Weinberg law. We
follow a method outlined by Balding (1995), and first look at the situation
of estimating the proportion P12 of A1A2 genotypes. We have a particular
interest in loci where the genotype may not appear in the sample, although
the corresponding alleles do occur in the sample. If the Hardy-Weinberg
law applies in the population, then P12 = 2p1p2, where p1 and p2 are the
proportions for alleles A1 and A2.

For any heterozygote there are three allele categories: the two alleles
of interest, and all other alleles, which we will collect together under the
name A3. Instead of a Beta prior distribution (Box 3.3), we use a Dirichlet
prior for the three allele categories. In Box 5.3 we show that a Dirichlet
prior combined with a multinomial likelihood results in a Dirichlet posterior
distribution. Expected values of products of quantities that have a Dirichlet
distribution may be found very easily, as shown in Chapter 4. We provide
details in Box 5.3, and give a simple example here. In the absence of any
other information, it is often the case that a uniform prior (a special case of
the Dirichlet) is adopted for the allele proportions. If the counts of alleles
A1, A2, and A3 in a sample of 2n alleles are x1, x2, and x3, then the posterior
expectation of 2p1p2 is

E(2p1p2) =
2(x1 + 1)(x2 + 1)
(2n+ 3)(2n+ 4)
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and the corresponding result for homozygotes A1A1 is

E(p2
1) =

(x1 + 1)(x1 + 2)
(2n+ 3)(2n+ 4)

Balding (1995) pointed out that, for large n, the heterozygote expression
is very close to the maximum likelihood estimate that would result if one
copy of the A1A2 genotype were added to the sample of n individuals. A
similar interpretation for homozygotes would require that x1 is also large.
The posterior means provide nonzero estimates even if the allele counts in
the sample are zero.

The posterior expected values of the squares of 2p1p2 or p2
1 also have

relatively simple expressions:

E(2p1p2)2 =
4(x1 + 1)(x1 + 2)(x2 + 1)(x2 + 2)
(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)

E(p2
1)

2 =
(x1 + 1)(x1 + 2)(x1 + 3)(x1 + 4)
(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)

Under the proposition Hp, in the single-stain transfer case, there is only
one person with the profile since the suspect is the person who left the
crime sample, whereas under the proposition Hd there are two people, that
is, the suspect and the offender. This led Balding (1995) to formulate the
likelihood ratio as E(φ)/E(φ2) where φ is 2p1p2 for heterozygote A1A2 and
p2
1 for homozygote A1A1. Using the posterior expectations from a uniform

prior,

E(2p1p2)
E(2p1p2)2

=
(2n+ 5)(2n+ 6)
2(x1 + 2)(x2 + 2)

E(p2
1)

E(p2
1)2

=
(2n+ 5)(2n+ 6)
(x1 + 3)(x1 + 4)

For large n, the heterozygote expression is close to the reciprocal of the max-
imum likelihood estimate of the genotype proportion that would result from
adding two copies of genotype A1A2 to the sample. A similar interpretation
for the homozygote expression would require that x1 is also large.

EFFECTS OF SUBPOPULATION DATA

When there is Hardy-Weinberg equilibrium within subpopulations, but vari-
ation in allele proportions among subpopulations, the allele proportions
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Box 5.3: General Dirichlet prior
For more than two categories, we can consider the Dirichlet distribution
D(γ1, γ2, . . .) for proportions p1, p2, . . . instead of the Beta distribution Be(α, β)
for p, 1− p. The pdf is

f(p1, p2, . . .) =
Γ(γ1 + γ2 + . . .)
Γ(γ1)Γ(γ2) . . .

pγ1−1
1 pγ2−1

2 . . . , 0 ≤ pi ≤ 1

When γi = 1 for all i, the Dirichlet reduces to a uniform distribution.
For a dataset of 2n alleles, with counts (x1, x2, . . .), Bayes’ theorem leads to a
Dirichlet posterior distribution:

π(p1, p2, . . . |x1, x2, . . .) =
Γ(γ. + 2n)

Γ(γ1 + x1)Γ(γ2 + x2) . . .

× pγ1+x1−1
1 pγ2+x2−1

2 . . .

where γ. = γ1 +γ2 + . . . , 2n = x1 +x2 + . . . Therefore, the Dirichlet is a conjugate
distribution for the multinomial.
For allele Ai, after having seen xi copies in a sample of size 2n, the allele probability
becomes

E(pi|xi) =
Γ(γi + xi + 1)

Γ(γi + xi)
Γ(γ. + 2n)

Γ(γ. + 2n+ 1)

=
γi + xi

γ. + 2n

which is between the prior probability γi/γ. and the sample value xi/n. More
generally, the posterior mean of a product pt1

1 p
t2
2 . . . is

E(pt1
1 p

t2
2 . . . |x1, x2, . . .) =

Γ(γ. + 2n+ t)
Γ(γ. + 2n)

∏
i Γ(γi + xi + ti)∏

i Γ(γi + xi)

=

∏
i

∏ti−1
j=0 (γi + xi + j)∏t−1

j=0(γ. + 2n+ j)

providing each ti is greater than or equal to 1.
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within a subpopulation may be described by a Dirichlet distribution with
parameters γi = (1 − θ)pi/θ. As we discussed in Chapter 4, the quantity
θ describes the relationship of alleles within the subpopulation relative to
that between subpopulations, and pi is the reference proportion for allele Ai

(i.e., the proportion averaged over all subpopulations). The expected values
of the genotype proportions are

Pr(AiAi) = pi[(1− θ)pi + θ]
Pr(AiAj) = 2(1− θ)pipj , i 6= j

and these are taken to apply to any subpopulation in the absence of data
from the subpopulation. What would be the effect of having a sample of
alleles from the subpopulation?

We can invoke the reasoning of Box 5.3, with the Dirichlet parameter
values γi = (1− θ)pi/θ. In Box 5.4 we show that posterior expected values
of the genotype proportions, for large samples, are

Pr(AiAi) = p̃2
i

Pr(AiAj) = 2p̃ip̃j , i 6= j

where the p̃i and p̃j terms are allele proportions in the sample from the
particular relevant subpopulation. We have used a tilde instead of a hat to
distinguish the subpopulation sample proportion from the proportion in a
sample from the whole population. This result is just as we would hope, and
it serves to emphasize that the Dirichlet distribution formulation, on which
Equation 4.23 is based, assumes Hardy-Weinberg within subpopulations.

In Chapter 4 we also gave derivations for genotype proportions condi-
tional on the genotype having been seen once already. For individuals X
and Y Equations 4.20 are

Pr(GX = AiAi|GY = AiAi) =
[2θ + (1− θ)pi][3θ + (1− θ)pi]

(1 + θ)(1 + 2θ)

Pr(GX = AiAj |GY = AiAj) =
2[θ + (1− θ)pi][θ + (1− θ)pj ]

(1 + θ)(1 + 2θ)

Once again, pi is the allele reference proportion, and θ describes variation
among subpopulations. Using the same kind of argument as in Box 5.4, we
can show that if data are available from the relevant subpopulation, then
these genotype probabilities also reduce to

Pr(GX = AiAi|GY = AiAi) = p̃2
i

Pr(GX = AiAj |GY = AiAj) = 2p̃ip̃j , i 6= j
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when p̃i is the sample proportion in the subpopulation. The availability of
data from the subpopulation removes the need for the θ formulation.

CONFIDENCE INTERVALS

Whatever estimate we derive for the population proportion of a particular
genotype, we recognize that it is subject to uncertainty. There are several
sources of uncertainty, as we discuss later, but one refers to the fact that we
must base our estimate on a sample of limited size. In Chapter 3 we met
one approach to dealing with uncertainty created by sampling effects: the
use of confidence intervals.

In Chapter 3 we showed that the binomial distribution B(n, P ) for the
sample proportion P̂ is well approximated by the normal distribution N(P,
P (1−P )/n). This requires a large sample size n and a population proportion
P that is not too far from 0.5. If we substitute the sample proportion P̂ for
P , then the normal distribution provides a 95% confidence interval for P as

P̂ ± 1.96
√
P̂ (1− P̂ )/n (5.3)

The justification for use of such an interval is that, provided the conditions
for the various approximations are valid, in the long run the intervals will
contain the true value of P with probability 0.95. In the column headed
“Normal” of Table 5.5 we show the confidence intervals calculated from
Equation 5.3 for the HBGG genotype proportions.

We must emphasize the limited usefulness of the single-locus genotype
proportion confidence intervals. They were constructed on the basis of the
normal approximation to the binomial, which is unlikely to be good for small
genotype proportions. The symmetry of the normal confidence intervals
means that the lower limit is often negative and has to be truncated at
zero. Of more importance, however, is the fact that we are interested in
multilocus profiles and not single-locus genotypes. Normal-theory intervals
can be constructed for multiple loci, but it is not clear that they are valid in
the present situation. An alternative way of calculating confidence intervals
is provided by bootstrapping (Efron 1982; Efron and Tibshirani 1993).
This method is conceptually simple, and makes fewer assumptions, although
it does impose a computational burden.

Bootstrapping is a method for simulating the process of taking a sample
from a population. When we discussed the binomial and multinomial distri-
butions in Chapter 3, we used the example of drawing balls from an urn, and
we were careful to stipulate that after each ball was sampled it was replaced
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Box 5.4: Effects of subpopulation data
Suppose a sample of size n is available from the relevant subpopulation, and that
the sample contains xi copies of allele Ai, where

∑
i xi = 2n, so that the sample

allele proportions are p̃i = xi/(2n). If K is the number of ways of arranging the 2n
alleles among the n genotypes, i.e., the ordering of distinct genotypes plus ordering
the alleles within heterozygotes, then the probability of the sample plus the crime
stain genotype is

Pr(AiAi, sample) = K
Γ(γ.)

Γ(γ. + 2n+ 2)
Γ(γi + xi + 2)

Γ(γi)

∏
k 6=i

Γ(γk + xk)
Γ(γk)

Pr(AiAj , sample) = 2K
Γ(γ.)

Γ(γ. + 2n+ 2)
Γ(γi + xi + 1)

Γ(γi)
Γ(γj + xj + 1)

Γ(γj)

×
∏

k 6=i,j

Γ(γk + xk)
Γ(γk)

, i 6= j

whereas the probability of the sample is

Pr(sample) = K
Γ(γ.)

Γ(γ. + 2n)

∏
k

Γ(γk + xk)
Γ(γk)

Therefore, the crime stain genotype probabilities, conditional on the information
in the sample, are

Pr(AiAi|sample) =
Γ(γ.)

Γ(γ. + 2n+ 2)
Γ(γi + xi + 2)

Γ(γi)

=

[
θp̃i + (1− θ)pi + θ

2n

] [
θp̃i + (1− θ)pi

2n

]
[
θ + 1− θ

2n

] [
θ + 1

2n

]
and

Pr(AiAj |sample) = 2
Γ(γ.)

Γ(γ. + 2n+ 2)
Γ(γi + xi + 1)

Γ(γi)
Γ(γj + xj + 1)

Γ(γj)

= 2

[
θp̃i + (1− θ)pi

2n

]
[
θ + 1

2n

]
[
θp̃j + (1− θ)pj

2n

]
[
θ + 1− θ

2n

]
As the sample size increases, these probabilities reduce to products of the sample
allele proportions.
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Table 5.5: HBGG genotype 95% confidence intervals, using data in Table 5.3.

Confidence intervals
Genotype Estimate Normal Bootstrap

AA obs. 0.291 ( 0.204, 0.379) ( 0.214, 0.388)
exp. 0.312 ( 0.236, 0.387) ( 0.245, 0.386)

AB obs. 0.534 ( 0.438, 0.630) ( 0.437, 0.631)
exp. 0.488 ( 0.469, 0.507) ( 0.463, 0.500)

AC obs. 0.000 ( 0.000, 0.000) ( 0.000, 0.000)
exp. 0.005 (-0.005, 0.016) ( 0.000, 0.017)

BB obs. 0.165 ( 0.093, 0.237) ( 0.097, 0.243)
exp. 0.191 ( 0.132, 0.250) ( 0.140, 0.255)

BC obs. 0.010 (-0.009, 0.029) ( 0.000, 0.029)
exp. 0.004 (-0.004, 0.013) ( 0.000, 0.014)

CC obs. 0.000 ( 0.000, 0.000) ( 0.000, 0.000)
exp. 0.000 ( 0.000, 0.000) ( 0.000, 0.000)
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to ensure that the proportions of each type of ball remained constant. A
bootstrap sample is created by sampling from the original sample with re-
placement, so each individual may be chosen 0, 1, 2, 3, or even more times. It
is usual practice to make the bootstrap sample the same size as the original
sample. Once we have a bootstrap sample we can estimate anew the param-
eter of interest–a multilocus genotype proportion in this case. Furthermore,
if we create a large number of bootstrap samples, say 1,000 or more, then we
gain an impression of the variability of our estimator. The bootstrap con-
fidence interval follows naturally from this process, by recording the range
of values within which the middle 95% of the bootstrap estimates fall (i.e.,
numbers 25 through 975 for an ordered set of 1,000). Clearly we could not
perform this process by hand, but it is a simple computer task. The method
is illustrated for single-locus genotypes in Box 5.5.

In the last column of Table 5.5 we show 95% confidence intervals for
the HBGG genotypes, created by resampling the original sample of 103
individuals 1,000 times. These confidence intervals are not greatly different
from the normal-theory intervals, suggesting that the normal approximation
works quite well even when P values are considerably smaller than 0.5.

The method for calculating a normal confidence interval for the full five-
locus profile proportion is shown in Box 5.6. Applying that procedure to
our sample of 103 individuals leads to the interval (0, 0.000145). We found
a bootstrap confidence interval, based on 1,000 resamples, to be the wider
interval (0, 0.000187). The difference between the upper limits from the two
methods becomes greater as the proportion of interest becomes smaller. We
believe that the bootstrap intervals are more appropriate.

We need to note the meaning of confidence intervals, whether they are
calculated from normal theory or by bootstrapping, and sound a note of cau-
tion if they are to be used in court. In the first place, a confidence interval
is not a probability statement about the unknown proportion. Instead it is
a statement about all the intervals that are calculated from all the possible
samples from the population–95% of these intervals are expected to enclose
the true proportion. This distinction may appear subtle or confusing and
may be missed by a jury. However, the forensic scientist giving evidence
in terms of confidence intervals should have no doubts as to their meaning.
Secondly, the range of values in the interval reflects the uncertainty in the
estimated profile proportion due to the use of a sample rather than the whole
population. This range does not refer to any other source of uncertainty such
as the relevance of the sample or population structure. Population struc-
ture effects, for example, are accommodated by the approach illustrated in
Equations 4.20. Confidence intervals cannot refer to any errors in sample



158 CHAPTER 5. STATISTICAL GENETICS

Box 5.5: Bootstrap procedure

Suppose a sample of size 10, numbered 0, 1, . . . , 9, has genotypes

0 1 2 3 4 5 6 7 8 9
AB AB BB AA AA AB AA BB AA AB

The sample proportions of the two alleles are p̂A = 0.6, p̂B = 0.4, and the estimated
proportion of the AB genotype is 2p̂Ap̂B = 0.48.
A bootstrap sample is constructed by drawing, with replacement, ten individuals
from the sample. This could be done using random numbers like those in Table
A.3. Such a set is 30246 86149, and the new sample is

0 1 2 3 4 5 6 7 8 9
AA AB BB AA AA AA AA AB AA AB

Individual 6 in the original sample is represented twice in the new sample and
individual 5 is not represented at all. The allele proportions in the new sample are
p̂A = 0.75, p̂B = 0.25, and the new heterozygote proportion estimate is 2p̂Ap̂B =
0.375.
The process is repeated many times, always drawing from the original sample. The
set of resulting estimates (of the heterozygote proportion) provides an estimate of
the distribution of these proportion estimates.
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Box 5.6: Multilocus proportion confidence intervals

To generate a normal-theory confidence interval, it is necessary to extend Equa-
tion 5.3 to multiple loci. If Pl is the genotypic proportion for the lth locus in
the profile, then the variance of the product

∏
l P̂l of the sample proportions P̂l is

approximately

Var(
∏

l

P̂l) = (
∏

l

Pl)2
(∏

l

[
1 +

Var(P̂l)
P 2

l

]
− 1

)

(Goodman 1960; Chakraborty et al. 1993). This variance was used to construct
a normal-theory confidence interval for the Polymarker profile in Table 5.1. The
interval is (−0.000049, 0.000145), which is truncated to (0, 0.000145).

preparation or genotyping. The width of the interval indicates the uncer-
tainty brought about by the size of the sample. Larger samples will lead
to smaller intervals. In spite of their limited value, the fact that confidence
intervals for a profile proportion P may be as wide as (P̂ /10, 10P̂ ) signals
a clear need for caution. Very small proportions cannot be estimated with
high precision from small samples.

INDEPENDENCE TESTING

We have seen that the product rule is correct only when all the alleles in
a profile are independent in the population of interest. We have also seen
that the conditions leading to independence are not satisfied in real-world
populations, so the assumptions of independence can only be convenient ap-
proximations. In practice, we expect that the departures from independence
are too small to have practical consequences. One way of studying whether
this is the case is to use classical statistical hypothesis testing, even though
a failure to detect departures from independence by these tests does not
mean there are no departures. Instead, we hope that the tests would detect
departures large enough to have practical consequences.

From our knowledge of the biology of the genetic markers used for iden-
tification, we expect the most likely type of departure from independence is
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Table 5.6: Goodness-of-fit test for Hardy-Weinberg proportions for LDLR data in
Table 5.3.

Observed Expected
Genotype number o number e (o− e) (o− e)2/e

AA 17 19.66 −2.66 0.36
AB 56 50.68 5.32 0.56
BB 30 32.66 −2.66 0.22

Total 103 103 0.00 1.14

for the two alleles at one locus, and this is most likely to be a consequence
of population structure. We mentioned this in Chapter 4.

One-Locus Testing

Examining the independence of alleles at one locus is known as Hardy-
Weinberg testing, and many tests have been proposed (reviewed in Weir
1996). We will examine the traditional goodness-of-fit test here, as well as
the more powerful exact test.

Goodness-of-fit test. In Table 5.3 we showed some observed genotypic
proportions for the Polymarker system along with the proportions expected
under the Hardy-Weinberg hypothesis (the one-locus product rule). At that
point we commented that the two sets of proportions appeared to be in good
agreement, even though they weren’t exactly the same for any of the 21
genotypes. The goodness-of-fit test gives us one method for quantifying the
extent to which observed and expected proportions agree or disagree. The
test involves calculating a test statistic and comparing this to the probability
distribution known to hold when the null hypothesis is true. In this case,
the null hypothesis is that the Hardy-Weinberg relation holds.

We first described the chi-square goodness-of-fit test in Chapter 3 and
illustrated it by means of examples for a roulette wheel. Now we apply it to
the LDLR data in Table 5.3, and we lay out the calculations in Table 5.6.
The first step is to determine the allele counts by using the relationship
we described in Chapter 4: nA = 90, nB = 116. The estimated allele pro-
portions are therefore (90/206) = 0.437, (116/206) = 0.563 as shown in
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Table 5.4.
The test is based on the formulation of a null hypothesis, here that

the population from which the sample was drawn has genotypes in Hardy-
Weinberg proportions. This is equivalent to independence between alleles
within a locus. We calculate the numbers of the three genotypes that we
expect to see in a sample of size 103 if this null hypothesis is true:

eAA = 103× (90/206)2 = 19.66
eAB = 206× (90/206)× (116/206) = 50.68
eBB = 103× (116/206)2 = 32.66

These expected numbers are shown in the third column of Table 5.6, and
they are equivalent to the “Product estimates” in the fifth column of Ta-
ble 5.3. Evidently, the word “expected” here has a different meaning than
when we were talking about expected values in Chapter 3. Strictly, the e
terms should be called “estimates assuming the hypothesis is true,” but the
single word “expected” is conventional in this context.

Now we can calculate the (Observed − Expected)2/Expected terms that
we met in Chapter 3. We show them in the fourth column of Table 5.6 and
the sum of these terms is X2 = 1.14:

X2 =
∑

genotypes

(Observed− Expected)2

Expected
= 1.14

To relate this number to the chi-square distribution, we need to know the
degrees of freedom. As the name suggests, this is the number of categories
(genotypes) whose expected numbers we are free to choose without reference
to expected numbers in the other categories. In this example, suppose we
start by choosing the expected number for the AA genotype, using the allele
proportion p̂A found in the sample. With this expected number fixed, the
number for AB is constrained by the need for the AA number and half the
AB number to sum to the number of A alleles. In other words, the number
for AA determines the number for AB, and together they determine the
number for BB because all three numbers must sum to the sample size.
The degrees of freedom for the Hardy-Weinberg test at a locus with two
alleles is one. More generally, the degrees of freedom for a locus with m
alleles is m(m − 1)/2, or the number of genotypes minus the number of
alleles.

Recall from Chapter 3 that the 5% upper tail for the chi-square distri-
bution with 1 df is delimited by the value of 3.84. Test statistics greater
than 3.84 lie among the least probable 5% of values expected if the null
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hypothesis is true. For this LDLR sample, the test statistic is much less
than 3.84, and we do not reject the Hardy-Weinberg hypothesis.

It is important to note that the test must be performed on counts, not
on proportions or percentages. Suppose the data were 90 AA, 0 AB, and 10
BB. The absence of AB genotypes is a strong indication of departures from
Hardy-Weinberg equilibrium, and the test statistic has the value of 100:

X2 =
(90− 81.0)2

81.0
+

(0− 18.0)2

18.0
+

(10− 1.0)2

1.0
= 100

If the statistic had been calculated incorrectly with proportions (0.90, 0.00,
0.10 observed and 0.81, 0.18, 0.01 expected) rather than counts, however,
it would have the value of 1 and would not lead to rejection of the Hardy-
Weinberg hypothesis.

We explained in Chapter 3 that the chi-square goodness-of-fit test be-
comes unreliable when one or more of the expected counts are small. It is
conventional to require that all expected counts are at least five, although
this ad-hoc rule can be relaxed. For loci with many alleles, however, it is
common to find small expected counts even for large sample sizes, and for
this reason we prefer to use exact tests.

Exercise 5.1 Perform goodness-of-fit tests for Hardy-Weinberg for: (a) GYPA;
(b) HBGG; (c) D7S8; and (d) Gc using the data in Table 5.3.

Exact Tests. In Chapter 3 we explained that the exact test is based on
the idea of using the multinomial distribution to calculate the probability
of the observed data given that the null hypothesis is true. The hypothesis
is rejected if this probability belongs to the set of smallest (5%) of possible
values. This is in contrast to the goodness-of-fit test, which rejects the
hypothesis when the test statistic is larger than expected if the hypothesis
is true.

For a locus such as LDLR with two alleles A and B, the probability
needed is that of the genotype counts in the sample conditional on the allele
counts and conditional on the Hardy-Weinberg hypothesis being true. In
Box 5.7 we derive this probability:

Pr(nAA, nAB, nBB|nA, nB) =
n!nA!nB!2nAB

(2n)!nAA!nAB!nBB!
(5.4)

This equation looks a little forbidding at first sight, and it is usually eval-
uated by computer, but we can illustrate its use for the LDLR data in
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Table 5.3:

Pr(nAA, nAB, nBB|nA, nB) =
103!90!116!256

206!17!56!30!
= 0.0958

For loci with more than two alleles, there is a natural extension of Equa-
tion 5.4. We index the genotypes by g and the alleles by a, and write H for
the number of individuals in the sample who are heterozygous at this locus.
The equation becomes

Pr({ng}|{na}) =
n!2H ∏

a na!
(2n)!

∏
g ng!

where {ng} refers to the collection of genotype counts and {na} refers to the
collection of allele counts.

At this point we must be careful to avoid a possible source of confusion.
When we performed the goodness-of-fit test we referred to the chi-square dis-
tribution to find the probability of the calculated test statistic or a greater
value if the null hypothesis was true. This tail area probability is also called
the significance level. It corresponds to unlikely values if the hypothesis is
true, and these unlikely values are the largest values. When we perform the
exact test the test statistic itself is a probability, but the statistic does not
give the tail probability. The tail probability is the sum of the probabili-
ties for all the outcomes that are as probable as or less probable than the
observed outcome, i.e., we add together the smallest probabilities.

How do we determine if the exact-test probability indicates that the
sample belongs to the set of unusual outcomes if the Hardy-Weinberg hy-
pothesis is true? We need the total probability of all the possible outcomes
that are as probable as or are less probable than the observed outcome.
This total is the significance level. We can either quote this value for any
set of genotypes, or we can say the hypothesis is rejected at the α% level if
the significance level is less than α. Because the observed outcome belongs
to the set of outcomes that determine the significance level, its probability
is less than (or equal to) the significance level. In our LDLR example the
probability of the data is already bigger than the conventional 0.05 level for
hypothesis rejection, so the significance level must also be bigger than 0.05.

All 46 possible sets of genotypes for nA = 90, nB = 116 are shown in
Table 5.7, along with their probabilities calculated from Equation 5.4, which
assumes the Hardy-Weinberg hypothesis is true. Notice only five of the 46
have probabilities greater than the 0.0958 value for our data. The sum of the
probabilities for the remaining 41 sets (which includes the data) is 0.3239.
So, for these data, the significance level or P -value is 0.3239.



164 CHAPTER 5. STATISTICAL GENETICS

Box 5.7: Probabilities needed for the exact test of the Hardy-Weinberg

hypothesis

Recall that the multinomial probability for genotype counts nAA, nAB , and nBB

for a locus with alleles A and B is

Pr(nAA, nAB , nBB) =
n!

nAA!nAB !nBB !
(pAA)nAA(pAB)nAB (pBB)nBB

Under the Hardy-Weinberg hypothesis, genotype proportions are replaced by prod-
ucts of allele proportions, and the probability can be written as

Pr(nAA, nAB , nBB , nA, nB) =
n!

nAA!nAB !nBB !
2nAB (pA)nA(pB)nB (5.5)

where nA and nB are the two allele counts. The difficulty with this expression
is that we don’t know the population allele proportions. One way around this
is to work with the probability of the genotype counts conditional on the allele
counts. We ask whether the arrangement of nA alleles of type A and nB alleles
of type B into genotype counts nAA, nAB , and nBB falls among the most unlikely
arrangements if the Hardy-Weinberg relation holds. This has been found to lead
to satisfactory Hardy-Weinberg tests (Maiste and Weir 1995).
From the third law of probability,

Pr(nAA, nAB , nBB |nA, nB) =
Pr(nAA, nAB , nBB , nA, nB)

Pr(nA, nB)
(5.6)

What is the probability of the allele counts? Under the Hardy-Weinberg hypothesis,
alleles are independent, so a sample of n genotypes is equivalent to a sample of 2n
alleles. The binomial distribution holds for the two alleles:

Pr(nA, nB) =
(2n)!
nA!nB !

(pA)nA(pB)nB (5.7)

Putting Equations 5.5, 5.6, and 5.7 together provides the conditional probability of
the genotype counts if Hardy-Weinberg holds:

Pr(nAA, nAB , nBB |nA, nB) =
n!nA!nB !2nAB

(2n)!nAA!nAB !nBB !

When this probability is used for an exact test with permutation-based significance
levels, the value obtained for a data set is compared to values obtained for data sets
formed by permuting alleles among genotypes. In each of the permuted sets, the
samples sizes (n, 2n) remain the same, as do the allele counts (na). Comparisons
can therefore be restricted to the ratio 2nAB/(nAA!nAB !nBB !).
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Table 5.7: All possible samples with nA = 90, nB = 116, together with probabili-
ties calculated assuming the Hardy-Weinberg hypothesis is true.

Cum. Cum.
nAA nAB nBB Prob. prob. nAA nAB nBB Prob. prob.

45 0 58 0.0000 0.0000 31 28 44 0.0000 0.0000
44 2 57 0.0000 0.0000 9 72 22 0.0000 0.0000
43 4 56 0.0000 0.0000 30 30 43 0.0000 0.0000
42 6 55 0.0000 0.0000 10 70 23 0.0001 0.0001
41 8 54 0.0000 0.0000 29 32 42 0.0001 0.0003
40 10 53 0.0000 0.0000 11 68 24 0.0004 0.0007
0 90 13 0.0000 0.0000 28 34 41 0.0005 0.0012

39 12 52 0.0000 0.0000 12 66 25 0.0016 0.0028
1 88 14 0.0000 0.0000 27 36 40 0.0019 0.0047

38 14 51 0.0000 0.0000 13 64 26 0.0052 0.0098
2 86 15 0.0000 0.0000 26 38 39 0.0057 0.0155

37 16 50 0.0000 0.0000 14 62 27 0.0138 0.0293
3 84 16 0.0000 0.0000 25 40 38 0.0148 0.0441

36 18 49 0.0000 0.0000 15 60 28 0.0310 0.0751
4 82 17 0.0000 0.0000 24 42 37 0.0327 0.1078

35 20 48 0.0000 0.0000 16 58 29 0.0591 0.1668
5 80 18 0.0000 0.0000 23 44 36 0.0613 0.2282

34 22 47 0.0000 0.0000 17 56 30 0.0958 0.3239
6 78 19 0.0000 0.0000 22 46 35 0.0982 0.4221

33 24 46 0.0000 0.0000 18 54 31 0.1321 0.5542
7 76 20 0.0000 0.0000 21 48 34 0.1340 0.6882

32 26 45 0.0000 0.0000 19 52 32 0.1555 0.8438
8 74 21 0.0000 0.0000 20 50 33 0.1562 1.0000
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Permutation-Based Significance Levels

For a locus with only two alleles, it is not difficult to examine all possible
genotypic arrays for a given allelic array as shown in Table 5.7, particularly
when the sample sizes are not too large. For loci with many alleles, however,
the number of genotypic arrays is too large to handle even on a computer. In
those situations we employ permutation procedures. Instead of examining
all possible genotypic arrays, we choose a random sample of the arrays by
permuting (or shuffling) the alleles.

The process can be visualized as one of constructing a deck of cards, one
for each of the n individuals in the sample. One side of each card is labeled
with the two alleles observed for that individual, and then the card is torn
in half between the two labels. This results in a deck of 2n cards, each card
now showing just one allele label. Tearing the cards corresponds to breaking
whatever association there is between alleles within individuals. The deck is
then shuffled and dealt into n pairs. These pairs provide the genotypes for
a new array in which the allelic array is the same as for the original data,
and this new genotypic array is a random choice from all possible arrays.
The exact test probability is evaluated for the new array and is compared
to that for the original data. If m permutations are performed, the number
of permuted arrays that are as probable, or less probable, than the original
data has the binomial distribution B(m,P ). Therefore the proportion of
permuted arrays with a probability no more than that for the data gives an
estimate of the P -value.

To be 95% sure of achieving estimates within 0.01 of the P -value that
would result from examining all genotypic arrays, it is necessary to perform
m = 10,000 permutations. This follows from properties of the binomial dis-
tribution. Invoking the normal approximation to the binomial distribution
allows us to say with 95% probability that estimated values of P lie within
0.01 of the true value when

0.01 ≥ 1.96
√
P (1− P )/m

Because the right-hand size is largest when p = 0.50, we find that m ≥
10,000. If interest was centered on values around p = 0.05, however, we
have

0.01 ≥ 1.96
√

0.05× 0.95/m
m ≥ 2, 000

Even the 10,000 value is still substantially less computing than examining
all arrays. In practice, computing speeds are now sufficiently high that
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performing 10,000 permutations does not take undue time. However, it is
possible to reduce the time by keeping a running total of permuted data sets
that are less probable, under the independence hypothesis, than the original
data. Suppose 1,000 data sets were generated and 600 were found to be less
probable. The P -value at that stage is 0.6, and it could not drop below 0.05
even if the next 9,000 sets gave a more probable data set–there would be no
point, therefore, in performing 10,000 permutations.

When we perform an exact test by enumerating all outcomes, we report
the sum of the probabilities of all outcomes with the same or smaller proba-
bilities than that of the data. When we cannot enumerate all outcomes, we
report the proportion of permuted data sets that have the same or smaller
probabilities than that of the data. These procedures are equivalent, be-
cause the probability we calculate for each permuted data set has just that
probability of arising. An empirical demonstration of the equivalence can be
conducted very quickly. Five cards can be labeled AA, AA, AA, BB, and
BB and then torn in half to give six A halves and four B halves. Shuffling
this set of 10 cards and dealing into five pairs will produce one of only three
possible data sets. The complete enumeration is so simple that permutation
is not needed. However, permutation will produce the original set of all ho-
mozygotes in 1 out of 21 shuffles on average, and this is just the probability
that follows from Equation 5.4.

Homozygosity Tests

The question of independence of alleles within one locus has sometimes been
addressed by looking only at homozygotes. If the population has genotype
proportions obeying the Hardy-Weinberg relationship, then the expected
proportion of homozygotes is the sum of the squared allele proportions. A
goodness-of-fit chi-square test can be conducted on two classes: homozygotes
and heterozygotes. This statistic has a chi-square distribution with 1 df
when the Hardy-Weinberg hypothesis is true.

The homozygosity test is not a test of the Hardy-Weinberg hypothesis. It
is possible that the various homozygotes could all depart considerably from
Hardy-Weinberg expectations, with some being more frequent and some be-
ing less frequent, in such a way that the departures cancel out when the sum
is taken over homozygotes. We are interested in knowing whether specific
genotype proportions can be estimated as products of allele proportions, and
this question is not addressed by seeing whether the combined categories of
“homozygote” and “heterozygote” meet expectations. Of course, if the only
reasonable alternative to the null hypothesis of Hardy-Weinberg equilibrium
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were one in which all homozygote proportions increased, then the homozy-
gosity test would be appropriate. Such alternatives include the Wahlund
effect and the loss of alleles in some homozygotes (“allelic dropout” or “null
alleles”), but care would be needed to ensure that other patterns of depar-
ture from Hardy-Weinberg proportions are not possible. Care would also
be needed to perform a one-tailed test–i.e., one that rejected only for more
homozygotes than expected, rather than a two-tailed test that would reject
for either more or fewer homozygotes than expected.

Multilocus Testing

There is a natural extension of the exact tests for pairs of loci. The issue
becomes that of deciding whether two-locus genotype proportions can be
estimated as products of allele proportions at both loci. For locus A with
alleles A1, A2 and locus B with alleles B1, B2, it is convenient to use the
notation of Table 4.10. There are nine genotypes, numbered 1 to 9, and the
hypothesis of independence can be expressed in nine separate statements:

A1A1B1B1 : P1 = p2
A1
p2

B1

A1A1B1B2 : P2 = 2p2
A1
pB1pB2

A1A1B2B2 : P3 = p2
A1
p2

B2

A1A2B1B1 : P4 = 2pA1pA2p
2
B1

A1A2B1B2 : P5 = 4pA1pA2pB1pB2

A1A2B2B2 : P6 = 2pA1pA2p
2
B2

A2A2B1B1 : P7 = p2
A2
p2

B1

A2A2B1B2 : P8 = 2p2
A2
pB1pB2

A2A2B2B2 : P9 = p2
A2
p2

B2

The probability of the nine genotype counts n1, . . . , n9 is given by the
multinomial distribution. Under the assumption of independence of all al-
leles, the probabilities for the counts of alleles A1, A2 and the alleles B1, B2

are given by separate binomial distributions. The probability of the geno-
type counts conditional on the allele counts at both loci and assuming the
hypothesis is true is therefore

Pr(n1, . . . , n9|nA1 , nA2 , nB1 , nB2) =
n!2HAnA1 !nA2 !2

HBnB1 !nB2 !
(2n)!(2n)!n1! . . . n9!

(5.8)

Consider the data in Table 5.3. To test for independence at loci LDLR
and GYPA, the nine two-locus genotype counts are needed, and these have



ESTIMATING INBREEDING COEFFICIENTS 169

been provided by Cellmark Diagnostics:

GY PA
AA AB BB Total

AA n1 = 3 n2 = 10 n3 = 4 17
LDLR AB n4 = 18 n5 = 24 n6 = 14 56

BB n7 = 10 n8 = 15 n9 = 5 30
Total 31 49 23 103

The four allele counts are

A B Total
LDLR 90 116 206
GYPA 111 95 206

Assuming independence of all alleles, the probability of the data is

103!25690!116!249111!95!
206!206!3!10!4!18!24!14!10!15!5!

= 0.00001141

Although this probability is obviously small, it is not clear whether the
two-locus genotypic array belongs to the 5% least probable arrays under the
assumption of independence. Unlike the one-locus example, there are too
many possible arrays (over 50 million) to display each one with its condi-
tional probability as we did in Table 5.7. There may even be too many to
examine by computer. We use the permutation procedure, and with 10,000
permutations we found that the P -value for this data set is 0.74. The data
do not lead to rejection of the null hypothesis of independence among alleles
at LDLR and GYPA. Such two-locus tests are sometimes called tests for
linkage disequilibrium, but this is not quite correct because the test is
affected by dependencies within and between loci and refers to sets of four
alleles (two per locus). Linkage disequilibrium refers to pairs of alleles (one
per locus) and is a between-locus measure. The probability in Equation 5.8
can be generalized to apply to any number of alleles and any number of loci
(Box 5.8).

ESTIMATING INBREEDING COEFFICIENTS

We have remarked previously that complete independence of alleles within
or between loci does not exist in nature. Although we doubt that the degree
of departure in human populations is sufficient to cause applications of the
product rule to be misleading, we are interested in being able to quantify
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Box 5.8: General expression for the probability of genotype counts con-
ditional on allele counts under the hypothesis of independence
For genotypes determined at a set of loci, suppose that {nla} is the set of allelic
counts for the lth locus, Hl is the number of individuals heterozygous at the lth lo-
cus, and {ng} is the number of the gth multilocus genotype. Adding over genotypes
gives the sample size: ∑

g

ng = n

and adding over allelic counts at each locus gives twice the sample size:∑
a

nla = 2n

The conditional probability for the genotype counts, given the allelic counts and
the assumption of independence, is

Pr({ng}|{nla}, l = 1, 2, . . .) =
n!∏
g ng!

∏
l

2Hl
∏

a nla!
(2n)!

For permutation procedures, only the part Q of this expression that varies over
genotype arrays needs to be calculated. That is

Q =
2H∏
g ng!

where H =
∑

lHl (Zaykin et al. 1995).
Although there is no limit on the number of alleles or loci over which this quantity
may be calculated, in practice the numbers are limited by the sample size. J. S.
Buckleton (personal communication) has noted that, for any sample size, there
comes a point at which every multilocus genotype will occur either once or not at
all in the sample unless the sample contains identical twins. The product of all
the ng! terms is then 1, and the only term that varies over arrays is H. The test is
therefore looking only at heterozygosity, and it is unlikely that it will be possible
to detect departures from independence at large numbers of loci.
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the extent of departure. This quantification may be more informative than
the P -value for tests of independence. We use a set of quantities that have
come to be known as F-statistics, even though they are actually param-
eters. Each of these provides a measure of relationship between a pair of
alleles, and is relative to some background level of relationship. Briefly, f
is the extra extent to which two alleles within one individual are related
when compared to pairs of alleles in different individuals but within the
same subpopulation, whereas F is the extent of relatedness of alleles within
an individual compared to alleles of different individuals in the whole popu-
lation. The third common F -statistic, θ, measures the relationship between
alleles of different individuals in one subpopulation when compared to pairs
of alleles in different subpopulations.

The interpretation of matching DNA profiles needs to allow for structure
within human populations. If the group of people who might reasonably be
considered possible contributors to a crime stain have allele proportions
very different from the rest of the population, then it could be misleading
to provide analyses based on population-wide proportions. We will use the
term “subpopulation” to refer to a group within a population, and assign
f as the F -statistic for a subpopulation. This addresses the question of
whether those two alleles are more related than pairs of alleles in different
individuals in the same subpopulation. There is no requirement that this
quantity has to be positive, although we conform to convention and refer
to f as the within-population inbreeding coefficient. It is affected
primarily by the mating system within the subpopulation. To the extent
that people tend to avoid marrying relatives, spouses are less related than
random pairs of individuals, so the allele pairs within their children are less
likely to be ibd (Chapter 4) than are random pairs of alleles. We might
therefore expect f to be slightly negative for human populations, but we
generally assume that it is very small if not zero.

Consider the contrived situation of a subpopulation founded by a set of
people who were all first cousins to each other. Any two of these people
are related, so their children will be inbred, according to the development
in Chapter 4. If mating is at random within this subpopulation, however,
there is no within-population inbreeding, and f = 0. Relative to other alleles
in the subpopulation, the pair of alleles within one child have no special
relationship. Of course when a child within the subpopulation is compared to
individuals in the rest of the population there is clearly inbreeding–the alleles
that child carries are much more likely to be ibd than they are for a random
individual anywhere else in the population. Outside the subpopulation,
there are not many people whose parents are cousins.
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When the comparison is to pairs of alleles in the whole population, as
opposed to a single subpopulation, we need the total inbreeding coeffi-
cient F . It is F that we introduced as the inbreeding coefficient in Chapter
4, and we said there that ibd alleles were those that descended from the
same allele in some reference population. In other words, the ibd relation
was defined relative to distinct alleles in the reference population that were
regarded as being not-ibd. The inbreeding coefficient for children of cousins
is 1/16, relative to people whose parents are not related.

The third F -statistic is the coancestry coefficient θ that we also
met in Chapter 4. It refers to pairs of alleles in different individuals but in
the same subpopulation, and it is relative to alleles in different individuals
from different subpopulations. For the subpopulation of cousins, θ = 1/16
because alleles taken from different individuals in the subpopulation have
that probability of being ibd, whereas alleles from different individuals in
different subpopulations are assumed to have no chance of being ibd.

Although F and θ can be regarded as probabilities of ibd, as is appropri-
ate when genotypic and joint genotypic proportions are being formulated,
other interpretations can be given to these quantities (Cockerham 1969) and
it is these alternatives that may be best when it comes to estimation using
data from real populations. Neither the probability nor any alternative in-
terpretation carries any implication about the evolutionary forces that led
to the numerical values of the parameters in a real population.

The notation we use is that of Cockerham (1969, 1973). An alternative
notation was used by Wright (1951, 1965): FIS for alleles within individuals
(I) within subpopulations (S), FIT for alleles within individuals (I) relative to
the total (T), and FST for alleles between individuals within subpopulations
(S) relative to the total (T). Although it is convenient to relate the two
sets of parameters as f = FIS , F = FIT , θ = FST , there are some slight
differences. Wright defined his quantities for alleles identified by the gametes
carrying them, whereas Cockerham defined his set for alleles defined by the
individuals carrying them. For random mating subpopulations we can ignore
the distinction.

There is a relationship among the three F -statistics:

f =
F − θ

1− θ

which illustrates that f can be zero even when there is inbreeding. This
happens whenever F = θ, as is the case for random-mating monoecious
populations. We will be concerned with the case of large populations di-
vided into random mating subpopulations, rather than contrived situations
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like the group of cousins mentioned above. If there is some degree of repro-
ductive isolation between the subpopulations, they may develop differences
in allele proportions over time, or they may maintain some of whatever dif-
ferences they had originally, and in the whole population the Wahlund effect
(Chapter 4) leads to departures of genotypic proportions from products of
allele proportions. This corresponds to zero f but nonzero F .

Within-population Inbreeding Coefficient

In Chapter 4 we discussed the probabilities of genotypes, and this necessar-
ily involved the evolutionary processes that formed the population. Genetic
sampling was involved, and the total inbreeding coefficient F was appro-
priate. If we are interested only in quantifying departures from Hardy-
Weinberg in a particular subpopulation, however, we need the within-population
coefficient f .

A general treatment allows for variation among fs for different geno-
types. Writing the proportion of allele Ai as pi, the proportion of AiAi

homozygotes as Pii, and the proportion of AiAj heterozygotes as Pij ,

PiiS = p2
iS

+
∑

j 6=i fijpiSpjS

PijS = 2piSpjS (1− fij), i 6= j

}
(5.9)

where the subscript S emphasizes that the equations hold for some particular
subpopulation S.

For a locus with only two alleles A and B, there is only one distinct value
of f : fAA = fAB = fBB. For a locus with more than two alleles we could
assign a common value f to all the fij values but then we find that iterative
procedures are needed for maximum likelihood estimation of f (and of the
pi values)(Hill et al. 1995) An approximation to the maximum likelihood
estimate is

f̂ =
∑

i(P̂iiS − p̂2
iS

) + 1
2n(1−

∑
i P̂iiS )

(1−
∑

i p̂
2
iS

)− 1
2n(1−

∑
i P̂iiS )

where n is the number of individuals in the sample.
For the LDLR data in Tables 5.3 and 5.4

f̂ =
(P̂AA + P̂BB − p̂2

A − p̂2
B) + 1

2n(1− P̂AA − P̂BB)

(1− p̂2
A − p̂2

B)− 1
2n(1− P̂AA − P̂BB)

=
(0.165 + 0.291− 0.4372 − 0.5632) + 1

206(1− 0.165− 0.291)
(1− 0.4372 − 0.5632)− 1

206(1− 0.165− 0.291)
= −0.101
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which is numerically larger than is usually found in human populations.
If the sample size correction terms involving 1/2n in the numerator and

denominator of f̂ are omitted, and the estimate is written as f̂ ,

f̂ =
(P̂AA + P̂BB − p̂2

A − p̂2
B)

(1− p̂2
A − p̂2

B)

This gives us an alternative way of calculating the chi-square goodness-of-fit
test statistic for testing the Hardy-Weinberg hypothesis:

X2 = nf̂2

For the LDLR data, f̂ = −0.105, and X2 = 1.14 as before.

Total Inbreeding Coefficient

As stated above, in the whole population, genotypic and allelic proportions
are related as

Pii = p2
i + Fpi(1− pi)

Pij = 2pipj(1− F ), i 6= j

}
(5.10)

where F is the total inbreeding coefficient. These are the relations that result
when averages are taken over all replicates of the same set of evolutionary
conditions.

Estimation of F cannot be accomplished simply by comparing genotypic
and allele proportions in one (sub)population because of the requirement
that F is a relative measure. It measures the relationship between pairs
of alleles within individuals in a subpopulation relative to that for pairs of
alleles in the whole population. Therefore information is needed about pro-
portions in the subpopulations, and these data can be combined to provide
information from the whole population. If data are available only from the
whole population, then it is f that can be estimated, although this f is the
within-population inbreeding coefficient for the whole population instead of
a subpopulation, and it provides an estimate of (F − θ)/(1 − θ). If F is
wanted for the whole population, then information would be needed from
other whole populations to provide the necessary basis for comparison.

Coancestry Coefficient

The coancestry coefficient θ refers to pairs of alleles in different individuals in
the same subpopulation, relative to pairs of alleles in the whole population.
Once again, estimation requires data from more than one subpopulation.
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Otherwise there is no basis for comparison. There would also be no knowl-
edge of the variation in allele proportions among populations.

If there is random mating within subpopulations, two alleles have the
same relationship whether they are in the same or different individuals,
F = θ, and f = 0. In this case, one method of estimation is to com-
pare allelic variation within and between populations (Weir and Cockerham
1984). Two mean squares are calculated: MSA among subpopulations
and MSW within subpopulations. For allele A and samples of size 2n alleles
(n genotypes) from each of r subpopulations,

MSA =
2n
r − 1

r∑
S=1

(p̂AS
− p̄A)2, r > 1

MSW =
2n

r(2n− 1)

r∑
S=1

p̂AS
(1− p̂AS

)

where p̂AS
is the sample proportion for the Sth subpopulation and

p̄A =
1
r

r∑
S=1

p̂AS

is the average proportion of A over all the subpopulations sampled.
We can show that the quantity

β̂ =
MSA−MSW

MSA+ (2n− 1)MSW

provides an estimate of

β =
θw − θa

1− θa

where θw is the average of the θ values that apply to each of the r subpop-
ulations, and θa is the average of the θ values that apply to the r(r − 1)
pairs of subpopulations. This estimate does not depend on the unknown
expected allele proportions. It will be small for data from a collection of
subpopulations within one population of a single racial group because then
alleles will have similar relationships within and between subpopulations.
For data from subpopulations from racial groups that have been distinct for
a longer evolutionary time, alleles will be much more related within than
between subpopulations and β will be larger.

It is worth stressing that numerical estimates are seldom above 0.05
even when world-wide collections of subpopulation data are used (Cavalli-
Sforza et al. 1994). The practical consequences of using Equations 4.20
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are therefore unlikely to be substantial. It is difficult, however, to make
statements that are much more precise than this because of the difficulty in
estimating powers of the allele proportion in the reference population. We
have said that the probability p2

A + pA(1− pA)θ of homozygote AA may be
taken to apply to a subpopulation, and we have shown that subpopulation
data allow θ to be estimated. We also know that the sample proportion
p̄A provides an unbiased estimate for the reference value pA. However, the
square of this value is not unbiased for p2

A because of the variation between
replicates of the evolutionary process. Estimation of powers of the allele
proportions requires data from more than one subpopulation.

SUMMARY

DNA profiles almost always consist of pairs of alleles at several loci, and
probabilities of these profiles are estimated most simply as the products of
the individual allele probabilities. The implied assumption of allelic inde-
pendence can be tested with exact tests, although hypothesis testing is not
without some conceptual problems. At single loci, the independence assump-
tion can be avoided by expressions that allow for the effects of population
structure.



Chapter 6

Parentage Testing

INTRODUCTION

When we considered transfer evidence in Chapter 2, we assumed the frame-
work of a criminal trial in which the two propositions Hp and Hd were to
be considered. The subscripts referred to “prosecution” and “defense.” In
this chapter we will consider parentage disputes, which usually result in civil
proceedings. However, we find it convenient to keep the same subscripts.
For a civil trial, the plaintiff’s proposition Hp will generally be the allegation
of a woman that the defendant is the father of her child. Proposition Hd is
still that of the defendant, and this may simply be that he is not the father.
The notation has the convenient feature that it applies when parentage dis-
putes result in criminal trials, as in cases of rape or incest. Throughout the
chapter we use the terms “mother” and “father” to mean biological parents.

For a paternity case we write M for the mother of child C, and AF for
the alleged father. Their genotypes will be denoted GM , GC , and GAF ,
respectively. The two propositions are

Hp: AF is the father of C.
Hd: Some other man is the father of C.

Later we will consider more complex parentage analyses, often involving
members of the same family. These arise in some cases of incest and in the
identification of human remains.

EVALUATION OF EVIDENCE

As in Chapter 2 we use E to summarize all the genetic evidence: the geno-
typesGM , GC , andGAF of mother, child and alleged father. We use I for the

177
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nongenetic evidence, and this could include statements made by the mother
and the alleged father about their relationship. Using Bayes’ theorem, our
interpretation of the evidence is

Pr(Hp|E, I)
Pr(Hd|E, I)

=
Pr(E|Hp, I)
Pr(E|Hd, I)

× Pr(Hp|I)
Pr(Hd|I)

(6.1)

or

Posterior odds = Likelihood ratio × Prior odds

We direct our attention to evaluation of the likelihood ratio, LR, as we
do throughout the book, but we need first to mention three terms that are
used in the field of parentage testing (Walker et al. 1983). The first term is
the paternity index (PI), which is simply another name for the likelihood
ratio in Equation 6.1. In simple paternity cases, the terms LR and PI are
interchangeable. The second term is probability of paternity, meaning
the posterior probability of paternity, and the third is the probability of
exclusion to which we return later in the chapter.

For the probability of paternity we observe that

Pr(Hd|E, I) = 1− Pr(Hp|E, I)
Pr(Hd|I) = 1− Pr(Hp|I)

so that Equation 6.1 can be rewritten in terms of posterior and prior prob-
abilities of Hp, and rearranged to give

Pr(Hp|E, I) =
LR× Pr(Hp|I)

LR× Pr(Hp|I) + [1− Pr(Hp|I)]

If the prior odds are one, meaning that the prior probability of paternity is
0.5, the posterior probability of paternity is

Pr(Hp|E, I) =
LR

LR+ 1

and this is the quantity that is referred to as the probability of paternity.
The derivation of this is due to Essen-Möller (1938). We do not advocate
the use of this probability of paternity because of the implicit assumption of
a prior probability of 0.5, irrespective of the nongenetic evidence. We will
not discuss the issue further, but refer the reader to the excellent discussion
by Kaye (1990). The assumption of 50% prior probability is difficult to
defend. At the least, any presentation of probabilities of paternity should
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Table 6.1: Probabilities of paternity for a range of paternity index and prior
probability values.

Prior PI
probability 1 10 100 1, 000

0 0 0 0 0
0.001 0.001 0.00991 0.09099 0.5002501
0.010 0.010 0.09174 0.50251 0.9099181
0.100 0.100 0.52631 0.91743 0.9910803
0.500 0.500 0.90909 0.99009 0.9990010
0.900 0.900 0.98901 0.99889 0.9998889
0.990 0.990 0.99899 0.99989 0.9999899
0.999 0.999 0.99989 0.99999 0.9999990

1 1 1 1 1

be accompanied by a table, such as Table 6.1, showing the effects of different
prior probabilities.

We now return to the LR and expand it in a way analogous to that in
previous chapters:

LR =
Pr(E|Hp, I)
Pr(E|Hd, I)

=
Pr(GC , GM , GAF |Hp, I)
Pr(GC , GM , GAF |Hd, I)

From the third law of probability

LR =
Pr(GC |GM , GAF ,Hp, I)
Pr(GC |GM , GAF ,Hd, I)

× Pr(GM , GAF |Hp, I)
Pr(GM , GAF |Hd, I)

(6.2)

Neither Hp nor Hd includes information to affect our uncertainty in relation
to GM or GAF , so the second ratio is one. Then

LR =
Pr(GC |GM , GAF ,Hp, I)
Pr(GC |GM , GAF ,Hd, I)

(6.3)

For the sake of brevity, we will drop I from the probabilities for the rest of
the chapter.

There will be many (GC , GM , GAF ) configurations for which the numer-
ator of the likelihood ratio will be zero. For example, if GM = AiAj and
GC = AiAk with k 6= j then C must have paternal allele Ak and AF cannot
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be the father of C (mutations excluded) if he has genotype GAF = AlAm

and l,m 6= k. Such situations are called exclusions and we discuss them
again later.

For the rest of our treatment of paternity calculations we will denote
by AM and AP the maternal and paternal alleles received by child C. For
homozygous children GC = AiAi, both maternal and paternal alleles are the
same, AM = AP = Ai. For heterozygous children AiAj , i 6= j, however, we
may have doubt as to which allele is maternal and which is paternal. Ignor-
ing any parental information, there are two possibilities: AM = Ai, AP = Aj

or AM = Aj , AP = Ai, and we will need to add probabilities for each of the
two.

We consider first the numerator of the LR in Equation 6.3. Writing the
child’s genotype GC as AMAP , and abbreviating Numerator by Num.:

Num. = Pr(AMAP |GM , GAF ,Hp)
= Pr(AM |GM , GAF ,Hp) Pr(AP |AM , GM , GAF ,Hp)

from the third law of probability. Because the transmission of an allele from
parent to child depends on the parent’s genotype and not on the genotype
of other individuals, we see that

Pr(AM |GM , GAF ,Hp) = Pr(AM |GM )
Pr(AP |AM , GM , GAF ,Hp) = Pr(AP |GAF ,Hp)

Note that the first of these two equations makes use of the fact that the
transmission of the maternal allele does not depend on whether the alleged
father is the child’s father. We can now write the numerator of the LR as

Num. = Pr(AM |GM ) Pr(AP |GAF ,Hp) (6.4)

When the child is homozygous AiAi, calculation of Equation 6.4 is
straight forward:

Num. = Pr(AM = Ai|GM ) Pr(AP = Ai|GAF ,Hp) (6.5)

However, things are more complicated when the child is heterozygous AiAj

because the child’s genotype by itself does not tell us which allele is mater-
nal and which is paternal. The information may come from the mother’s
genotype, but in general we need to allow for both possibilities:

Num. = Pr(AM = Ai|GM ) Pr(AP = Aj |GAF ,Hp)
+ Pr(AM = Aj |GM ) Pr(AP = Ai|GAF ,Hp) (6.6)
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Evaluation of each of the terms on the right-hand side of this equation is
straight forward, and is shown in the fourth column of Table 6.2 for all
possible mother, child, and alleged father triples. For example, suppose
the child has genotype GC = AiAj , the mother has genotype GM = AiAj ,
and the alleged father has genotype GAF = AiAi. From the rules of allelic
transmission:

Pr(AM = Ai|GM = AiAj) = 0.5
Pr(AM = Aj |GM = AiAj) = 0.5
Pr(AP = Ai|GAF = AiAi) = 1
Pr(AP = Aj |GAF = AiAi) = 0

and the numerator is 0.5 as shown in the table. The reader may find it
helpful to verify the other entries in the table.

We now turn to the denominator of the LR in Equation 6.3. From the
same kind of argument as before, and using the abbreviation Den. we have

Den. = Pr(AM |GM ,Hd) Pr(AP |AM , GM , GAF ,Hd)

and it is still true that the maternal allele probability depends on the geno-
type only of the mother

Pr(AM |GM ,Hd) = Pr(AM |GM )

Mother, Alleged Father, and Father Unrelated

The probability for the paternal allele under Hd is not straightforward when
we have to take into account relationships between the father and the alleged
father–either because they belong to the same family or because they belong
to the same population. We take up these complications later, but for now
suppose that the father is not related to either the mother or the alleged
father. In this case

Pr(AP |AM , GM , GAF ,Hd) = Pr(AP |Hd)

and the LR denominator is

Den. = Pr(AM |GM ) Pr(AP |Hd)

There are two cases to consider, depending on the child’s genotype, as for
the numerator of the LR. When the child is homozygous, GC = AiAi, the
denominator is

Den. = Pr(AM = Ai|GM ) Pr(AP = Ai|Hd) (6.7)
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Table 6.2: Probabilities of child’s genotype under Hp and Hd, and LR values for
Hp versus Hd.

LR if
GC GM GAF Num.1 Den.2 LR pi = pj = 0.1

AiAi AiAi AiAi 1 pi
1
pi

10

AiAj , j 6= i 1
2 pi

1
2pi

5

AjAk, k 6= i, j 0 pi 0 0

AiAj AiAi
1
2

pi
2

1
pi

10
i 6= j

AiAj , j 6= i 1
4

pi
2

1
2pi

5

AjAk, k 6= i, j 0 pi
2 0 0

AiAj AiAi AjAj 1 pj
1
pj

10
i 6= j

AjAk, k 6= j 1
2 pj

1
2pj

5

AkAl, k, l 6= j 0 pj 0 0

AiAj AiAi
1
2

pi + pj

2
1

pi + pj
5

i 6= j

AiAj
1
2

pi + pj

2
1

pi + pj
5

AjAk, k 6= i, j 1
4

pi + pj

2
1

2(pi + pj)
2.5

AkAl, k, l 6= i, j 0 pi + pj

2 0 0

AiAk AjAj
1
2

pj

2
1
pj

10
k 6= i, j

AjAl, l 6= j 1
4

pj

2
1

2pj
5

AkAl, k, l 6= j 0 pj

2 0 0

1Num. = Pr(GC |GM , GAF ,Hp)
2Den. = Pr(GC |GM , GAF ,Hd)
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and when the child is heterozygous, GC = AiAj ,

Den. = Pr(AM = Ai|GM ) Pr(AP = Aj |Hd)
+ Pr(AM = Aj |GM ) Pr(AP = Ai|Hd) (6.8)

The numerical values for these two equations are shown in the fifth column
of Table 6.2, and we consider one case for illustration. Suppose the child
has genotype GC = AiAj and the mother has genotype GM = AiAj . For
Equation 6.8 we use

Pr(AM = Ai|GM = AiAj) = 0.5
Pr(AM = Aj |GM = AiAj) = 0.5

We also use

Pr(AP = Ai|Hd) = pi

Pr(AP = Aj |Hd) = pj

and this leads to value of (pi +pj)/2 for the denominator of the LR, as given
in the table.

The LR values for all combinations of genotypes of mother, child, and
alleged father are shown in Table 6.2, along with some illustrative values for
allele frequencies pi = pj of 0.1.

Hypotheses Specifying Relation of Alleged Father

In the previous section we assumed that the alternative hypothesis was

Hd: Some unknown man, unrelated to the alleged father, was
the father.

Now we consider the case where

Hd: A relative of the alleged father is the father.

We will continue to assume that the mother and alleged father are unrelated.
The calculations can make use of four-allele descent measures we introduced
in Chapter 4. The problem is often simpler here, however, because there are
just three alleles to consider: one from the father and the two in the alleged
father. Specifically, we need to evaluate for the denominator:

Pr(AP |AM , GM , GAF ,Hd) = Pr(AP |GAF ,Hd)

=
Pr(AP , GAF )

Pr(GAF )
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Table 6.3: Probabilities of allele triples in terms of allele frequencies and descent
measures.

c = AP ab = GAF γabc γbc + γac γab γ0

Ai AiAi pi p2
i p2

i p3
i

Ai AjAj , j 6= i 0 0 pipj pip
2
j

Ai AiAj , j 6= i 0 pipj 0 2p2
i pj

Ai AjAk, j, k 6= i 0 0 0 2pipjpk

We have dropped the dependencies on AM , and GM because of the assump-
tion that the child’s parents are unrelated. The numerator of the right-hand
side requires information about a set of three alleles, and the denominator
is the proportion of genotype GAF in the population.

For three alleles, a, b, and c, there are five patterns of identity by descent.
We retain the equivalence sign to indicate identity by descent (ibd) and write
the five probabilities as

γabc = Pr(a ≡ b ≡ c)
γbc = Pr(only b ≡ c)
γac = Pr(only a ≡ c)
γab = Pr(only a ≡ b)
γ0 = Pr(none ibd)

The three alleles referred to by these five measures will now be identified by
the individuals that carry them, namely the alleged father and the father.
For the case when a, b are the two alleles carried by the alleged father AF
and c is the paternal allele (i.e., one of the two alleles carried by the father
TF) we find it useful to write

γabc = γÄT

1
2
(γac + γbc) = θAT − γÄT

γab = FA − γÄT

γ0 = 1− 2θAT − FA + 2γÄT
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where we have abbreviated AF by A and TF by T . The quantity γÄT is the
probability of both alleles in AF and one allele in TF are all ibd. We met
the coancestry θAT of AF and TF and the inbreeding coefficient FA of AF
in Chapter 4. It is usually sufficient to work with the average of γac + γbc,
instead of keeping them separated.

The three-allele descent measures serve to provide probabilities of sets
of specific types of alleles, just as the two-allele measures gave genotype
proportions and the four-allele measures gave joint genotype proportions.
Suppose that both men AF and TF belong to a population in which alleles
of type Ai have proportion pi. Then, if a, b are the alleles in AF, GAF = ab,
and c = AP is a random allele in TF, the values of Pr(a, b, c) require an allele
probability for each distinct allele or set of ibd alleles as shown in Table 6.3.
From the first row in that table,

Pr(a = Ai, bc = AiAi) = γabcpi + (γbc + γac + γab)p2
i + γ0p

3
i

Using the γÄT , θAT , FA formulation, and recalling that the probability of AF
being homozygous AiAi is p2

i + FApi(1− pi), it can be shown that

Pr(AP = Ai|GAF = AiAi,Hd) =
p2

i + (2θAT + FA)pi(1− pi)
pi + FA(1− pi)

+
γÄT (1− pi)(1− 2pi)
pi + FA(1− pi)

The probabilities for other combinations of paternal allele and alleged father
genotype are

Pr(AP = Ai|GAF = AjAj ,Hd) =
pi(FA − γÄT ) + pipjX

pj + FA(1− pj)

Pr(AP = Ai|GAF = AiAj ,Hd) =
(θAT − γÄT ) + piX

1− FA

Pr(AP = Ai|GAF = AjAk,Hd) =
piX

1− FA

where

X = (1− 2θAT − FA + 2γÄT )

In each case, different subscripts indicate different alleles. The usual situ-
ation is that the alleged father is not inbred, so that FA = γÄT = 0, and
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then

Pr(AP = Ai|GAF = AiAi) = pi(1− 2θAT ) + 2θAT

Pr(AP = Ai|GAF = AjAj) = pi(1− 2θAT ), i 6= j

Pr(AP = Ai|GAF = AiAj) = pi(1− 2θAT ) + θAT , i 6= j

Pr(AP = Ai|GAF = AjAk) = pi(1− 2θAT ), i 6= j, k

The likelihood ratios for Hp versus Hd are shown in Table 6.4 for the situ-
ation without inbreeding. The numerical values are for θAT = 0.25, corre-
sponding to the case where the alleged father is a brother to the father.

Exercise 6.1 The Gc system has produced the following three genotypes in a
case of disputed paternity: GM = AC,GC = AB, and GAF = BC. Using the
sample allele proportions in Table 5.4, calculate the LR in the cases where (a) AF
makes no allegation about the identity of the true father; (b) AF alleges that the
true father is his first cousin.

Exercise 6.2 Repeat Exercise 6.1 for the case where GM = AB,GC = AB,
and GAF = BC. For part (b), suppose that AF alleges his half brother is the true
father.

Avuncular Index

Morris et al. (1988) considered the situation that arises when the alleged
father cannot be typed, but typing is available for his relative R. The alter-
native pair of propositions now involve this relative rather than the alleged
father:

Hp: The father of C is a relative of R.
Hd: The father of C is unrelated to R.

Another way of expressing Hp in this case is to specify the relationship
between R and the child. For example, if R’s brother is the child’s father,
then R is the child’s uncle and Morris et al. coined the phrase “avuncular
index” as an alternative to paternity index. We will continue to use the
term likelihood ratio, however, as it applies in all cases.

The likelihood ratio is

LR =
Pr(GC |GM , GR,Hp)
Pr(GC |GM , GR,Hd)
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Table 6.4: LR values when there is a relationship, measured by θAT , between the
father and the alleged father under Hd.

LR if θAT = 0.25
GC GM GAF LR and pi = pj = 0.1

AiAi AiAi AiAi
1

pi(1− 2θAT ) + 2θAT
1.82

AiAj , j 6= i 1
2[pi(1− 2θAT ) + θAT ] 1.67

AjAk, k 6= i, j 0 0

AiAj AiAi
1

pi(1− 2θAT ) + 2θAT
1.82

i 6= j

AiAj , j 6= i 1
2[pi(1− 2θAT ) + θAT ] 1.67

AjAk, k 6= i, j 0 0

AiAj AiAi AjAj
1

pj(1− 2θAT ) + 2θAT
1.82

i 6= j

AjAk, k 6= j 1
2[pj(1− 2θAT ) + θAT ] 1.67

AkAl, k, l 6= j 0 0

AiAj AiAi
1

(pi + pj)(1− 2θAT ) + 2θAT
1.67

i 6= j

AiAj
1

(pi + pj)(1− 2θAT ) + 2θAT
1.67

AjAk, k 6= i, j 1
2(pi + pj)(1− 2θAT ) + 2θAT

1.43

AkAl, k, l 6= i, j 0 0

AiAk AjAj
1

pj(1− 2θAT ) + 2θAT
1.82

k 6= i, j

AjAl, l 6= j 1
2[pj(1− 2θAT ) + θAT ] 1.67

AkAl, k, l 6= j 0 0
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=
Pr(AM |GM ) Pr(AP |GR,Hp)

Pr(AM |GM ) Pr(AP |Hd)

which is obviously related to the likelihood ratios in Table 6.4. If those values
were written as PI, for paternity index, and the present values written as
AI for avuncular index, then Morris et al. (1988) noticed that

AI = (1− 2θAR) + 2θARPI

where θAR is the coancestry coefficient for the alleged father and the tested
relative. This relationship requires the absence of inbreeding. Now that
the tested man is not being alleged to be the father, he need not carry
the paternal allele, so it may be that PI is zero but AI is not zero. Recall
that θAR takes the value 1/4 for brothers or for father and son, 1/8 for
half-brothers or for uncle and nephew, and 1/16 for first cousins.

Incestuous Paternity

When the mother and alleged father are closely related, the paternity issue
becomes a criminal matter. The particular relationships that are prohibited
by law generally correspond to coancestry coefficients greater than 1/16.
If the alternative proposition Hd is that the father is an unknown man
unrelated to both mother and alleged father, then the analysis proceeds as
in Table 6.2. The relationship of AF and M does not affect the probability
of the child’s genotype under Hp or Hd. However, it is not uncommon in
such situations for Hd to be that the father is some other relative of the
mother.

Alleged father is mother’s father. Suppose the alleged father AF is
also the mother’s father:

Hp: AF, the father of M, is the father of C.

If the alternative proposition Hd is that the father of C is an unknown man,
unrelated to both M and AF, then the likelihood ratio is just as shown in
Table 6.2. However, if Hd is

Hd: TF, another relative of M, is the father of C.

then the analysis is more complex. We will consider the case where TF is a
brother of M and a son of AF, as shown in Figure 6.1, and he has not been
tested.
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Figure 6.1: Alleged father is mother’s father.

As in Equation 6.2, the likelihood ratio is

LR =
Pr(GC |GM , GAF ,Hp)
Pr(GC |GM , GAF ,Hd)

× Pr(GM , GAF |Hp)
Pr(GM , GAF |Hd)

The second ratio on the right hand side cancels to one, and

LR =
Pr(GC |GM , GAF ,Hp)
Pr(GC |GM , GAF ,Hd)

Evaluation of the numerator proceeds as for the simple paternity case, and
the values for homozygous or heterozygous children are given by Equa-
tions 6.5 or 6.6.

Calculation of the LR denominator is more complicated. IfGC = AMAP ,
we have

Den. = Pr(AM |GM , GAF ,Hd) Pr(AP |AM , GM , GAF ,Hd)

and the first term on the right-hand side is still Pr(AM |GM ) because AM is
known to have come from the mother with genotype GM . Also, the paternal
allele is independent of the maternal allele so

Den. = Pr(AM |GM ) Pr(AP |GM , GAF ,Hd)
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Remember that if there is doubt as to which of the child’s alleles is maternal
and which is paternal, we need to sum over both possibilities.

To evaluate Pr(AP |GM , GAF ,Hd) we need to introduce the genotype
GMM of the mother’s mother MM. In effect, this allows statements to be
made about the genotype of the mother’s brother TF. Unless MM has been
typed, her genotype is not known and we must use the law of total proba-
bility to sum over all possible values of GMM . For simplicity we drop Hd

from the notation, and write

Pr(AP |GM , GAF ) =
∑

GMM

Pr(AP |GMM , GM , GAF ) Pr(GMM |GM , GAF )

The paternal allele does not depend on the mother’s genotype, so GM can
be removed from the conditioning in the first term of the right-hand side.
The LR denominator becomes

Den. = Pr(AM |GM )
∑

GMM

Pr(AP |GMM , GAF ) Pr(GMM |GM , GAF )

We can evaluate this because, onceGM andGAF are known, we can calculate
the probabilities of all possible values of GMM . Until now we have traced
the transmission of alleles forward in time, from parent to child. Now, to
make inferences about the genotype of MM we have to move backward in
time from the genotype of her child M. Use of Bayes’ theorem allows us to
express this backward-moving probability in terms of the forward-moving
probabilities that we know from genetic laws:

Pr(GMM |GM , GAF ) =
Pr(GM |GMM , GAF ) Pr(GMM |GAF )

Pr(GM |GAF )

=
Pr(GM |GMM , GAF ) Pr(GMM )

Pr(GM |GAF )

We have replaced Pr(GMM |GAF ) by Pr(GMM ) in the numerator of the
right-hand side because the parents of M are assumed to be unrelated. Of
course, if MM has been typed, the calculations are just the usual transmis-
sion probabilities and there is no need to sum over the unknown genotypes
GMM . Otherwise, the LR is

LR =
Pr(AM |GM ) Pr(AP |GAF ,Hp)

Den.
where

Den. =
Pr(AM |GM )
Pr(GM |GAF )

×
∑

GMM

Pr(AP |GMM , GAF ,Hd) Pr(GM |GMM , GAF ) Pr(GMM )
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Table 6.5: Probabilities needed for situation in Figure 6.1.
.

GMM Pr(GMM ) Pr(GM |GMM , GAF ) Pr(AP |GMM , GAF )

AjAj p2
j 1/2 1/4

AiAj 2pipj 1/4 1/4

AjAk 2pjpk 1/4 1/2

AjAl 2pjpl 1/4 1/4
l 6= i, j, k

and we resist the temptation to cancel the Pr(AM |GM ) terms because in
some cases we need to sum the numerator and denominator over two values
of AM .

To make the analysis concrete, suppose that GM = AiAj , GC = AiAk,
andGAF = AiAk. This is a situation where the maternal and paternal alleles
can be deduced without ambiguity: AM = Ai, AP = Ak. The mother’s
mother must therefore carry allele AM = Aj . Furthermore, Pr(GM |GAF ) =
pj/2. The other probabilities depend on the genotype of MM, as shown in
Table 6.5. Therefore the likelihood ratio is

LR =
2

1 + pk

Exercise 6.3 Repeat the analysis of this section in the case where the mother,
the alleged father, and the child all have the same genotype AiAj .

Structured Populations

For structured populations, there is a low level of relatedness between all
members of the same subpopulation. We met this situation in Chapter 4
and now consider the implications for parentage testing. The mother, alleged
father, and father, although not in the same family, have some relatedness
by virtue of belonging to the same subpopulation. If allele proportions are
known for this subpopulation we can use the results of Table 6.1, but if all
we know are the allele proportions in the whole population we need to take
account of the genetic variability among subpopulations.
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There is no change to Pr(GC |GM , GAF ,Hp) since the genotypes of M
and AF give the probability of the genotype of C. Under Hd we can no
longer assume that the maternal and paternal alleles are independent. If
the paternal allele AP is from man TF,

Pr(GC |GM , GAF ,Hd) = Pr(AMAP |GM , GAF ,Hd)
= Pr(AM |GM , GAF ,Hd) Pr(AP |AM , GM , GAF ,Hd)
= Pr(AM |GM ) Pr(AP |GM , GAF ,Hd)

Therefore we need the probability of AP being an allele in an unknown
man TF in the population given the genotypes of the mother and the al-
leged father. The quantity Pr(AM |GM ) is just 0, 1/2, or 1 as before. The
conditional probability needed is

Pr(AP |GM , GAF ,Hd) =
Pr(AP , GM , GAF )

Pr(GM , GAF )

and the numerator of the right-hand side requires the relationships among
sets of five alleles: the paternal allele and the two alleles in each of the
mother and the alleged father. The denominator requires the relationship
among sets of four alleles: the two in each of the mother and the alleged
father. These probabilities are generally difficult to determine, but simple
expressions hold for random-mating populations that have reached an evo-
lutionary equilibrium as shown in the section on arbitrary sets of alleles in
Chapter 4.

The likelihood ratio for

Hp: AF is the father of C.
Hd: AF is not related to C.

depends on the genotypes of the mother and alleged father and the paternal
allele type, rather than just on the paternal allele and the genotype of the
alleged father. The results are shown in Table 6.6 (Balding and Nichols
1995).

As in previous sections, we need an additional step when the maternal
and paternal alleles are not determined uniquely. In general,

LR =
Pr(GC |GM , GAF ,Hp)
Pr(GC |GM , GAF ,Hd)

=
∑

AM ,AP
Pr(AM |GM , GAF ,Hp) Pr(AP |GM , GAF ,Hp)∑

AM ,AP
Pr(AM |GM , GAF ,Hd) Pr(AP |GM , GAF ,Hd)

=
∑

AM ,AP
Pr(AM |GM ) Pr(AP |GAF ,Hp)∑

AM ,AP
Pr(AM |GM ) Pr(AP |GM , GAF ,Hd)
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Table 6.6: LR values for the alternative propositions that the alleged father either
is or is not the father when mother, father, and alleged father all belong to the same
subpopulation. (Different subscripts indicate different alleles.) The proportions pi

refer to the whole population.

PI when
GM GC AM AP GAF PI θ = 0.03, pi = 0.1

AiAi AiAi Ai Ai AiAi
1 + 3θ

4θ + (1− θ)pi
5.0

AiAj
1 + 3θ

2[3θ + (1− θ)pi]
3.0

AiAj Ai Aj AjAj
1 + 3θ

2θ + (1− θ)pj
6.6

AiAj
1 + 3θ

2[θ + (1− θ)pj ]
4.5

AjAk
1 + 3θ

2[θ + (1− θ)pj ]
4.5

AiAk AiAi Ai Ai AiAi
1 + 3θ

3θ + (1− θ)pi
6.0

AiAk
1 + 3θ

2[2θ + (1− θ)pi]
3.6

AiAj Ai Aj AjAj
1 + 3θ

2θ + (1− θ)pj
6.6

AiAj
1 + 3θ

2[θ + (1− θ)pj ]
4.5

AjAl
1 + 3θ

2[θ + (1− θ)pj ]
4.5
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Now suppose that mother, child, and alleged father all have the same geno-
type AiAj . The numerator of LR is 0.5, and Equation 4.23 provides a value
for the denominator of

Pr(AM = Ai|GM = AiAj) Pr(AP = Aj |GM = GAF = AiAj ,Hd)
+ Pr(AM = Aj |GM = AiAj) Pr(AP = Ai|GM = GAF = AiAj ,Hd)

and this has the value

1
2

[
2θ + (1− θ)pi

1 + 3θ
+

2θ + (1− θ)pj

1 + 3θ

]
The LR becomes

LR =
1 + 3θ

4θ + (1− θ)(pi + pj)

PATERNITY EXCLUSION

In paternity disputes the question is whether or not a particular man is
the father of a particular child. Classical considerations of such questions
were limited to excluding a man from paternity of a child when the man did
not have the child’s paternal allele at some locus, or, if the paternal allele
cannot be determined, when the man had neither of the child’s alleles. The
increasing availability of diagnostic loci has given rise to calculations based
on the probabilities of the child’s genotype under alternative propositions
as we have shown. For completeness, however, we now review some results
pertaining to exclusion.

In Table 6.7 we show all the possible combinations of genotypes of a
mother and her child for a locus with alleles Ai. The last column of the
table shows the probability that an unknown man will be excluded as being
the father of the child. This calculation has nothing to do with any specific
alleged father, and it is seen to depend on the population proportion of the
allele inferred to be the child’s paternal allele. Except for the case where
both mother and child have the same heterozygous genotype, the paternal
allele is easily identified as the allele the child did not get from the mother.
For the double heterozygote case, either allele could have been the paternal
allele, so the exclusion probability uses the sum of the proportions of both
alleles. If there are only two alleles, no man could be excluded from paternity
by this locus.

A genetic marker can be characterized by its ability to exclude an un-
related man from paternity in any situation. This exclusion probability is
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Table 6.7: Paternity exclusion configurations at one locus with an arbitrary num-
ber of alleles; k is any value different from i and j.

Mother Child Excluded man

Type Probability Type Probability1 Genotypes Probability

AiAi p2
i AiAi pi AwAx, w, x 6= i (1− pi)2

AiAj pj AwAx, w, x 6= j (1− pj)2

AiAj 2pipj AiAi pi/2 AwAx, w, x 6= i (1− pi)2

j 6= i AjAj pj/2 AwAx, w, x 6= j (1− pj)2

AiAj (pi + pj)/2 AwAx, w, x 6= i, j (1− pi − pj)2

AiAk pk/2 AwAx, w, x 6= k (1− pk)2

AjAk pk/2 AwAx, w, x 6= k (1− pk)2

1Probability of genotype of child given genotype of mother.

given by summing the joint probabilities of all the mother-child-excluded
man combinations shown in the table. The probability of an AiAi mother
with an AiAi child is p2

i × pi, and this combination excludes all men that do
not have an Ai allele. Such men occur in proportion (1 − pi)2, so that the
trio in the first line of Table 6.7 has a combined probability of p3

i (1 − pi)2.
Adding such probabilities from all seven lines of the table gives the exclusion
probability Q

Q =
∑

i

pi(1− pi)2 −
1
2

∑
i

∑
j 6=i

p2
i p

2
j (4− 3pi − 3pj)

This probability will be maximized when all m alleles at the locus have
proportion 1/m.

Qmax = 1− 2m3 +m2 − 5m+ 3
m4

These exclusion probabilities depend on allele frequencies for that locus,
but do not depend on the genotypes in any particular case. The utility of a
locus increases with the number of alleles, although even with 5 alleles the
value of Qmax is only 0.6.

Exclusion probabilities are increased with the use of several loci, since
it is sufficient to exclude at any one of several loci when mutation can be
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ignored. If Ql is the exclusion probability at locus l, then the overall proba-
bility of exclusion follows from being able to exclude from at least one locus.
In other words, Q is one minus the probability that none of the loci allows
exclusion. If the Ql are independent

Q = 1−
∏
l

(1−Ql)

For two loci, each with five equally frequent alleles, the value of Q increases
to [1− (1− 0.6)2] = 0.84, and for five such loci it is 0.99.

MISSING PERSONS

Calculations similar to those used in paternity disputes are made when DNA
is recovered from stains or remains thought to be from a missing person. In
a forensic setting, a bloodstain may be found in the car of a person suspected
of having abducted and disposed of a victim. After an aircraft crash, body
parts may be found scattered around the wreckage. In a military setting,
bones may be returned from a foreign country many years after a war was
fought in that country. In each case, the profile from the sample is compared
to profiles from people known to be immediate family members of the missing
person. Generally the propositions to be considered are that the sample is
from the missing person or that it is from some unrelated person.

Spouse and Child Typed

Suppose a person is missing. The genetic evidence E consists of the genotype
of the sample from X, who may be the missing person, together with the
genotypes from the spouse M and child C of the missing person. The two
alternative propositions are:

Hp: The sample is from the missing person.
Hd: The sample is from some unknown person.

The likelihood ratio is

LR =
Pr(E|Hp)
Pr(E|Hd)

=
Pr(GC , GM , GX |Hp)
Pr(GC , GM , GX |Hd)
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Table 6.8: Probabilities needed in missing person case.

Child Spouse Sample
GC GM GX Pr(GC |GM , GX ,Hp) Pr(GC |GM ,Hd)

AiAi AiAi AiAi 1 pi

AiAj 0.5 pi

AiAj AiAk 0.25 0.5pi

AiAj AiAi AjAj 1 pj

AiAj 0.5 pj

AiAk AjAj 0.5 0.5pj

AjAk 0.25 0.5pj

and we proceed by working with probabilities of genotypes conditional on
those in the previous generation(s):

LR =
Pr(GC |GM , GX ,Hp) Pr(GM , GX |Hp)
Pr(GC |GM , GX ,Hd) Pr(GM , GX |Hd)

=
Pr(GC |GM , GX ,Hp)

Pr(GC |GM ,Hd)

since the genotype of the child does not depend on that of X when Hd is
true. We ignore the low level of relatedness due to population structure.
The probabilities for those cases when Hp is not contradicted by the genetic
evidence are shown in Table 6.8, so the likelihood ratios are the same as in
the paternity case in which X is alleged to be the father of child C who has
mother M. As in paternity disputes, extensions can be made to allow for X
to be a relative of the missing person, or to allow for relatedness among all
members of a population.

Additional Family Typings

It may be the case that family members apart from the spouse and child
of the missing person are typed. The general procedure is the same: the
probabilities of the set of observed genotypes under two propositions are
compared.

Suppose the parents P and Q as well as the child C and spouse M of the
missing person are typed, and that a sample X is available. Hypothesis Hp
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is that X is from the missing person. Under proposition Hd the sample is
from some unknown person, and therefore the genotype GX of X does not
depend on the genotypes GP and GQ of P and Q, and the genotype of GC

of C does not depend on GX .
In order to invoke the laws of genetic transmission, the likelihood ratio is

arranged to involve probabilities of genotypes conditional on previous gen-
erations. The first step is to invoke the probability of the child conditional
on its parent(s):

LR =
Pr(E|Hp)
Pr(E|Hd)

=
Pr(GC , GM , GX , GP , GQ|Hp)
Pr(GC , GM , GX , GP , GQ|Hd)

=
Pr(GC |GM , GX , GP , GQ,Hp) Pr(GM , GX , GP , GQ|Hp)
Pr(GC |GM , GX , GP , GQ,Hd) Pr(GM , GX , GP , GQ|Hd)

When the child’s parents are known, their genotypes are sufficient to
specify that of a child, so the child’s grandparental genotypes are not needed.
In other words

Pr(GC |GM , GX , GP , GQ,Hp) = Pr(GC |GM , GX ,Hp)

If the sample is not from the missing person, the genotype GX has no effect
on the probability of GC , but the genotypes GP and GQ are needed:

Pr(GC |GM , GX , GP , GQ,Hd) = Pr(GC |GM , GP , GQ,Hd)

These last two results lead to

LR =
Pr(GC |GM , GX ,Hp) Pr(GM , GX , GP , GQ|Hp)

Pr(GC |GM , GP , GQ,Hd) Pr(GM , GX , GP , GQ|Hd)

The next step is to make the probabilities of the genotypes of X and
M conditional on those of the parents - in line with the direction of flow of
genetic information. Under Hp, when X is from the offspring of P and Q,

Pr(GM , GX , GP , GQ|Hp) = Pr(GM , GX |GP , GQ,Hp) Pr(GP , GQ|Hp)
= Pr(GM |Hp) Pr(GX |GP , GQ,Hp)

× Pr(GP , GQ|Hp)

because the spouse’s genotype GM does not depend on the genotypes of
the missing person and is also independent of the genotype GX . Under Hd,
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when X is from some unknown person,

Pr(GM , GX , GP , GQ|Hd) = Pr(GM , GX |GP , GQ,Hd) Pr(GP , GQ|Hd)
= Pr(GM |Hd) Pr(GX |Hd) Pr(GP , GQ|Hd)

These two results lead to

LR =
Pr(GC |GM , GX ,Hp) Pr(GM |Hp) Pr(GX |GP , GQ,Hp)

Pr(GC |GM , GP , GQ,Hd) Pr(GM |Hd) Pr(GX |Hd)

× Pr(GP , GQ|Hp)
Pr(GP , GQ|Hd)

The final step is to recognize that the genotypes GM , GP , and GQ do not
depend on the propositions, so they cancel from numerator and denominator
of the LR:

LR =
Pr(GC |GM , GX ,Hp) Pr(GX |GP , GQ,Hp)

Pr(GC |GM , GP , GQ,Hd) Pr(GX |Hd)

To make this example concrete, suppose the genotypes are

Child : GC = A1A2

Sample : GX = A1A3

Spouse : GM = A2A4

Mother : GP = A1A5

Father : GQ = A3A6

Then the probabilities need for the likelihood ratio are

Pr(GC |GM , GX ,Hp) = 1/4
Pr(GX |GP , GQ,Hp) = 1/4

Pr(GC |GM , GP , GQ,Hd) = 1/8
Pr(GX |Hd) = 2p1p3

so that

LR =
1

4p1p3
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Exercise 6.4 Find the likelihood ratio for the situation when profiles are avail-
able from the mother, four siblings, the spouse, and a child of a missing person, as
well as from a sample that may be from the missing person. Specifically,

Mother : GP = A3A4

Sibs : {GS} = {A2A4, A2A4, A2A4, A3A4}
Spouse : GM = A5A6

Child : GC = A3A5

Sample : GX = A3A3

Use the fact that the genotypes of the four siblings and the mother imply that the
father of the missing person must have had genotype A2A3 or A2A4.

Deceased Alleged Father

A similar scenario is when the alleged father in a paternity dispute cannot
be typed, but typing is available from his relative(s). Suppose profiles are
available from the mother and her child, allowing the paternal allele AP = Ai

to be determined. The alleged father AF is deceased but his relative Z has
been typed.

We need the probability that AF would transmit allele Ai when Z has a
specified genotype. This is another instance where three-allele probabilities
are needed. From the previous results for non-inbred individuals:

Pr(AP = Ai|Gz = AiAi) = 2θAF,Z + (1− 2θAF,Z)pi

Pr(AP = Ai|Gz = AiAj) = θAF,Z + (1− 2θAF,Z)pi, j 6= i

Pr(AP = Ai|Gz = AjAk) = (1− 2θAF,Z)pi, j, k 6= i

so the likelihood ratio is

LR =
Pr(AM |GM ,Hp) Pr(AP |GZ ,Hp) Pr(GZ |Hp)
Pr(AM |GM ,Hd) Pr(AP |GZ ,Hd) Pr(GZ |Hd)

=
Pr(AP |GZ ,Hp)

Pr(AP |Hd)

=


(1− 2θAF,Z) + 2θAF,Z

pi
if GZ = AiAi

(1− 2θAF,Z) + θAF,Z
pi

if GZ = AiAj , j 6= i

(1− 2θAF,Z) if GZ = AjAk, j, k 6= i

If AF and Z are not related, θAF,Z = 0, there is therefore no information in
the genotype of Z concerning the paternity of AF, and the LR is 1 (Brenner
1997).
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Table 6.9: LR values for an inheritance dispute.

GX , GY Pr(GX , GY |Hp) Pr(GX |Hd) Pr(GY |Hd) LR

AiAi, AiAi
1
2p

3
i (1 + pi) p4

i
1
2 + 1

2pi

AiAi, AiAj
1
2p

2
i pj(1 + 2pi) 2p3

i pj
1
2 + 1

4pi

AiAi, AjAj
1
2p

2
i p

2
j p2

i p
2
j

1
2

AiAi, AjAk p2
i pjpk 2p2

i pjpk
1
2

AiAj , AiAj
1
2pipj(4pipj+

pi + pj) 4p2
i p

2
j

1
2 + 1

8pi
+ 1

8pj

AiAj , AiAk
1
2pipjpk(4pi + 1) 4p2

i pjpk
1
2 + 1

8pi

AiAj , AkAl 2pipjpkpl 4pipjpkpl
1
2

Inheritance Dispute

Brenner (1997) discusses the following inheritance dispute: People X and Y
have different mothers. The father Z of X has died, and Y claims also to be
a child of Z. The two propositions for the genetic evidence of the genotypes
of X and Y are

Hp: X and Y are half sibs.
Hd: X and Y are unrelated.

The likelihood ratio is

LR =
Pr(GX , GY |Hp)
Pr(GX , GY |Hd)

=
Pr(GX , GY |Hp)

Pr(GX |Hd) Pr(GY |Hd)
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because the genotypes GX and GY are independent when X and Y are un-
related. We now need to go back to Chapter 4 for the joint probabilities of
genotypes of half sibs and list them in column 2 of Table 6.9. The joint prob-
abilities in column 3 of Table 6.9 are just the products of the two separate
probabilities. We have assumed no inbreeding and no population structure.

The likelihood ratios in Table 6.9 are less than one and against X and
Y being half sibs unless they share rare alleles; for example for genotypes
AiAj , AiAk we must have pi < 1/8 for LR> 1, and even then LR can
decrease with more loci.

SUMMARY

Parentage testing, identification of remains, and inheritance disputes all ex-
ploit the genetic laws of transmission of alleles from parent to child. As with
forensic applications, the DNA evidence is interpreted with likelihood ratios
that compare the probabilities of the evidence under alternative proposi-
tions. Evaluation of the probabilities depends on using the laws of prob-
ability to make the probability of a genotype conditional on the parental
genotype(s).



Chapter 7

Mixtures

INTRODUCTION

In Chapter 2 we considered the case in which the evidence at the crime
scene consisted of two blood stains, and there was a single suspect whose
genotype was the same as that of one of the stains. In this chapter we
are going to extend that discussion considerably by talking about DNA
profiles of samples that contain material from more than one contributor.
The sensitivity of modern techniques is such that the incidence, complexity,
and importance of such cases are increasing. It is not possible to present
an exhaustive treatment of every eventuality, but by considering a range of
different kinds of cases we hope to assist the reader in gaining a sufficient
depth of understanding to tackle other situations as they arise. Rather than
providing a recipe book, we adhere to the three principles for interpreting
evidence listed in Chapter 2.

We will begin by considering the case in which independence of alleles
within and between loci can reasonably be assumed, there are no population
substructuring effects of practical magnitude, and all contributors to the
mixed profile are from the same population (Evett et al. 1991). Later in
the chapter we will relax these assumptions, but we will always assume that
all contributors to the mixed profile are unrelated to each other, and that
allelic dropout has no practical impact. This last assumption means that
we will not be using the “2p” method that is widely used for the estimation
of the frequency of single-banded RFLP-based VNTR systems (Weir et al.
1997). Moreover, we will carry out the analysis ignoring the intensities
of electrophoretic bands or typing strip dots, or peak heights in histograms
generated by automatic sequencers. We can refer to recent publications that
do take into account peak heights (Evett et al. 1998). We adopt a simple

203
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Victim

A4

A3

Suspect

A2

A1

Sample

A4

A3

A2

A1

Figure 7.1: Four-allele mixture.

illustrative method for summarizing profiles: each allele will be represented
by an open rectangle.

In our treatments of transfer evidence so far, we have always been able
to consider just two hypotheses to explain the evidence: the prosecution
and defense alternatives Hp and Hd respectively. This means that the odds
form of Bayes’ theorem can be used and the DNA evidence, summarized by
the likelihood ratio, can be maintained distinct from the non-DNA evidence
that is summarized by the prior odds. Later in this chapter we will meet
situations in which there are more than two hypotheses. We will discuss the
difficulties that arise and suggest methods for interpreting such cases.

VICTIM AND SUSPECT

The interpretation of a mixture depends very much on the circumstances
surrounding the crime. For our first examples we envisage a case where
there is very good reason for the victim’s DNA to be present in the sample,
as in a vaginal sample taken for alleged rape (ignoring the possibility of
differential extraction of sperm and vaginal epithelial cell DNA). The crime
sample therefore contains DNA from the victim and the offender, and is
found to have both the victim’s and the suspect’s alleles. We also assume
the victim alleges that no other man’s DNA could be present in the sample.
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Four-Allele Mixture

Suppose the DNA profiles for victim, suspect, and crime sample are as
shown in Figure 7.1. The sample has four alleles, two of which match those
of the victim and two of which match those of the suspect. The prosecution
proposition is

Hp: The crime sample contains DNA from the victim and the
suspect.

We anticipate a defense proposition of the kind

Hd: The crime sample contains DNA from the victim and an
unknown person.

In Chapter 2 we used GC to denote the genotype of a crime sample. That
notation is not adequate for mixtures, and instead we now use EC for the
entire sample profile and GV and GS for the genotypes of victim and sus-
pect, respectively. Omitting the non-DNA evidence I from the conditioning,
purely for brevity, the likelihood ratio for the mixture is

LR =
Pr(EC , GV , GS |Hp)
Pr(EC , GV , GS |Hd)

=
Pr(EC |GV , GS ,Hp)
Pr(EC |GV , GS ,Hd)

× Pr(GV , GS |Hp)
Pr(GV , GS |Hd)

Because there is nothing in Hp or Hd that affects our uncertainty about GV

and GS , the second ratio is one, and

LR =
Pr(EC |GV , GS ,Hp)
Pr(EC |GV , GS ,Hd)

If we now make the assumption, similar to Equation 2.4, that knowledge of
GS does not influence our uncertainty about the genotype of the offender,
we then have

LR =
Pr(EC |GV , GS ,Hp)

Pr(EC |GV ,Hd)
(7.1)

The numerator is one because the crime sample profile is exactly as expected
if Hp is true. The denominator is the probability that an unknown person,
unrelated to the victim, would contribute alleles A1A2 to the sample. As we
are assuming here that this probability does not depend on the genotype of
the suspect, it is 2p1p2 under the Hardy-Weinberg assumption. Therefore

LR =
1

2p1p2
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Victim

A3

Suspect

A2

A1

Sample

A3

A2

A1

Figure 7.2: Three-allele mixture, victim homozygous.

This result establishes the common procedure of “subtracting” the victim’s
genotype from the crime sample profile.

Three-Allele Mixture

If the two contributors to a mixed stain have an allele in common, the
profile of the stain will show only three alleles. We distinguish the cases of
the victim being homozygous or heterozygous.

Victim homozygous. If the victim is homozygous for allele A3 (Fig-
ure 7.2), the same line of argument as in the four-allele example leads to the
same result:

LR =
1

2p1p2

Victim heterozygous. If the victim is heterozygous A2A3 and the sus-
pect is homozygous A1 (Figure 7.3), the numerator of the likelihood ratio
remains equal to one, but the denominator requires more thought. It is
necessary to consider three possibilities for the genotype G of the unknown
person. The possibilities will be indexed by i:

i Gi

1 A1A1

2 A1A2

3 A1A3
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Victim

A3

A2

Suspect

A1

Sample

A3

A2

A1

Figure 7.3: Three-allele mixture, victim heterozygous.

To evaluate the denominator of Equation 7.1, we apply the law of total
probability (Chapter 1):

Pr(EC |GV ,Hd) =
∑

i

Pr(EC |GV , Gi,Hd) Pr(Gi|GV ,Hd)

=
∑

i

Pr(EC |GV , Gi,Hd) Pr(Gi|Hd)

Because we are ignoring intensity differences, any one of the Gi plus the
victim’s genotype will lead to the crime sample profile, so

Pr(EC |GV , Gi,Hd) = 1, i = 1, 2, 3

and then

Pr(EC |GV ,Hd) =
∑

i

Pr(Gi|Hd)

The probabilities of the Gi do not depend on Hd and are given by the
products of allele frequencies. The likelihood ratio becomes

LR =
1

p2
1 + 2p1p2 + 2p1p3

This likelihood ratio is less than the value 1/p2
i , which would have re-

sulted if the suspect had the same genotype as a single-contributor stain of
type A1A1. The presence of the victim’s bands, in effect, has weakened the
strength of the evidence against the suspect because they have increased the
number of alternative hypotheses for the evidence if Hd is true.



208 CHAPTER 7. MIXTURES

Exercise 7.1 Find the likelihood ratio for the following cases in which the victim
and offender are the only contributors to a stain, if it is known that the stain is
from two contributors:

Victim Suspect Sample
A1A1 A1A1 A1A1

A1A2 A1A2 A1A2

A1A1 A1A2 A1A2

A1A2 A1A1 A1A2

A1A1 A2A2 A1A2

SUSPECT AND UNKNOWN PERSON

Some crime samples will contain DNA from more than one person, but only
one known person is suspected of being a contributor. As before, we separate
the cases of the sample showing three or four alleles.

Four-Allele Mixture

As in Chapter 2, when we considered the case of two stains at the crime
scene, the hypotheses for a four-allele mixture profile that includes the geno-
type of a single suspect (Figure 7.4) are

Hp: The crime sample contains DNA from the suspect and an
unknown person.
Hd: The crime sample contains DNA from two unknown people.

Following a similar line of reasoning as in the case where the victim was
a contributor, we can show that

LR =
Pr(EC |GS ,Hp)
Pr(EC |GS ,Hd)

The genotypes Gi that might be components of the crime sample profile are

i Gi

1 A1A2

2 A1A3

3 A1A4

4 A2A3

5 A2A4

6 A3A4
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Suspect

A2

A1

Sample

A4

A3

A2

A1

Figure 7.4: Four-allele mixture.

and we note that G1 = GS . The law of total probability gives

Pr(EC |GS ,Hp) =
∑

i

Pr(EC |GS , Gi,Hp) Pr(Gi|GS ,Hp)

where Gi denotes the genotype of the unknown contributor to the mixture
in addition to the suspect. This simplifies slightly to

Pr(EC |GS ,Hp) =
∑

i

Pr(EC |G1, Gi,Hp) Pr(Gi|Hp)

where we have written G1 for GS . However, when we look at the possible
values for Gi, we see that the evidence is not possible unless i = 6. So
Pr(EC |G1, Gi,Hp) = 0 when i 6= 6. The numerator for the likelihood ratio
becomes

Pr(EC |GS ,Hp) = Pr(EC |G1, G6,Hp) Pr(G6|Hp)
= 1× 2p3p4

For the denominator of the likelihood ratio we first invoke our assumption
that knowledge of GS provides no information about the genotypes of pos-
sible contributors to the crime sample when Hd is true. Therefore

Pr(EC |GS ,Hd) = Pr(EC |Hd)

Because there are two unknown contributors under Hd, with genotypes Gi

and Gj , the law of total probability gives

Pr(EC |Hd) =
∑

i

∑
j

Pr(EC |Gi, Gj ,Hd) Pr(Gi, Gj ,Hd)
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The double summation indicates that we must consider every possible pair of
genotypes from the list of permitted genotypes. Looking at that list, we see
that there are only six combinations of i and j for which Pr(EC |Gi, Gj ,Hd)
is not zero. They are all the possible pairs of heterozygotes that contain all
four alleles A1A2A3A4 between them:

i j Gi Gj Pr(Gi, Gj |Hd)
1 6 A1A2 A3A4 2p1p2 × 2p3p4

2 5 A1A3 A2A4 2p1p3 × 2p2p4

3 4 A1A4 A2A3 2p1p4 × 2p2p3

4 3 A2A3 A1A4 2p2p3 × 2p1p4

5 2 A2A4 A1A3 2p2p4 × 2p1p3

6 1 A3A4 A1A2 2p3p4 × 2p1p2

We are still assuming that contributors i and j are unrelated, so that Gi and
Gj are independent, and that any intensity differences are ignored. For each
of the six combinations Pr(EC |Gi, Gj ,Hd) = 1, and the likelihood ratio is

LR =
2p3p4

24p1p2p3p4

=
1

12p1p2

The likelihood ratio is reduced by a factor of six over what it would be
if a suspect of type A1A2 were included in a single stain of type A1A2. If
alleles A1, A2 were common in the population (e.g. p1 = p2 = 0.3 giving
12p1p2 > 1) the likelihood ratio is actually less than one, meaning that the
sample profile is more likely to be of type A1A2A3A4 if it came from two
unknown people than if it came from the suspect and one unknown person.
The evidence favors the defense, and this is one reason it is important to
use the principles of evidence interpretation instead of simplistic rules of the
“random man not excluded” type.

Three-Allele Mixture

Suspect heterozygous. When the suspect is heterozygous and the crime
sample has those two alleles plus one other, as in Figure 7.5, the likelihood
ratio is

LR =
Pr(EC |GS ,Hp)
Pr(EC |GS ,Hd)
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A1

Sample

A3

A2

A1

Figure 7.5: Three-allele mixture, suspect heterozygous.

and the genotypes that might be components of the crime sample profile are

i Gi Pr(Gi|Hp)
1 A1A2 2p1p2

2 A1A3 2p1p3

3 A2A3 2p2p3

4 A1A1 p2
1

5 A2A2 p2
2

6 A3A3 p2
3

Note that G1 = GS . The numerator of the likelihood ratio is

Pr(EC |GS ,Hp) =
∑

i

Pr(EC |GS , Gi,Hp) Pr(Gi|GS ,Hp)

=
∑

i

Pr(EC |G1, Gi,Hp) Pr(Gi|Hp)

Ignoring any intensity differences, only i = 2, 3, 6 allow the crime sample
to have profile A1A2A3, and these all give Pr(EC |G1, Gi,Hp) = 1. Adding
terms

Pr(EC |GS ,Hp) = 2p1p3 + 2p2p3 + p2
3

For the denominator, there are 12 combinations of two genotypes that
between them have the same profile as the crime sample. These are shown
in Table 7.1. The denominator of the likelihood ratio simplifies to

Pr(EC |GS ,Hd) = 12p1p2p3(p1 + p2 + p3)
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Table 7.1: Pairs of two genotypes with three alleles.

i j Gi Gj Pr(Gi, Gj |Hd)
1 2 A1A2 A1A3 2p1p2 × 2p1p3

1 3 A1A2 A2A3 2p1p2 × 2p2p3

1 6 A1A2 A3A3 2p1p2 × p2
3

2 1 A1A3 A1A2 2p1p3 × 2p1p2

2 3 A1A3 A2A3 2p1p3 × 2p2p3

2 5 A1A3 A2A2 2p1p3 × p2
2

3 1 A2A3 A1A2 2p2p3 × 2p1p2

3 2 A2A3 A1A3 2p2p3 × 2p1p3

3 4 A2A3 A1A1 2p2p3 × p2
1

4 3 A1A1 A2A3 p2
1 × 2p2p3

5 2 A2A2 A1A3 p2
2 × 2p1p3

6 1 A3A3 A1A2 p2
3 × 2p1p2

and the ratio is

LR =
2p1 + 2p2 + p3

12p1p2(p1 + p2 + p3)

Exercise 7.2 For a crime sample of type A1, A2, A3, known to contain DNA
from two contributors, evaluate the likelihood ratio in the case where a suspect is
of type A2A2.

TWO SUSPECTS

There are situations where the genotypes of two suspects are included in the
profile of a mixture. We must repeat our frequent assertion that interpre-
tation of a case such as this depends on the circumstances surrounding the
crime. For this example, we assume that there is evidence that the crime
was committed by two offenders. This could be the case in a double rape
where the crime sample was the male fraction DNA extracted from a vaginal
swab. Two suspects for the offense have been arrested for reasons that we
have included in the non-DNA evidence I. We assume that the two suspects
are to be tried together, in which case the prosecution proposition may be
assumed to be of the kind

Hp: The crime sample contains DNA from the two suspects.
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Suspect 1

A1

A2

Suspect 2

A4

A3

Crime Sample

A4

A3

A2

A1

Figure 7.6: Banding pattern for four-allele mixture.

However, it now seems unrealistic to anticipate a simple defense proposi-
tion, particularly in view of the consideration that the two suspects will
most probably be represented by different counsel. We can envisage three
alternative defense hypotheses:

Hd1: The crime sample contains DNA from suspect 1 and an
unknown person.
Hd2: The crime sample contains DNA from suspect 2 and an
unknown person.
Hd3: The crime sample contains DNA from two unknown people.

Four-Allele Mixture

In Figure 7.6 we show the situation in which the genotypes of two heterozy-
gous suspects are included in the profile of a mixture. From the results of the
previous sections, and continuing the same basic independence assumptions
for the propositions just enumerated:

Pr(EC |Hp) = 1
Pr(EC |Hd1) = 2p3p4

Pr(EC |Hd2) = 2p1p2

Pr(EC |Hd3) = 24p1p2p3p4

We have seen that when there are two alternative hypotheses to be ad-
dressed the scientific evidence can be summarized neatly by the likelihood
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ratio, and this can be kept distinct from prior probabilities. With more than
two hypotheses, however, this clear separation is not readily achievable. It
is necessary to use the general form of Bayes’ theorem (Box 1.4) to calculate
posterior probabilities. For the prosecution proposition, using the law of
total probability,

Pr(Hp|EC) =
Pr(Hp)

Pr(Hp) + 2p3p4 Pr(Hd1) + 2p1p2 Pr(Hd2) + 24p1p2p3p4 Pr(Hd3)

The forensic scientist is in no position to evaluate this because the prior
probabilities are not within his or her domain and they will not be quantified
at any time during typical court proceedings.

A possible solution to this is for the scientist to address a pair of alterna-
tives at a time and calculate the ratio of probabilities of the evidence given
each member of the pair. This is still a likelihood ratio even though the
alternatives are not exhaustive. The results could be expressed in a table,
though very careful explanation will be needed.

Numerator
Denominator Hp Hd1 Hd2

Hd1 1/(2p3p4)

Hd2 1/(2p1p2) p3p4/(p1p2)

Hd3 1/(24p1p2p3p4) 1/(12p1p2) 1/(12p3p4)

It is not clear that any further simplification of the evidence is possible,
unless the background circumstances change. Of course, the table would be
simplified if it later transpired that one of the suspects pled guilty.

VICTIM AND/OR SUSPECT

Previously we considered the case in which the victim’s DNA would be
expected to be found under both hypotheses Hp and Hd. There will be
situations, however, where this not the case. The crime sample in a rape
case may be a blood-and-semen stain from some bedding. If this sample
profile includes the genotypes of both victim and suspect, as in Figure 7.1,
and if the victim identifies the bedding, the prosecution proposition would
be the same as before:
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Hp: The crime sample contains DNA from the victim and sus-
pect.

Anticipating the defense proposition is quite difficult in this case, but a
start may be made with

Hd1: The crime sample contains the DNA from the victim and
an unknown person.
Hd2: The crime sample contains the DNA from the suspect and
an unknown person.
Hd3: The crime sample contains the DNA from two unknown
people.

Once more, we face the problem that the likelihood ratio formulation can
be used only if we restrict attention to two propositions at a time.

There is no denying that this analysis would be difficult to explain and
report. An alternative approach is to treat the evidence in two stages. The
forensic scientist could say that he or she has considered the following two
hypotheses:

The stain contains the DNA of the victim and an unknown per-
son.
The stain contains the DNA of two unknown people.

Evaluating the likelihood ratio for these two alternatives proceeds as in the
previous sections. The scientist would go on to report “The evidence is
LR times more probable if the first of these hypotheses is true than if the
second is true.” The judgment of whether or not the victim was raped
on the bedding from which the stain was recovered depends not only on
the DNA evidence but also on other circumstances that the court will take
into account. If the court determines that the bedding is indeed associated
with the crime, then it may be meaningful to consider the following two
hypotheses:

The stain contains the DNA of the victim and the suspect.
The stain contains the DNA of the victim and an unknown per-
son.

The evaluation of the likelihood ratio for these two alternatives proceeds as
before. The scientist concludes by saying “The evidence is LR times more
probable if the first of these alternatives is true.”
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GENERAL APPROACH

The previous sections lay out a method for approaching the interpretation
of specific mixed stains, but it is also helpful to have a general formula that
makes the process somewhat automatic. This reduces the chance of failing
to account for some of the possible genotypes for unknown contributors, and
it allows the construction of computer programs.

The essence of the general approach is to identify the alleles in the crime
sample and the alleles carried by known contributors to the sample. Any
alleles in the sample not carried by known contributors must be carried by
unknown contributors, and it is necessary to specify the number of unknown
contributors. We also take into account the alleles carried by individuals who
are known not to contribute to the sample. Note that the word “contributor”
is defined by the proposition being considered–a person may be declared
a contributor under one proposition and a non-contributor under another
proposition. Evaluation of the probabilities needed for the likelihood ratio
also requires knowledge of the number of times each allele occurs. We have
set up the notation shown in Table 7.2 to help keep track of alleles and allele
counts.

We write the set of all alleles in the evidence sample as C. With nC

contributors, declared or unknown, there are 2nC alleles in the set. How-
ever, not all the alleles will be different because some contributors may be
homozygous and some may share alleles. We write the set of distinct evi-
dence alleles as Cg and the number of distinct alleles as c. The whole set
C contains ci copies of allele Ai,

∑
i ci = 2nC . At present we are assum-

ing allelic independence, so the probability of this set of alleles involves the
product of probabilities for each allele in the set:

∏
i p

ci
i . To complete the

probability calculations we need to know the genotypic composition of the
contributors to the sample. For a proposition H in which every contributor
is specified, the genotypes are known and we need a factor of 2 for each of
the hC heterozygotes. The probability of the evidence is

Pr(C|H) = 2hC
∏
i

pci
i

However, at least one of the alternative propositions will involve un-
known people, and then we may not know the genotypes of all contributors
to the crime sample: we may not know the ci’s or hC . Instead we have a
set of nT declared contributors, with allele counts ti and hT heterozygotes
among them. There is also a set of nV people declared not to be contributors,
and these people have allele counts vi and hV heterozygotes among them.
The x unknown people have ui copies of allele Ai among them,

∑
i ui = 2x
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Table 7.2: Notation for mixture calculations.

Alleles in the profile of the evidence sample.

C The set of alleles in the evidence profile.
Cg The set of distinct alleles in the evidence profile.
nC The known number of contributors to C.
hC The unknown number of heterozygous contributors.
c The known number of distinct alleles in Cg.
ci The unknown number of copies of allele Ai in C.

1 ≤ ci ≤ 2nC ,
∑c

i=1 ci = 2nC

Alleles from typed people that H declares to be contributors.

T The set of alleles carried by the declared contributors to C.
Tg The set of distinct alleles carried by the declared contributors.
nT The known number of declared contributors to C.
hT The known number of heterozygous declared contributors.
t The known number of distinct alleles carried by nT declared contributors.
ti The known number of copies of allele Ai in T .

0 ≤ ti ≤ 2T ,
∑s

i=1 ti = 2T .

Alleles from unknown people that H declares to be contributors.

U The set of alleles carried by the unknown contributors to C.
x The specified number of unknown contributors to C: nC = nT + x.
c− t The known number of alleles that are required to be in U .
r The known number of alleles in U that can be any allele in Cg, r = 2x− (c− t).
ri The unknown number of copies of Ai among the r unconstrained alleles in U .

0 ≤ ri ≤ r,
∑c

i=1 ri = r.
ui The unknown number of copies of Ai in U : ci = ti + ui,

∑c
i=1 ui = 2x.

If Ai is in C but not in T , ui = ri + 1. If Ai is in C and also in T , ui = ri.

Alleles from typed people that H declares to be noncontributors.

V The set of alleles carried by typed people declared not to be contributors to C.
nV The known number of people declared not to be contributors to C.
hV The known number of heterozygous declared noncontributors.
vi The known number of copies of Ai in V.

∑
i vi = 2nV .
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and ci = ti + ui, but we may not know the genotypic composition of the x
people. We can say that there are (2x)!/

∏
i ui! ways of arranging the alleles

into genotypes, and this takes care of the factors of 2 for heterozygotes. For
the counts ui, the probability of the evidence is now

Pr(C,V|H) =
2hT +hV (2x)!∏

i ui!

∏
i

pti+ui
i

It remains to assign values to the unknown counts ui. The unknown people
are constrained to carry at least one copy of the c distinct alleles in the
crime sample that are not among the t distinct alleles carried by the declared
contributors to the sample. This accounts for c− t of the 2x alleles among
the unknowns. Otherwise, they may carry any of the alleles in Cg but may
not carry any allele not in Cg. There are r = 2x − (c − t) alleles in this
unconstrained set, for which we write ri for the number of Ai alleles. Note
that r is known but the ri are not known. For an allele in Cg but not in
Tg we have that ui = ri + 1, and for the alleles in both Cg and Tg we have
ui = ri. For any other allele, ui = 0. It is a straightforward procedure to
have a computer assign values to the ris:

• Let r1 take each value in the range 0, 1, . . . , r.

• Let r2 take each value in the range 0, 1, . . . , r − r1.

• . . .

• Let rc−1 take each value in the range 0, 1, . . . , r − r1 − . . .− rc−2.

• Then rc = r − r1 − r2 − . . .− rc−1.

We can write the probability of the distinct alleles Cg = (A1, A2, . . . , Ac) in
the crime sample, for a proposition that has a set of alleles T carried by nT

declared contributors, a set U carried by x unknown contributors, and a set
V carried by nV known noncontributors, as

Px(T ,U ,V|Cg) =
r∑

r1=0

r−r1∑
r2=0

· · ·
r−r1−...−rc−2∑

rc−1=0

2hT +hV (2x)!∏
i ui!

c∏
i=1

pti+ui+vi
i

As an example, suppose the crime sample has alleles A1, A2, and A3.
Three people have been typed, and found to have the genotypes A1A1,
A2A3, and A3A3. Such an example, for locus D1S80, was discussed by Weir
et al. (1997). Two alternative propositions are

Hp: The crime sample is from the three typed people.
Hd: The crime sample is from three unknown people.
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Under Hp, there are no unknown contributors and no noncontributors so,
writing the empty set of alleles from unknown contributors or noncontribu-
tors as φ,

P0(T = A1A1A2A3A3A3,U = φ,V = φ|A1A2A3) = 12p2
1p2p

3
3

and this is Pr(E|Hp), the probability of the evidence under Hp.
Under Hd, there are no declared contributors and there are three un-

known contributors. The unknown contributors must carry alleles A1A2A3,
leaving r = 3 unconstrained alleles, and ui = ri + 1, i = 1, 2, 3. There are
also three declared noncontributors, who have alleles A1A2A3 with counts
2, 1, 3 and one heterozygote. The probability, for T = φ,U = A1A2A3,V =
A1A2A3, is

P3(φ,U ,V|A1A2A3) =
3∑

r1=0

3−r1∑
r2=0

21pr1+1
1 pr2+1

2 p4−r1−r2
3

(r1 + 1)!(r2 + 1)!(4− r1 − r2)!

There are 10 terms in the summation, corresponding to r1, r2, and r3 values
of (0,0,3), (0,1,2), (0,2,1), (0,3,0), (1,0,2), (1,1,1), (1,2,0), (2,0,1), (2,1,0),
and (3,0,0). The 10 add to the probability of the evidence under Hd:

Pr(E|Hd) = 360p3
1p

2
2p

4
3[p

3
3 + 2p2p

2
3 + 2p2

2p3 + p3
2 + 2p1p

2
3

+ 3p1p2p3 + 2p1p
2
2 + 2p2

1p3 + 2p2
1p2 + p3

1]

and the likelihood ratio is the ratio Pr(E|Hp)/Pr(Hd).

Effects of Population Structure

The general approach in the previous section assumed that all the alleles
were independent. That can be modified very simply (Curran et al. 1999)

to allow for the kinds of dependence imposed by joint membership in
the same subpopulation. The Dirichlet theory described in Chapter 4 is
appropriate, and Equation 4.23 is needed. Recall that this theory does
assume independence of alleles within the subpopulation, but dependence
in the whole population. The theory supposes that allele proportions are
available only for the whole population. The quantity θ serves to quantify
the variation of allele proportions among the subpopulations, and allows
the population-wide proportions to be used for a subpopulation. The term∏

i p
ti+ui+vi
i in the general expression of the last section is replaced by

Γ(γ.)
Γ(γ. + 2nT + 2x+ 2nV )

c∏
i=1

Γ(γi + ti + ui + vi)
Γ(γi)
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with γi = (1− θ)pi/θ and γ. =
∑c

i=1 γi as before.
It is possible to refine this to allow some of the people to be in one

subpopulation, and some in another (Curran et al. 1999). This would allow
a victim and her attacker to be in different subpopulations, or even different
racial groups, but the suspect and attacker to be in the same subpopulation.
It is necessary to apply separate Dirichlet moment formulations to each
different subpopulation and also to account for the orderings of alleles among
individuals separately for each subpopulation. This refinement may not be
necessary because assigning all alleles to the same subpopulation maximizes
the effects of population substructure, and separate analyses can be made
with allele proportions from different racial groups.

NUMBER OF CONTRIBUTORS

The analyses so far have all assumed that the number of contributors to a
mixed sample is known. In some cases this will be a reasonable assump-
tion, but in other cases there may be little information about the number of
unknown contributors. A complete analysis would allow for different num-
bers of unknown contributors, each number with its own prior probability.
However, these priors are likely to be outside the province of the forensic
scientist. An alternative is to provide separate analyses for each of a range
of numbers of unknown contributors. By and large, for a locus that has all
possible alleles present in the mixture, the probability of the mixture profile
increases with the number of contributors. It becomes more probable that
a large number of contributors will have all the alleles at a locus between
them. The opposite is true for a locus where only some of the possible alle-
les are present in the mixture profile. Then it becomes less probable that a
large number of contributors will have only that set of alleles between them.

SUMMARY

The interpretation of mixed stains is possible only in the context of like-
lihood ratios. Unlike single-contributor stains, the sample profile may not
be certain under either of two alternative propositions, so the likelihood ra-
tio is the ratio of two probabilities that are less than one. Presenting the
probability under only one proposition can be quite misleading.

Throughout this chapter we have ignored any information, such as band
intensity, that may indicate the relative amounts of DNA from different
contributors in a mixed sample. Taking account of intensity differences can
increase discrimination (Evett et al. 1998), but at present the statistical
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methodology is at a comparatively early stage. There are also semi-intuitive
methods that discount selected genotypic combinations, but these methods
must be used with extreme care as they can give misleading results.
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Chapter 8

Calculating Match
Probabilities

INTRODUCTION

In previous chapters we covered the basic elements of evidence interpre-
tation: probability, statistics, population genetics, and statistical genetics.
We also treated the special needs of parentage testing and interpreting DNA
mixtures. In this chapter we summarize the procedures for calculating match
probabilities, and in the final chapter we cover the issues involved in pre-
senting evidence. We phrase the discussion in this chapter in terms of the
Gotham City example we first met in Chapter 3.

Using the terminology we developed in Chapter 2, we denote the geno-
type of the crime stain as GC and that of the suspect as GS . The two
genotypes have matched, in other words GC = GS = G. As in Chapter 2,
we consider two propositions:

Hp: The suspect left the crime stain.
Hd: Some other person left the crime stain.

In Chapter 3 we considered how a database of profiles from a Gotham City
convenience sample could be used to assist in weighing these alternatives
against each other. In particular, we showed how the database could be
used to estimate allele proportions for each of the alleles in the matching
profile. We now consider the discussion of how the strength of the evidence
should be evaluated.

223
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PROFILE PROBABILITY

The evaluation of the LR depends greatly on what we mean by the “some
other person” who is the true offender, given that Hd is true. If, given Hd,
we can assume the suspect and offender are unrelated, then we can drop
GS from the conditioning in the denominator. The LR is then simply the
reciprocal of Pr(GC |Hd, I), as in Equation 2.5, and this can be estimated as
the genotype proportion in the whole population.

If we believe that it is reasonable to regard our convenience sample as
a random sample (Chapter 3), the sample proportion is unbiased for the
population proportion. This is just a property of the multinomial distribu-
tion, also discussed in Chapter 3. The problem is, as the number of loci in
the profile increases, it becomes very unlikely that any particular profile will
be found in our sample. It is necessary to construct an estimate, and one
approach would be to form the product of allele proportions, as discussed in
Chapter 5. This would be a valid procedure only if these proportions were
independent.

We may be willing to assume independence if we could be sure of the ho-
mogeneity of the population from which the convenience sample was drawn.
However, once we acknowledge the possibility of population substructur-
ing, we know from Chapter 4 that independence cannot hold. The classical
statistical approach is to proceed with independence testing in spite of the
recognition that the null hypothesis of independence is not true–the thought
being that the degree of dependence may be too low to cause the product
rule to be misleading. Even then, we showed in Chapter 5 that tests are
expected not to find departures from independence until those departures
are quite large.

Problems with Independence Testing

There are a number of problems with independence testing, which we will
now review. Recall that the basic steps of hypothesis testing, such as for
within-locus or between-locus independence, can be summarized as follows:

• Set up the null hypothesis that independence is the true state.

• Calculate a test statistic from the data.

• Compare the value of the test statistic with the probability distribution
(e.g., chi-square) that holds when the null hypothesis is true. Use that
distribution to calculate the probability of observing a value equal to
or greater than the test statistic. This is the P -value.
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• If the P -value is small, reject the null hypothesis.

We now consider some issues arising from this procedure.

The null hypothesis. Recall that in Chapter 4 we explained how the the-
ory of population genetics was based on simple models that invoked the idea
of an ideal population. The assumptions that we adopted for the derivation
of the Hardy-Weinberg law included the notion of a random-mating popula-
tion of infinite size, although this is never realized in real-world populations.
Not only are human populations of finite size, but they also do not mate at
random because of many factors such as geography, religion, education, and
socioeconomics. The conditions for complete independence do not exist for
real human populations. It follows that the null hypothesis cannot be true
in any practical situation.

The alternative hypothesis. The null hypothesis is absolutely precise:
independence exists. In any scientific endeavor there must always be at least
one alternative hypothesis to explain a phenomenon or state of nature. The
alternative hypothesis in this case must be that independence does not exist.
Note that, in contrast to the null hypothesis, the alternative hypothesis is
infinitely vague. In fact, we already know that the conditions for the null
hypothesis cannot exist, so even without collecting data, we know that the
null hypothesis must be false and the alternative hypothesis must be true.

Classical statistics very often takes the “straw man” approach of setting
up a null hypothesis suspected of being false and then examining data to
see if indeed the hypothesis can be rejected. In the present context of in-
dependence testing, the desired outcome is a failure to reject. Part of the
attraction for a Bayesian approach to statistical inference is that it avoids
the hypothesis-testing approach and the difficulty of testing a null hypothesis
known to be false against an alternative known to be true.

The P -value. The P -value is the probability, given the truth of the null
hypothesis, of values of the test statistic equal to or more extreme than that
which has been observed. The standard view is that small P -values cast
doubt on the truth of the null hypothesis. What do we mean by “small”?
An element of arbitrariness inevitably creeps in here: conventional wisdom is
that a P -value of 0.05 is “significant” and one of 0.01 is “very significant.” So
if, for example, we arrive at a P -value of 0.005 we might say that we reject the
null hypothesis at the 1% level, and proceed as though the null hypothesis
were not true–which for the hypothesis of Hardy-Weinberg equilibrium is as
it should be!
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“Proving” independence. On the other hand, what if a moderate P -
value is calculated–0.5, for example? It means that the null hypothesis is not
rejected, but one must not fall for the misconception that the null hypothesis
has therefore been proved to be true. That is most certainly not the case.
All we have demonstrated is that the data do not provide sufficient evidence
to disprove the null hypothesis. This may well happen when the data set is
small. We can never prove independence; all we can ever do is to say that
the dependence effects, whatever they are, were not detected by our test.
This may be a consequence of the effects indeed being very small, or it may
be a consequence of lack of data, or of the design of the test statistic.

“Proving” dependence. So, if we have a small P -value we reject the
null hypothesis, which seems to suggest that the null hypothesis is false.
We appear to have proved that there are dependence effects. The danger
here is there has been a school of thought that holds the view that this
means the product rule should not be used. But this is not necessarily the
case: we must recognize that there is a clear difference between statistical
significance and practical significance. It might be that the quantity of
data and the design of the test statistic are such that effects are manifested
that, although real, are still far too small to have any noticeable impact on
the figures put to a court for interpreting a DNA match. The important
point here is that the P -value is not a measure of how well the estimation
procedure will work in casework.

Multiple testing. As we employ more and more loci to aid our discrimi-
nation in DNA cases, so the potential numbers of independence tests grow.
For example, with a six-locus STR multiplex there are six within-locus tests
for each database , and the potential for false rejections will increase above
the nominal value of 5% that we believe is the case, for example, when we
reject on the basis of a chi-square test statistic exceeding 3.84. The Bonfer-
roni correction (Weir 1996) for multiple tests makes a distinction between
“comparison-wise” and “experiment-wise” significance levels. Our discus-
sion on P -values so far has been comparison-wise. Each test, considered
singly, has probability P of leading to false rejection. If, for example, we
were carrying out six independent tests then the experiment-wise signifi-
cance level is the proportion of times that one or more of all six tests would
lead to a false rejection. If it is desired to keep the experiment-wise rate
at level P , then the rate for each individual test needs to be decreased to
(approximately) P/N when N tests are performed. In the present example,
each of the six tests would be conducted at the P = 0.008 level, to give
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an experiment-wise error rate of 5%. A chi-square statistic would need to
be larger than 6.96 instead of 3.84 to indicate rejection. This approach is
not really satisfactory, as the six tests are not replicates of the same test.
We are really interested in departures from Hardy-Weinberg at each locus
individually–it is not that all six single-locus tests are addressing exactly
the same issue. The number of tests increases if we also examine sets of
three, four, five, and six loci and the potential for false rejections would
increase even if perfect independence existed–which it doesn’t, as we have
seen. Knowing that, what should we do when we get a significant rejection
for a particular combination?

Prior knowledge. A serious weakness of the hypothesis-testing approach
is that it does not enable account to be taken of prior knowledge. There may
be very good prior reasons that dependence effects in a given population are
minor. These could include previous studies at other loci; knowledge that
the new loci of interest are evolutionarily neutral; demographic information
showing that subpopulations have experienced generations of intermixing;
or sociological studies showing that inbreeding levels are small.

Post-hoc rationalization. A natural consequence of the last two points
is the practice, of which there are many examples to be found in the literature
(e.g., Evett et al. 1996a) where one or more “significant” results in a study
are discounted by the authors as being of no importance. The literature has
demonstrated various approaches to doing this: carrying out additional tests
based on different test statistics; localizing the genotypic combinations that
contribute most to the test failure and demonstrating that the departure
has small practical effect; citing other studies in which the effect was not
observed; and invoking the fact that multiple testing has been carried out,
implementing the Bonferroni inequality to weaken the power of all of them.

The issue of testing for independence across loci is even more compli-
cated, and in Box 5.8 we referred to the great difficulty in performing mean-
ingful tests for allelic independence at several loci.

Why should we employ hypothesis testing? A good proportion of
this book has been devoted to hypothesis testing, and the reader can be
forgiven for being puzzled by an apparent volte-face by the authors. There
are indeed some good reasons for using a significance test, and we point
out that tests have been used in many of the scientific advances of the
20th century. For example, new drugs are adopted after rejection of null
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hypotheses that they have no beneficial effect or that they are no better
than existing medications.

With much of existing practice steeped in this approach to scientific
inference, it may be difficult to introduce a new system of genetic markers
into casework unless it can be shown that a minimum standard battery of
tests has been applied. Next, some of the tests are very simple to carry
out, can be very useful for a first pass over the data, and can provide an
early indication that some hitherto unexpected effect is operating–such as,
for example, a technical problem leading to allelic drop-out and consequent
excess homozygosity. Finally, we must admit that alternative methods can
be mathematically far more complex than most hypothesis tests.

MATCH PROBABILITIES

The need for assuming independence is removed when we proceed as though
there is always some degree of association between the genotypes of the sus-
pect and the offender, and calculate the match probability Pr(GC |GS ,Hd, I)
and thus the LR at Equation 2.3. Our expressions for the match probability
in Equations 4.20 allow for dependences due to population structure.

In Chapter 4 we developed a theory for these probabilities when, under
Hd, the offender and suspect are related by virtue of being in the same family
or by virtue of shared evolutionary history. For our Gotham City example,
we can ignore the possibility of family relationships. We do want to consider
evolutionary dependence, however, and the most conservative statement we
can make about the unknown offender is that he belongs to the same subpop-
ulation as the suspect. Because the convenience sample is from the whole
population, our treatment of match probabilities took explicit account of
population structure by means of the parameter θ (Equations 4.20):

Pr(GS = AiAi|GC = AiAi) =
[2θ + (1− θ)pi][3θ + (1− θ)pi]

(1 + θ)(1 + 2θ)
(8.1)

Pr(GS = AiAj |GC = AiAj) =
2[θ + (1− θ)pi][θ + (1− θ)pj ]

(1 + θ)(1 + 2θ)

Implicit in the development of these equations is the recognition that
population structure produces allelic dependence in the whole population.
In other words, use of these equations avoids the need to assume allelic
independence in the whole population–indeed dependence is assumed. Use
of these equations also avoids the need to specify the subpopulation since
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the result is expected to hold for any subpopulation. The next issue is that
of choosing an appropriate values for θ.

Choosing θ

In our Gotham City example we have just the one convenience sample from
the whole population, so how can we decide on a value of θ to use? It is a
mistake to be prescriptive, and we would urge scientists to consider each case
on its own merits. Guidance can be sought from the literature; demographic
studies are useful as well as analyses carried out on genotyping systems other
than those in forensic use. We also bear in mind that the forensic scientist
will, in general, desire to err on the conservative side.

The parameter θ refers to the relationship of pairs of alleles within a
subpopulation relative to that between alleles in different subpopulations. It
also serves as a measure of differences among subpopulations. The variance
of allele proportions among subpopulations is proportional to θ. The ideal
situation would be to have data from different subpopulations in order to
estimate the θ values appropriate for each one, as described in Chapter 5.
This is not practical, not least because of the difficulty in allocating people
to subpopulations. There are two possible solutions. One is to refer to
previous studies of human population structure, such as the monumental
compilation of Cavalli-Sforza et al. (1994). Although these authors used
different loci, they did study very many populations and we consider their
results to be relevant. They reported θ estimates that were generally less
than 0.05, which is in agreement with our understanding of human evolution
and the graph we showed in Figure 4.7 for N = 100, 000. The other solution
is to adopt an arbitrary value of θ that could be considered conservative,
as did the 1996 NRC report (National Research Council 1996). The report
contains a useful discussion of this issue, and for STR systems, suggests
values in the range 0.01 to 0.03 until practitioners acquire the appropriate
data to carry out studies of structuring within their own environment. We
support this recommendation.

It is worth stressing that we do not attempt to define a point at which the
relationship among people gives a θ of zero. Our understanding of human
evolution (e.g., Cavalli-Sforza 1998) is that all humans are related. This
is a simple consequence of the fact that no two people currently alive can
have had distinct sets of ancestors for all of the past 200,000 years. On the
other hand, of course, it is for small subpopulations that people have had the
longest shared history and so have the largest θ values. It seems appropriate
to adopt a conservatively high value of θ with the understanding that it
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would accommodate people of the same race in the same subpopulation as
well as people in quite distinct races.

We discussed the classical methods for estimating θ in Chapter 5. Alter-
native Bayesian methods have been explored by Balding and Nichols (1997)
and by Foreman et al. (1997).

Balding and Nichols modeled θ for the jth locus in the ith subpopulation
by

θij =
1

1 + αi + βj

and assigned lognormal prior distributions to α and β. Allele proportions
were assumed to have a Dirichlet distribution. The authors used data from a
geographic-ally-defined subpopulation and from a heterogeneous large popu-
lation. Their estimate therefore referred to the relationship of alleles within
each of the subpopulation and the large population when compared to alleles
between the subpopulation and the large population.

Foreman et al. also allowed θ to vary over subpopulations and loci. They
overcame the lack of subpopulation data by partitioning the population
sample into arbitrary subsamples. Their likelihood assigned most weight
to those subdivisions that were most plausible because they consisted of
the individuals with the most similar DNA profiles. When the number of
partitions is known, the authors were able to show that their methods give
good estimates of θ. Their analysis was also Bayesian, with a Beta prior
distribution for θ and a Dirichlet prior for the allele proportions pi.

Both sets of authors found that posterior distributions for θ were skewed,
with a long tail to the right. For the data they examined, however, the
distribution pointed to values that rarely exceeded a few percent.

Practical Impact of the Procedure

We have seen how the procedure for calculating match probabilities enables
us to take account of dependence effects within loci. Next we face the prob-
lem of combining our single locus match probabilities across loci. There is no
comparable body of theory for taking account of between-locus effects, but
we settle for simple multiplication over loci with the thought that increasing
θ will take account of further dependence effects. Of course, we do not know
how much to increase θ, and an element of arbitrariness is unavoidable, but
our judgment can be informed by carrying out simple experiments on the
data that enable us to assess the practical effects of using different values of
θ.
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Figure 8.1: Within-person Tippett plot for UK Caucasian data.

First, we can simulate “within-person” comparisons (i.e., cases in which
the offender and suspect are the same person) by calculating the LR for
each person represented in a database. We can start by investigating the
consequences of ignoring population structure altogether, calculating Hardy-
Weinberg proportions P̂ii = p̂2

i and P̂ij = 2p̂ip̂j at each locus, and multiply-
ing across loci. The LRs are then taken as the inverses of these probabilities,
as in Equation 2.4. For a UK Caucasian quadruplex data set (Evett et al.
1996b), there are 1,401 LR values, and these lead to the solid line “Tippett
plot” in Figure 8.1 (Evett and Buckleton 1996). The vertical scale shows
the proportion of cases in which the LR exceeds the value on the horizontal
scale (which is logarithmic). For example, in practically all cases in which
the suspect is the offender, LR values in excess of 1,000 are expected for this
set of four loci. In about 25% of such cases, LR values in excess of 100,000
are expected.

This Tippett plot follows from using assumptions of independence within
and among loci. However, we recognize that independence does not hold,
and we avoid the assumption (at least within loci for structured populations)
by using Equations 8.1. The consequences of adopting these equations, with
observed allele proportions substituted for the pi values, and with θ set to
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0.01, 0.03, and 0.05, are shown as dotted lines in Figure 8.1. Overall, use
of Equations 8.1 reduces the LR values, and the effect is most pronounced
for profiles that have alleles with small proportions, i.e., profiles with large
LRs. The effects also increase as θ increases. We consider that θ = 0.03 is a
conservative upper bound on the values appropriate for human populations,
as has been suggested previously (National Research Council 1996).

The analysis can next be taken a stage further by carrying out all the
possible comparisons between pairs of profiles in the database. For a sample
of size n, this gives n(n − 1)/2 “between-person” comparisons. For the
same sample of 1,401 Caucasians being discussed here, this means 980,700
comparisons. In most of them the genotypes will be different and the LR will
be zero. Whenever two genotypes match, however, the LR can be calculated
by multiplying together allele proportions within and between loci. The
LR distribution for this experiment applied to the UK data is shown in
Figure 8.2. Only 118 matching four-locus profiles were found. The solid
line is the same kind of plot as for the previous experiment, but the vertical
scale is quite different–it is in terms of matches per 100,000. So, based on
this analysis, we estimate that a match between two unrelated people, and
subsequent LR in excess of 1,000, will occur in approximately 12 cases per
100,000. The number of cases in which the LR will exceed 10,000 is about
1 in 50,000. The experiment gives us a measure of the discriminating power
of the genotyping system, and it also allows a demonstration of the effects
of applying Equations 8.1. Again, in Figure 8.2, the dotted lines show the
effects of setting θ to 0.01, 0.03, and 0.05.

Multiple Loci

There remains the need for further study of the problem of assigning numer-
ical values to Equations 8.1. One issue that is presently unresolved is that of
how to accommodate multiple loci in a rigorous manner. We have suggested
the multiplication over loci of LRs found from Equations 8.1, under the as-
sumption that any dependencies will be small. We acknowledge, however,
that strict independence is not true and that testing for allelic dependencies
at multiple loci is difficult at best.

As a practical matter, we do not consider that multiplication over loci is
in any way misleading, and we do believe that the LR for a matching profile
is increased by having more loci in the profile. It is a matter of common
experience that the proportion of between-person matches in large databases
decreases steadily as the number of loci increases, and we note that most
loci used for identification are unlinked.
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Figure 8.2: Between-person Tippett plot for UK Caucasian data.

SUMMARY

When profiles from a crime scene and a suspect are found to match, the
likelihood ratio depends on the match probability, or the probability of the
crime scene profile conditional on the suspect’s profile. The two profiles are
dependent, even for unrelated people, because of evolutionary history, and
the relationship is described by Equations 8.1. Using these equations elimi-
nates the need to test for allelic dependencies. Assigning numerical values is
not straightforward, but a satisfactory approach is to use allele proportions
from convenience samples and to use estimated or assigned values of θ.
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Chapter 9

Presenting Evidence

INTRODUCTION

One view of forensic scientists is that they should carry out examinations
and tests according to a documented protocol, and confine their reports
and evidence to a statement of observations. We do not subscribe to this
view, and instead believe that the scientists should have the understanding
necessary to give rational, constructive, and balanced advice to a court on
evidence interpretation. The role of the forensic scientist should be that
of providing expert opinion, whether the evidence refers to DNA profiles
or more traditional items such as fingerprints, glass fragments, or hair and
fibers. Although we have explained methods in this book for attaching statis-
tics to DNA profiles, we have tried to avoid giving the impression that the
interpretation of DNA evidence is purely objective. We certainly embrace
the notion that forensic science evidence must be objective in the sense of
being impartial and not influenced by the prejudices that might influence
the nonscientific aspects of evidence in a particular case. But we do not
accept that DNA statistics are objective in the sense of being independent
of human judgment. In spite of the often elegant mathematical arguments
we have presented, we stress that the final statistical values depend wholly
on the initial assumptions. The validity of these assumptions in any given
case are a matter for expert opinion, so that we claim “objective science”
can exist only within the framework of subjective judgment.

In this chapter we will explain our views about preparing and presenting
an assessment of the evidence in a case in which there is a match between a
crime profile and a suspect. We will then discuss the presentation of evidence
in court with reference to issues arising from certain court judgments. We
also discuss the subject of individualization.

235
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As a focus for our discussion, we return to the example we introduced
at the beginning of Chapter 2 and extended in Chapter 3. We elaborate
further by describing the circumstances of the crime and we will discuss
their relevance to the interpretation.

Ms. V. was walking home along a deserted street in a residential area of
Gotham City in the early hours of the morning when she was attacked by a
man and raped at knife point. The attacker made off, after making various
threats about what would happen if she screamed before he had got well
away. A passer-by later came to her assistance and the police were called.
She was subsequently given a medical examination and vaginal swabs were
taken. She described her attacker as Caucasian, around 1.8 m tall, with dark
hair, medium build, in the age range 25 to 30 years. She said that he had
spoken to her with a local accent. No suspect was immediately apparent
to the investigator, but the vaginal swabs were submitted to the forensic
laboratory for examination. Copious sperm heads were observed and a full
DNA profile was obtained.

A few days later a police officer arrested a man, Mr. S., as a result of
a lead from an informant. He provided a sample that, when profiled, was
found to be the same genotype as that of the semen recovered from the
vaginal swabs. There was no evidence that Mr. S. had any close male blood
relatives in the city.

CALCULATION OF LIKELIHOOD RATIO

The circumstances of this case suggest that its interpretation follows the
lines of the “single crime scene stain” case that we considered at the start of
Chapter 2. The likelihood ratio is then the inverse of the match probability
as in Equation 2.3. The circumstances also suggest that Mr. S. has no close
relatives in the city, so the match probability for each locus is appropriately
calculated using Equations 4.20. Note that, because the victim described
her assailant as Caucasian, it is appropriate to use estimates of allele pro-
portions from a Caucasian database. The expert also faces a decision about
the choice of θ, and about how to combine the probabilities across loci. The
second NRC committee (National Research Council 1996, hereafter referred
to simply as the 1996 NRC report) considered these issues, and concluded
that it was reasonable to multiply across loci. They also gave general guid-
ance for values of θ, suggesting the range 0.01 to 0.03. We do not intend to
give any further guidance ourselves because we believe that this is a matter
for the judgment of the scientist, to be taken within the circumstances of
the particular case. We hope that he will have the results of studies to hand



RESULT OF A DATABASE SEARCH 237

based on appropriate data that will guide his judgment: in their absence,
he will no doubt err on the side of caution and choose a fairly large value,
such as 0.03.

We repeat our emphasis of the importance of the judgment of the scien-
tist here. The central feature of the evaluation of the weight of the evidence
is a probability, and we have already emphasized the personal nature of
probability. We hope that we have done enough elsewhere in the book to
show that there is no “right” number for this probability: the number that
is given represents the scientist’s reasoned and, in his opinion, balanced as-
sessment of the weight of the evidence. Let us assume for the Gotham City
example that the scientist calculates a match probability of one in a million,
and therefore a likelihood ratio of one million.

RESULT OF A DATABASE SEARCH

In our example, we have explained that Mr. S. became a suspect for the
rape of Ms. V. because of a lead from an informant. There is another kind
of situation in which a suspect comes to notice: his profile is stored on a
database of previous offenders. Should the fact that a suspect came to notice
from a database search affect the evaluation of the weight of the scientific
evidence? Although that is not the case in our example, this is a convenient
point to discuss the question.

Let us imagine that the forensic science laboratory in Gotham City main-
tained a database of the profiles of previous offenders and that Mr. S.
had come to notice because the profile from the vaginal swab was searched
against the database and his profile was found to match. Let us assume
that the database contained the profiles of N men and that Mr. S.’s was the
only one to match. How would this affect the evaluation of the evidence?
The NRC committee considered this issue and made this recommendation
(Recommendation 5.1):

When the suspect is found by a search of DNA databases, the
random-match probability should be multiplied by N , the num-
ber of persons in the database.

So, if the Gotham City database contained 10,000 men, the recommen-
dation would mean that the scientist would give a likelihood ratio of 100,
rather than of one million. This would be a drastic dilution of the strength
of the evidence and we need to look at the underlying logic rather more
closely.
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Recall, from Chapter 2, that in a case in which the evidence consisted
of a stain left at the crime scene, the likelihood ratio took the form

LR =
Pr(E|Hp, I)
Pr(E|Hd, I)

(9.1)

where E = (GS , GC) and GC = GS . Balding and Donnelly (1996) make a
useful distinction by referring to this as the probable cause LR; i.e., the LR
where the suspect is arrested for reasons unconnected with his DNA profile.
We have seen that, under certain assumptions, this LR reduces simply to the
inverse of the match probability, 1/P . Now consider that we have additional
information: the suspect has been found as a result of a search of a database
of N suspects. This particular suspect matched the crime genotype and the
other (N − 1) did not. We have already seen how to deal with the event
that the suspect and crime sample have the same genotype; let us use D to
denote the additional information that the other members of the database
did not. Then the LR in this case is

LR =
Pr(E,D|Hp, I)
Pr(E,D|Hd, I)

(9.2)

Let us refer to this as the database search LR; we need to see how it differs
from the probable cause LR. First, let us expand it using the multiplication
law for probability as follows:

LR =
Pr(E|Hp, D, I)
Pr(E|Hd, D, I)

Pr(D|Hp, I)
Pr(D|Hd, I)

The first of these two ratios is very similar to the probable cause LR, Equa-
tion 9.1, save that the conditioning has been extended to include the infor-
mation that none of the (N−1) other suspects in the suspect’s database has
the crime profile GC . The numerator is the probability of a match between
suspect and crime stain given that the former left the latter: clearly the fact
that there has been a database search does not affect this probability. The
denominator is the match probability given the additional information that
among (N − 1) other suspects there is no one with genotype GC . It is clear
that this extra information cannot increase the match probability; on the
contrary, the fact that none of the other members of the database has that
genotype increases confidence in its rarity and might tend to decrease the
match probability. So this first ratio is approximately equal to (or slightly
greater than) the probable cause LR of 1/P . It follows that the database
search LR is at least as large as the probable cause LR multiplied by the
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ratio R:

R =
Pr(D|Hp, I)
Pr(D|Hd, I)

(9.3)

Now the problem is clearly specified: it is necessary to determine whether
R is smaller than or greater than one. Let us first consider the numerator,
which is the answer to the question

If this suspect is the person who left the crime stain, what is the
probability that none of the other (N −1) suspects would match
the crime stain?

Note that the conditioning does not include the crime stain genotype, so the
question is concerned with the general discriminating power of the profiling
system. We now write ψ(N−1) for the probability that none of (N − 1) in-
nocent people will have a genotype matching that of any unspecified crime
stain. This is the numerator of R in Equation 9.3. Now consider the de-
nominator, which is conditioned on the proposition that the suspect did not
leave the crime stain. Now the question is

If this suspect is not the person who left the crime stain, what
is the probability that none of the other (N − 1) suspects would
match the crime stain?

We have to allow for two possibilities. Given that the suspect did not
leave the crime stain it is certain that someone else did. Either that other
person is among the other (N − 1) suspects, and we denote this probability
by φ, or he is not, with probability (1− φ). So the denominator is equal to
φ times

Pr(No match among the (N − 1)|The offender is one of them)

plus (1− φ) times

Pr(No match among the (N − 1)|The offender is not one of them)

If this other person–the true offender–were among the (N − 1), then the
chance that he would not match would be zero, so the product of the first
pair of terms is zero. The second term of the second pair is just ψ(N−1),
so the denominator is then (1 − φ)ψ(N−1). Combining the numerator and
denominator shows that R is equal to 1/(1 − φ). We may feel that it is
problematic to assign the probability φ, but this is not important. What
is important is that the denominator is less than one, so R in Equation 9.3
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is greater than one. Although it might not differ greatly from one, we
have shown that the database search LR is, albeit slightly, greater than the
probable cause LR. This is in direct contradiction with the NRC report.
Note also that, despite our possible difficulty with assigning a numerical
value to φ, it seems reasonable to infer that the larger is N , the greater
should be φ, so the LR at Equation 9.2 increases with increasing N , rather
than decreasing as does the NRC solution. In the extreme case in which N
equals the entire population of the country, φ must be equal to 1 and the
LR is infinite: this corresponds to the situation in which the suspect is the
only person in the country who has the genotype of the crime stain. The
logic copes with this in an entirely reasonable manner, whereas the NRC
recommendation does not give a sensible answer.

We have seen that, at court, the prosecution proposition would be of the
form

Hp: The suspect left the crime stain.

which is naturally tested against the defense alternative of the form

Hd: Some person other than the suspect left the crime stain.

The NRC recommendation comes from considering a defense alternative of
the form

Hd: Some person other than the N people in the database left
the crime stain.

However, the other (N − 1) people in the database are not on trial.
If the NRC recommendation were adopted, then it would suggest a

shrewd defense strategy arising from an example given by Balding and Don-
nelly (1996). Imagine that a suspect has been apprehended for reasons
unconnected with the DNA database. In fact, he has never been in that
database. He is found to match and the case is taken to court. Then
defense counsel asks for a search to see if there any people on the DNA
database with the same profile. If there are one or more database matches,
the defense counsel can argue that the impact of the DNA evidence against
the defendant is weakened. If there are no database matches the defense
must argue that the court faces a situation corresponding to that consid-
ered by the NRC because there are a matching suspect and N nonmatching
suspects. It follows that the match probability must be increased by mul-
tiplying it by N (actually by N + 1 in this case because that is the total
number profiled). Whatever the outcome of the database search, the defense
case appears to be strengthened.
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WRITTEN STATEMENTS AND REPORTS

Now we consider the manner in which the scientist should convey his results
in a written report or statement. In Chapter 2 we laid out three principles
for the interpretation of evidence, and these will guide the way in which we
approach the task of writing the statement for this particular case.

Circumstances

The third principle in Chapter 2 was that the scientist must evaluate the
evidence, not only under the competing propositions, but also under the
conditioning of the non-DNA evidence, which we are referring to here as the
“circumstances.” If the interpretation depends on the circumstances then it
naturally follows that the scientist should describe those circumstances in his
statement. Of course, what we should say is alleged circumstances because
the scientist will generally be presented only with the circumstances as they
appear to the investigator. These could well change as the investigation
and subsequent trial progress. Two objections could possibly be raised:
first that the scientist’s view of the circumstances might be regarded as
hearsay, and second that the circumstances may change. The first is easy
to deal with because the scientist is not testifying to the validity of those
circumstances: he is only repeating what he believes to be evidence to be
presented by other witnesses. The second is actually an argument in favor
of stating the perceived circumstances. It is essential that readers of the
statement understand that the interpretation has taken place in a framework
of circumstances. Furthermore, if the circumstances do change, then the
scientist will need to review the interpretation and a sentence to this effect
should, ideally, be included in the statement. It is a matter of judgment
to decide which aspects of the circumstances need to be stated. Only those
that are relevant to the interpretation should be included. In the present
example these would be

• The alleged offense occurred in Gotham City.

• The offender was described as Caucasian and spoke with a local accent.

• The suspect has no close blood relatives in the city who would be
considered suspects.

It is because of these features of the circumstances that the scientist
has considered it most fitting to use a Caucasian database. The fact that
his database was collected from Gotham City increases his confidence in
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its relevance because the offender appears to be local. It is because of the
absence of blood relatives that he has calculated a match probability for
an unknown person unrelated to the suspect, and his decision to work on
the basis that the suspect and offender belong to the same subpopulation
seems suitably cautious. The other aspects of the circumstances, such as
the height, build, hair color, and age of the suspect and offender, while
highly relevant to the deliberations of a court, do not appear relevant to the
interpretation of the DNA evidence and can therefore be omitted from the
statement.

Alternatives

We have seen that the first principle of interpretation states that it is not
meaningful to address the uncertainty with regard to the truth of a proposi-
tion without considering at least one alternative proposition. In the present
case there is one proposition that, at first sight at least, appears clearly
defined. It is that of the investigator: Mr. S. raped Ms. V. It may be
tempting for the scientist to take such an alternative as the first proposition
for explaining the evidence, but a moment’s reflection suggests that this
might not be a wise course because the DNA profiling evidence cannot shed
light on whether or not Ms. V. was actually raped: Mr. S. might later con-
firm that he and Ms. V. did have sexual intercourse but allege that it was
with her full consent. In such an eventuality, the DNA evidence provides
no assistance for weighing the prosecution and defense propositions against
each other. Further thought suggests a proposition that is a stage or two
removed from what prosecution will set out to prove. In this case it would
seem sensible to suggest

Hp: The semen on the vaginal swab came from Mr. S.

The problem that we next face appears peculiar to the legal field because
the alternative proposition should reflect the position of the defense but,
of course, the defense in most jurisdictions are under no obligation to put
forward any explanation for the evidence. The scientist must therefore an-
ticipate a defense proposition and might decide to address something of the
form: The semen on the vaginal swab did not come from Mr. S. Once
again, reflection suggests that this may not be a helpful way of expressing
the alternative. Let us recall what the scientist did. He calculated a match
probability for an unknown person unrelated to Mr. S., and this must surely
show that the alternative proposition being addressed is

Hd: The semen came from some unknown Caucasian man who
was unrelated to Mr. S.
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The scientist could, if he wished, make this still more specific to state that
the unknown man came from the same subpopulation as Mr. S., but such a
refinement is probably not needed and it may obscure clarity. The alterna-
tive propositions to be made clear in the statement are thus

Hp: The semen on the vaginal swab came from Mr. S.
Hd: The semen came from some unknown Caucasian man who
was unrelated to Mr. S.

The scientist should also state his willingness to address other alternative
propositions if necessary.

Evaluation

We have said that, given the defense proposition, the match probability is
one in a million, and this is one way of expressing the strength of the ev-
idence. The other way is to quote the LR of one million, because in this
case the probability of the evidence given the prosecution proposition is one.
In a case such as this, where the DNA evidence is very simple, there is no
strong reason for choosing between the two methods. But this is not nec-
essarily true when it comes to presenting the evidence in court, as we shall
see shortly. Certainly, if the pattern of evidence is more complicated, such
as when the crime sample is a mixture, then there is no sensible alternative
to the LR, so we would favor always quoting the evaluation in that form,
if only for consistency. In the present case that would mean saying some-
thing like, “The evidence is a million times more probable given the first
alternative.” We will discuss comprehensibility later when we talk about
presenting evidence at court, but for the moment we remark that we may
feel that we could do more to convey the weight of evidence to nonscientists
than merely quote a number. We know that the readers of the statement
will not be practiced at dealing with numbers. One way of helping with
this is to augment the statement with some kind of verbal supplement. The
British Forensic Science Service addressed all the issues of communicating
by means of statements in the late 1980s, and one of the products of that
review was a move toward standardization centered on a small subset of
words to be used whatever the evidence type.

Verbal Conventions

It has been a widespread practice in the forensic science community to rely
heavily on the phrases “could have” and “consistent with.” In the present
case, for example, we might report that the semen on the vaginal swab could
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have come from Mr. S. At best this is no more than a statement of the obvi-
ous: at worst it is a surrogate for a scientific interpretation when, in fact, it
contains no element of interpretation. The same goes for “consistent with.”
Furthermore, such phrases could be seen as indicating a prosecution bias
unless the other side of the coin is presented. In this case that would mean
saying that the semen could have come either from Mr. S. or from anyone
else of the same genotype. Such sentences merely fill space and convey no
useful interpretation. It is our experience that the phrases “could have” and
“consistent with” serve only to obscure clarity of thought, and we recom-
mend against their use in forensic statements. The likelihood ratio suggests
a simple verbal convention based on the use of the word “supports.” Statis-
ticians (Edwards 1992) have defined support as the natural logarithm of a
likelihood ratio in order to speak of the support provided for one hypothesis
against another by some data. We will not adopt such a formal definition
of support, but we do like the word in this context. In particular, if the
likelihood ratio exceeds one in the kind of example we have been consider-
ing, we will say that the evidence supports the prosecution proposition. If
it is less than one, then it supports the defense proposition. It is natural,
in any given case, for the court to ask “How strong is the support?” and
the convention then comes down to a range of qualifiers that relate to broad
ranges of the likelihood ratio. A possible convention might be of the form

Likelihood ratio Verbal equivalent
1 to 10 Limited support

10 to 100 Moderate support
100 to 1000 Strong support

more than 1000 Very strong support

We recognize that there is much to debate. Certainly, these verbal equiv-
alents cannot be seen to be cast in stone, and if a number has been calcu-
lated, then the verbal statement can be added only as an aid for greater
understanding. For non-DNA evidence, where numerical likelihood ratios
are not calculated, the restricted range of language serves to remove one
source of variability from discussion of the issues. It seems to us that lan-
guage becomes inadequate for likelihood ratios in the tens and hundreds of
thousands or higher, and we do not have a category above “very strong.”

DNA EVIDENCE AT COURT

So far, we have explained what we see to be the elements of balanced re-
porting of DNA cases. If the case is taken to court, then the scientist meets
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the next challenge of his profession–that of interacting with members of
the legal profession who are generally not familiar with the principles of
interpretation. This can be an excruciatingly difficult time for the scientist,
particularly if the time available for consultation with the lawyer who is to
lead the questioning is scant, or worse, if the scientist is faced with a lawyer
who is not prepared to gain any sort of understanding of the principles.
DNA profiling presents new challenges to courts because it is the first type
of transfer evidence for which the weight of evidence is encapsulated in a
number. (We are excluding paternity testing here.) Previously, courts have
readily accepted expert opinion phrased in terms such as

In my opinion this mark was made by the left forefinger of the
defendant.
I consider it highly probable that the defendant wrote this hand-
writing.

The acceptance of such statements bypassed any statistical considera-
tions, and far more is known about the statistics of DNA profiling than
about the statistics of fingerprint minutiae or of handwriting characteris-
tics. The notion that each corresponding fingerprint minutia adds weight
to the evidence has long been accepted with little justification based on
survey data. This is in remarkable contrast to the battles that have been
waged over the use of the “product rule” to combine information from the
constituent alleles in a DNA profile. The new emphasis on quantification of
evidence has led to perplexing courtroom decisions and it has been difficult
for forensic scientists to pursue logical arguments with confidence, in the
face of a lack of understanding from all sides.

We will return later to the issue of individualization, but now we continue
with our Gotham City example and imagine that the decision has been
made to prosecute Mr. S. The scientist now has the job of presenting the
evidence in court. If the statement has been written along sound lines then
he starts from a strong position for answering challenges in court. However,
no matter how strong that position is, he may still face questions that are
difficult, not because they are especially probing or even designed specifically
to confound him. It is paradoxical that the questions that stem from the
most well meaning attempts by counsel to create greater enlightenment can,
in fact, have the contrary effect of actually making things more confused.
Such questions can lead to fallacious lines of reasoning. We now discuss a
few of these and illustrate them with examples from a few cases heard in
the British courts.
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The Transposed Conditional

In Chapter 2 we met the first and most pervasive kind of distortion that
the scientist is likely to meet: the transposed conditional. Although it was
dubbed “the prosecutor’s fallacy” by Thompson and Schumann (1987) it
is an error made by prosecutors, defenders, and judges. Furthermore, even
if the scientist has made every effort to get things right, he will find that
he has been misquoted as giving a probability for the proposition that the
crime sample came from someone other than the defendant. For example,
the Associated Press on November 14, 1996, reported

The chances are at least 1-in-170 million that anybody else’s
DNA besides Simpson’s could be contained in a blood drop found
near the bodies of Nicole Brown Simpson and Ronald Gold-
man, testified Robin Cotton, director of Cellmark Diagnostics
in Maryland.

The reporter was confused between the meaning of “at least” and “at most”
but, more importantly, misquoted what Dr. Cotton said. Furthermore, on
November 21, 1997, a story in the scientific journal Science began with

Even in O.J. Simpson’s trial, prosecutors could only say that the
odds were billions to one that blood found at the scene was not
O.J.’s.

Let us look at how the error could manifest itself in the Gotham City ex-
ample. The scientist might be asked to express the weight of evidence by
means of the match probability, in which case he might say something of
the form

The probability of a match if the semen came from someone
other than Mr. S. is one in a million.

Then, in an effort to make things clearer for the jury, counsel might lead
with a question of this form:

You mean that there is only a one in a million chance that the
semen came from someone other than Mr. S.?

This is but a short step from inferring that the odds are a million to one
on that the semen came from Mr. S., and the error is well and truly com-
pounded. The scientist in this example has started on a sound footing by
talking about the probability of the evidence. Furthermore, he has made
the conditioning very clear by the use of the word “if.” That starting point
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provides a good basis for keeping the questioning on track. If the evidence
is not stated clearly then a slip to the transposed conditional is even easier.
Here is an example from the UK trial of Andrew Deen (R. v. Deen, The
Times, 10 January 1994):

Q: So the likelihood of this being any other man than Andrew
Deen is one in three million?
A: In three million, yes.

Counsel had clearly committed the prosecutor’s fallacy and the scientist
lost an opportunity to correct him. Here is an extract from the trial of Alan
Doheny (R. v. Doheny, R. v. G. Adams [1997] 1 Cr App Rep 369):

Q: What is the combination, taking all those [RFLP bands] into
account?
A: Taking them all into account, I calculated the chance of find-
ing all those bands and the conventional blood groups to be
about one in 40 million.
Q: The likelihood of it being anybody other than Alan Doheny?
A: Is about one in 40 million.

Here, of course, the scientist clearly acceded to the prosecutor’s fallacy and
this was exposed on appeal. It might be thought that presenting the evidence
in the form of a likelihood ratio provides a solution to the problem of avoiding
the transposed conditional. Alas, it is not so. A statement of the form “The
evidence is a million times more probable if the semen came from Mr. S.
than if it came from someone else,” can be turned, incorrectly, to, “It is a
million times more probable that the semen came from Mr. S.” We have to
accept that the trap of the transposed conditional always awaits the unwary.
There are a few precepts to help minimize the danger. First, start with a
statement founded firmly on the principles we have stated. Second, never
offer an opinion for a proposition given the evidence: always speak about
the probability of the evidence given the proposition. Third, always make
the conditioning clear in probability statements by the use of the word “if”
or “given.”

There is a point of view (expressed to one of the authors on one occasion
by a learned judge!) that if the difference between the logically correct and
incorrect sentences is apparently so subtle then perhaps the fallacy doesn’t
matter. No matter how careful the scientist, lawyer, and judge may be, for
all we know jurors will mentally transpose the conditional anyway. Here is
an interesting extract from the Appeal Court judgment in R. v. Doheny
and R. v. G. Adams, when they argued that the prosecutor’s fallacy had
not necessarily misled the jury:
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Given [the match probability of] one in 40 million, we have no
doubt that the Jury would have reached the same verdict if di-
rected in this way. The more remote the random occurrence
ratio, the less significant will be the adoption of the “Prosecu-
tor’s fallacy”, until the point is reached where that fallacy does
not significantly misrepresent the import of the DNA evidence.
Such was the position of the figures advanced by [the forensic
scientist].

Nevertheless, the Appeal Court clearly ruled that the fallacy should be
avoided:

The scientist should not be asked his opinion on the likelihood
that it was the Defendant who left the crime stain, nor when
giving evidence should he use terminology which may lead the
Jury to believe that he is expressing such an opinion.

Whatever we may think about the apparent subtlety of the fallacy and
its impact on the jury, it is a fallacy and a forensic scientist cannot contribute
to its use. The final argument is that, if committed, it will always provide
grounds for appeal. The appeals of both Deen and Doheny were allowed, in
each case partly because of the prosecutor’s fallacy.

Fallacy of the Misapplied Expectation

Recall that in our Gotham City example the scientist had given a match
probability of one in a million, and recall also that the population of the
city is approximately two million. Here is a line of reasoning: there are
roughly one million males in the city; the chance that any one would have
the crime profile is one in a million; therefore we can expect to find one man
in the city with that profile; Mr. S. must be that man. At an intuitive level
this may appear a compelling argument, yet it has two serious flaws which
we will shortly discuss. It is a line that has actually been used in court,
however, and we quote from R. v. G. Adams:

Q: Is it possible that the semen could have come from a different
person from the person who provided the blood sample?
A: It is possible but it is so unlikely as to really not be credible
. . . I can estimate the chances of this semen having come from
a man other than the provider of the blood sample. I can work
out the chance as being less than one in 27 million.
Q: So it is really a very high degree of probability indeed that
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the semen stain came from the same person who provided the
blood sample?
A: Yes. You really have to consider the size of the group of
individuals who could possibly be the source of this semen. Now,
there are probably only 27 million male people in the whole of
the United Kingdom so a figure of one in 27 million does tend
to imply that it is extremely likely there is only really one man
in the whole of the UK who has this DNA profile.

The first answer is clearly a transposed conditional. The third is the
same fallacious line as we have put forward for our Gotham City example.
The judge in R. v. G. Adams appeared to pick this last point in his summing
up:

That means . . . not less than one in 27 million people . . . I should
not think there were more than 27 million males in the United
Kingdom, which means that it is unique.

As an aside, note that the judge made a similar mistake to the one we saw
in the report of Dr. Cotton’s evidence earlier in this Chapter: He should
have said either “one in not less than 27 million people” or simply left the
“not” out from his sentence. This is a very common error when frequencies
are quoted but it does not arise when the evidence is given in the form of a
likelihood ratio.

Returning to the Gotham City example, there are two flaws in the argu-
ment. The first lies in a misunderstanding of the nature of an expectation,
which we introduced in Chapter 3. It is a trivial calculation to multiply
one in a million by a million to get the answer one–but this is an expected
number. It does not mean that there must be one man with probability one.
The Poisson distribution, which we met in Chapter 3, may be used here. In
this case the Poisson parameter λ is one and we can calculate the probability
of 0, 1, 2, 3 . . . individuals, using the formula for the Poisson pdf, as 0.368,
0.368, 0.184, 0.061 . . . respectively: readers may wish to confirm these prob-
abilities using Equation 3.2. So, although the expectation is one, far from
there being certainty of there being one and only one, there is a 0.264 proba-
bility of there being more than one. The second flaw is more serious. Recall
that we have calculated the match probability conditioned on the knowledge
of the defendant’s genotype. It is the probability that a person other than
the suspect would have that genotype. If we want to talk about numbers
of men we should be asking, given that we know that the defendant has
that genotype, how many other men do we expect to find. Ignoring for the
moment the issue of subpopulations and evolutionary relatedness, we return
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to the Poisson. The total number of other men in Gotham City is reduced
by one, because we have set the defendant aside, but this obviously has no
discernible effect on the calculation: the Poisson parameter is one, as before.
Then the probabilities of 0, 1, 2, 3 . . . other men are as listed in the previ-
ous paragraph. So the probability that there is at least one other man in
Gotham City is approximately 0.368+0.184+0.061+. . . = 1−0.368 = 0.632.

The position with regard to the defendant is more easily seen if we use a
Bayesian argument. If we consider it reasonable to consider all million males
in the city as equally likely to have been the offender, in the absence of other
evidence, the prior odds in favor of Mr. S. being the offender are a million
to one against. The likelihood ratio for the DNA evidence is one million,
so the posterior odds are one, or evens. Based on the uniform prior and
the DNA evidence there is a 0.5 probability that Mr. S. was the assailant.
The Bayesian arithmetic is just the same for the numbers cited in the G.
Adams trial. Of course, even this is a weak method of reasoning. The idea
that all males in the city should be regarded as equally likely suspects is
quite unrealistic, as we discussed in Chapter 3. We return to such lines of
argument later.

Concluding “It’s Him.”

It is almost inevitable, in any discussion of DNA evidence, that the ques-
tion will be asked “Is it as good as fingerprints?” Courts throughout the
world have been accustomed for decades to experts giving opinions of the
form “This control print and this mark from the crime scene were made
by the same person.” It is not surprising that occasions have arisen where
experts were prepared to give opinions of similar force with regard to DNA
comparisons. For example, from R. v. Deen:

Q: On the figures which you have established according to your
research . . . what is your conclusion?
A: My conclusion is that the semen has originated from Andrew
Deen.

From the trial R. v. Doheny:

Q: You deal habitually with these things, the jury have to say,
on the evidence, whether they are satisfied beyond doubt that it
is he. You have done the analysis, are you sure that it is he?
A: Yes.

And from R. v. G. Adams:
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Q: Is it possible that the semen could have come from a different
person from the person who provided the blood sample?
A: It is possible but it is so unlikely as to really not be credible.

The ruling in R. v. Doheny quoted in the section on the transposed
conditional now makes it clear that, in UK courts, scientists giving evidence
on DNA are not to be asked to express an opinion as to whether a trace
from a crime scene came from the defendant. DNA evidence alone, unlike
all other kinds of transfer evidence, is peculiar in this regard. It might
appear paradoxical that, in the single kind of transfer evidence for which
meaningful statistical assessments can be made of the weight of evidence, the
scientist is not to be permitted to express an opinion of origin. Vastly more
is now known about DNA statistics than about handwriting, fingerprints,
toolmarks, footwear, and so on, yet that evidence type alone is the one in
which the scientist is not to express an opinion of origin. Later in the chapter
we look at the reasons this should be so.

Size of Population Subgroups

We have seen that the Appeal Court in R. v. Doheny and R. v. G. Adams
ruled that the expert was not to express an opinion on whether or not a
given crime sample came from the defendant. The question then is: If the
expert is not to give that guidance, how is the jury to reach a decision? The
Appeal Court made some suggestions about how they may be assisted by
the scientist, as follows:

He will properly explain to the Jury the nature of the match . . .
between the DNA in the crime stain and the DNA in the blood
sample taken from the Defendant. He will properly, on the basis
of empirical statistical data, give the Jury the . . . frequency with
which the matching DNA characteristics are likely to be found in
the population at large. Provided he has the necessary data, and
the statistical expertise, it may be appropriate for him then to
say how many people with the matching characteristics are likely
to be found in the United Kingdom–or perhaps in a more limited
relevant subgroup, such as, for instance, the Caucasian sexually
active males in the Manchester area. This will often be the limit
of the evidence which he can properly and usefully give. It will
then be for the Jury to decide, having regard to all the relevant
evidence, whether they are sure that it was the Defendant who
left the crime stain, or whether it is possible that it was left by
someone else with the same matching DNA characteristics.
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The suggestions of the court have seductive intuitive appeal but they
offer many traps to the unwary. If the match probability in the case in
question is relatively large, then answering a question of the kind, “How
many people with the matching characteristics are likely to be found in the
United Kingdom?” is simple. For example, if the match probability is one
in a million, then one would expect to find around 260 matching people in
the US population of 260 million. It is by no means clear how this helps the
jury. As we have said before, it is impossible to visualize a case in which
all of the members of the populace can be viewed as equally likely suspects
for the crime. The Appeal Court appeared to anticipate this problem by
suggesting that it might be possible to narrow the pool of suspects–in their
example to the “Caucasian sexually active males in the Manchester area.”
What does this mean? How do we define “sexually active”? What is “the
Manchester area”? Is it just the city of Manchester, or should it include
all the towns in the Greater Manchester area? How much of Cheshire and
Merseyside should be included? Let us imagine, purely for illustration, that
by some process or other the prosecution and defense in a trial decide that
the number of sexually active males in the suspect population is 500,000.
Then a match probability of one in a million suggests that the number of
men with matching profiles in the suspect population is expected to be one-
half. How is that to be explained to the jury? If the suspect population
were only 10,000 men, then the expected number of other men with the same
genotype is 1/100. In such a situation it might be considered permissible for
the scientist to offer the opinion that he considered it unlikely that another
person with that genotype would be found in that group. But this approach,
too, is not without its problems, and the scientist may be safer here if he
leaves the field to a qualified statistician.

However it is done, the line suggested by the Appeal Court means that
the prosecution in a DNA trial will want to reduce the numbers in the
suspect population. Let us look at how that might proceed in our Gotham
City example. We saw in the introduction that Ms. V. described her attacker
as Caucasian, around 1.8 m tall, with dark hair, medium build, in the age
range 25 to 30 years. She said also that he spoke with a local accent. We
assume that this evidence is put to the jury as part of Ms. V.’s evidence. In
turn, the jury will learn that Mr. S. is indeed a local Gotham City resident,
1.7 m tall, with dark hair, medium build, aged 35 years.

The forensic scientist would start with his calculation that, based on
the DNA profile, he would expect there to be one other person in Gotham
City with the same genotype. Prosecuting counsel may then invite him to
consider the consequences of reducing the size of the suspect population
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using the other aspects of the evidence. Ms. V. described her attacker as
1.8 m tall: the prosecution might ask the scientist how this reduces the
size of the suspect population. It is doubtful if any forensic scientist would
be prepared to enter this kind of exercise, but even if our expert were so
inclined, what is to be done? Do we consider men of exactly 1.8 m? Does
the prosecution conveniently widen the height window to include men of
1.7 m, that being the height of the defendant? What about using age to
delimit the suspect population? Presumably there are demographic tables
for Gotham City that will tell us the number of men in the city aged 25
to 30 years. Again the prosecution might make a concession of extending
the age window to 25 to 35 years to include the defendant. This would
have possibly been acceptable if the victim had said that her attacker was
in the age range 25 to 35 but that is not the case–if Mr. S. is the attacker
then she got his age wrong. Neither does her evidence in relation to the
height of her attacker fit very well with Mr. S. Forensic scientists should
be wary of being drawn into such murky waters. The “shaving down the
population” approach suggested by the Appeal Court ruling cannot work if
there is conflict in the non-DNA evidence.

The procedure of addressing the other evidence becomes much more ob-
vious if one looks at it from the perspective of the principles of interpretation
described in Chapter 2. The questions to be addressed are of the following
kind:

• What is the probability that Ms. V. would say that the offender was
around 1.8 m tall if the offender was Mr. S?

• What is the probability that Ms. V. would say that the offender was
around 1.8 m tall if the offender was some unknown man?

• What is the probability that Ms. V. would say that the offender was
in the age range 25 to 30 if the offender was Mr. S?

• What is the probability that Ms. V. would say that the offender was
in the age range 25 to 30 if the offender was some unknown man?

We are not suggesting that the forensic scientist should attempt to lead
the court through such a list of questions. Even though this is a distinct
improvement on the prosecution-led reduction in population size, there are
potential problems. The two sets of questions above, for example, relate
to attributes that are not independent of each other, and care is needed in
framing them rather more precisely than we have done. There has been a
case, nevertheless, in the British courts where such an exercise was carried
through and we will now discuss it.
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Bayesian Reasoning for Nonscientific Evidence

In 1991 a Ms. M. was walking home alone in the early hours of the morning
in Hemel Hempstead, England. A male stranger approached her and asked
the time. She saw his face for a few seconds before looking at her watch. He
then attacked her and raped her from behind. She later told police that the
attacker was Caucasian, clean-shaven, with a local accent, aged between 20
and 25 years.

No suspect for the offense was found until 1994, when Dennis John
Adams came to notice in connection with another incident, and his DNA
profile was found to match that from the semen recovered from the rape of
1991. As a result of this, he participated in an identity parade, at which
Ms. M. failed to pick him out. Furthermore, at subsequent committal pro-
ceedings she said that Mr. Adams did not look like the man who attacked
her. His age at that time was 37, but she said that he appeared to her to
be around 40 to 42–appreciably older than the description of her attacker.

At trial, prosecution produced the DNA evidence which was associated
with a likelihood ratio of 200 million (this was disputed by defense, but
for the sake of this discussion it will suffice to use this figure). With the
exception of the locality–Mr. Adams lived near to the scene of the rape–
all of the other evidence favored Mr. Adams’ innocence. In addition to
the conflicting identification evidence, he gave an alibi for the night of the
attack, which he said he spent with his girlfriend.

This is a case that illustrates the weaknesses of the guidance given by the
Appeal Court in R. v. Doheny and R. v. G. Adams. If we accept that the
match probability was 1 in 200 million, then the expected number of adult
males in the UK who would have the same profile is about 1/10: it is not
at all clear how this would assist a jury. What if we now attempt to whittle
down the size of the suspect population using the victim’s description? Con-
sider the age: a prosecutor might ask for the number of males aged 20 to 25
years. But this would be misleading, because the defendant himself did not
fall into this age group. So it might be argued that the interval should be
widened to include all males up to the age of 40, say. But even this would
be inadequate, because it takes no account of the fact that the defendant’s
age does not agree with the victim’s description.

If we seek a logical evaluation of the evidence in this case, as we have
already mentioned in our illustrative Gotham City example, it is necessary
to apply Bayesian reasoning to all the nonscientific evidence and this is
exactly how defense counsel argued at the trial. A statistician (P. Donnelly)
was called to explain how this could be done by the jury. Of course, we do
not know how the jury actually reasoned during their deliberations, but the
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outcome was that Mr. Adams was found guilty and sentenced to a prison
term.

Defense were granted leave to appeal, and the Appeal Court overturned
the conviction and ordered a retrial on the grounds that the trial judge
had given insufficient guidance to the jury on other methods for evaluating
the evidence. The appeal had been sought on several grounds, but it was
allowed for reasons associated with the use of Bayes’ theorem. Here are
extracts from the judgment (R. v. D. Adams [1996] 2 Cr App Rep 467)

It seems to us that the difficulties which arise in the present
case stem from the fact that, at trial, the defense were permit-
ted to lead before the jury evidence of the Bayes theorem . . . we
have very grave doubt as to whether that evidence was properly
admissible, because it trespasses on an area peculiarly and exclu-
sively within the province of the jury, namely the way in which
they evaluate the relationship between one piece of evidence and
another.

Several reasons were given, including

. . . the attempt to determine guilt or innocence on the basis of
a mathematical formula, applied to each separate piece of evi-
dence, is simply inappropriate to the jury’s task. Jurors evalu-
ate evidence and reach a conclusion not by means of a formula,
mathematical or otherwise, but by the joint application of their
individual common sense and knowledge of the world to the ev-
idence before them.

The strength of the Appeal Court views is summarized by the following

Quite apart from these general objections, as the present case
graphically demonstrates, to introduce Bayes theorem, or any
similar method, into a criminal trial plunges the jury into in-
appropriate and unnecessary realms of theory and complexity
deflecting them from their proper task.

And, in conclusion

If, as seems entirely possible, the jury abandoned the struggle
to understand and apply Bayes, they were left by the summing-
up with no other sufficient guidance as to how to evaluate the
prosecution case (based as it was entirely on the DNA evidence),
in the light of the other non-DNA evidence in the case. This
means that their verdict cannot be regarded as safe.
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At the retrial, defense argued in a manner similar to its line at the first
trial. Since the DNA evidence was presented numerically, reasoned defense
counsel, the only way in which the jury could effectively consider the overall
weight of evidence was to consider the non-DNA evidence numerically. The
appropriate way to do this was by means of Bayes’ theorem. The view of the
statisticians who were advising prosecution was that this was too difficult
an exercise for the jury, but if it were to be done, the prosecution offered
its own experts to work with the defense expert in the preparation of a
questionnaire for the jury to use. This was duly done. There were over
20 questions, directed at assessing the value of nonscientific aspects of the
evidence. Here is an example, which is a pair of questions relating to the
victim’s description of her attacker:

Bearing in mind that Ms. M. said that Mr. Adams appeared to
be in his early forties what is the probability that she would say
that her assailant was in his early twenties if Mr. Adams were
indeed the assailant? What percentage of assailants in cases of
this nature would be described as being in their early twenties?

The questions were designated by letters of the alphabet and questionnaire
ended in a formula for combining the answers. The use of the questionnaire
was explained in detail from the witness box by the defense statistician. Mr.
Adams was again convicted and, once more, appealed. The following are
extracts from the judgment of the court that considered the second appeal
(R. v. D. Adams, 16 October 1997, CA 96/6927/Z5):

If . . . the jury concluded that they did accept the DNA evidence
wholly or in part called by the Crown, then they would have
to ask themselves whether they were satisfied that only X white
European men in the United Kingdom would have a DNA profile
matching that of the rapist who left the crime stain. It would
be a matter for the jury, having heard the evidence, to give a
value to X. They would then have to ask themselves whether
they were satisfied that the defendant in question was one of
those men. They would then go on to ask themselves whether
they were satisfied that the defendant was the man who left the
crime stain, bearing in mind on the facts of this case the obvious
discrepancies between the victim’s description of her assailant
and the appearance of the appellant, . . . Of course, it is a matter
for the jury how they set about their task, and it is no part of
this court’s function to prescribe the course which their deliber-
ations should take. But consideration of this case along the lines
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indicated would in our judgment reflect a normal course for a
properly instructed jury to adopt. It is the sort of task which
juries perform every day . . . as they are sworn to do.

We are very clearly of opinion that in cases such as this, lack-
ing special features absent here, expert evidence should not be
admitted to induce juries to attach mathematical values to prob-
abilities arising from non-scientific evidence adduced at the trial.

The appeal was dismissed.
It might be thought that the rulings were against the Bayesian view

of scientific evidence. This is not correct: the judges were ruling against
its application for the evaluation of nonscientific evidence. This, in fact,
corresponds to the advice given to the prosecution by its own experts in
both trials. But the judgment is, ultimately, unsatisfactory. The jury faced
a difficult task in this case–powerful evidence supporting Mr. Adams’ in-
volvement, yet persuasive evidence from the victim herself supporting his
innocence. The judgment clearly states that the jury should not be expected
to tackle this problem logically. However, they are expected to assign a value
X to the number of men in the country who would match the crime profile,
though we have already seen that this line of reason can be problematic for
a scientist, let alone a lay person. If the jury decided that X = 1/10, for
example, how is this to be related to the conflict between victim’s descrip-
tion of her attacker and the appearance of the defendant? This is hardly
“the sort of task which juries perform every day.” The root problem is that
the existing legal system exerts powerful forces against carrying through the
most appropriate procedure effectively. Notwithstanding the efforts put into
the design of the questionnaire and its explanation to the jury, it must still
have remained a puzzling exercise to them. However, if sufficient time and
resources had been forthcoming, then a computer-based dialogue could have
been produced. If free dialogue between the expert and jury had been possi-
ble, then the system could have been tailored to the intellectual capabilities
of each individual jury member. Although such a solution is well within the
bounds of today’s technology, the procedural difficulties would be immense
because of the nature of the established institution.

INDIVIDUALIZATION AND IDENTIFICATION

It will be useful at this point to look at some general issues relating to
the process of identification and then to consider the process of fingerprint
comparison.
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Individualization

In the forensic sphere, the words identity and identical tend to be misused.
Examiners sometimes give opinions of the kind “these two marks are iden-
tical.” This is not correct because any entity can only be identical with
itself. Two marks, whether they are from the same finger, from the same
item of footwear or made by the same tool, cannot be identical and indeed
they will inevitably be different in detail. Two different entities cannot
be identical to each other because they are each unique. This applies not
only to so-called “identical twins” but also to all of the grains of sand on a
beach. Note also that a DNA profile is a manifestation of a complex biolog-
ical/physical/chemical process and two DNA profiles cannot be identical to
each other, even if they have come from the same person. The fact that we
choose to summarize each profile by a set of numbers and that two profiles
have the same sets of numbers merely means that they are indistinguishable
from each other using the measuring system that we have chosen.

The issue for the forensic scientist is not “Is this profile unique?” (it is)
or “Are these two things identical?”(they can’t be) but “Is there sufficient
evidence to demonstrate that they originate from the identical source?” We
notice that it is widespread practice in the forensic field to refer to the process
that leads to the answer “yes” to this question as identification. Kirk (1963)
pointed out that the word individualization was more appropriate in this
regard; indeed, he defined criminalistics as the “science of individualization.”
Nevertheless, we must bow to what has become general usage–certainly in
the fingerprints field–and refer to a categorical opinion of identity of source
as an “identification.”

DNA versus Fingerprints

Earlier we raised the question “Is a DNA profile as good as a fingerprint?” It
is important that we should understand a fundamental difference between
the processes of inference that are pursued in the two fields, which was
concisely explained by Stoney (1991):

Fingerprint comparisons have the colloquial specificity of abso-
lute identification, but a completely different [compared to DNA
profiling] philosophy for achieving it. Although the study of
fingerprint variation is founded on scientific observations, the
process of comparison and the conclusion of absolute identity
is explicitly a subjective process. The conclusions are accepted
and supported as subjective; very convincing, undoubtedly valid,
but subjective. In fingerprint comparisons, the examiner notes
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the details in the patterns of ridges. Beginning with a reference
point in one pattern, a corresponding point in a second pat-
tern is sought. From this initial point the examiner then seeks
neighboring details that correspond in their form, position and
orientation. These features have an extreme variability that is
readily appreciated intuitively, and which becomes objectively
obvious upon detailed study. When more and more correspond-
ing features are found between two patterns, scientist and lay
person alike become subjectively certain that the patterns could
not possibly be duplicated by chance.

What has happened here is somewhat analogous to a leap of
faith. It is a jump, an extrapolation, based on the observation
of highly variable traits among a few characteristics, and then
considering the case of many characteristics. Duplication is in-
conceivable to the rational mind and we conclude that there is
absolute identity. This leap, or extrapolation, occurs (in finger-
printing) without any statistical foundation, even for the initial
process where the first few ridge details are compared. A contrast
with our DNA individualization process is important because we
in no way approach DNA evidential interpretation in the same
way we approach fingerprints. We hold fingerprint specificity and
individuality up as our ideal, yet this ideal is achieved (and can
only be achieved) through a subjective process that we patently
reject when applied to DNA. With DNA typing, as in conven-
tional serological typing, we view our increasing evidential value
as a step-wise process. We detect a series of traits, each one of
which is, to some degree, rare. This leads to the inference of
smaller and smaller joint probabilities and a conclusion that the
combined type would be very very rare.

Stoney contrasts the undisputed subjectivity of a fingerprint comparison
with what he sees to be the objectivity of a DNA statistic. Yet we have
seen that this objectivity is itself an illusion because it exists only within
a framework of assumptions. In the individual case it is for the scientist
to judge the validity of those assumptions and to carry out whatever cal-
culations he considers necessary given the case circumstances. In the wake
of the Doheny/Adams appeal ruling in the UK, there has been a tendency
for courts to seek a “statistical probability” or a “mathematical probabil-
ity” in the mistaken belief that such numbers exist independently of human
judgment.



260 CHAPTER 9. PRESENTING EVIDENCE

We should be in no doubt about the degree of certainty implicit in a
fingerprint identification. The expert is, in effect, saying “I am certain that
this latent mark and this control print were made by the same person and
no amount of contrary evidence will shake my certainty.” Or, to look at this
from a Bayesian perspective, no matter how small the prior odds are, the
likelihood ratio is so large that the posterior odds approach infinity. Stoney
sees that a fingerprint identification is based on a “leap of faith,” and he is
quite correct to conclude that such a leap of faith has nothing to do with
scientific principles. It is that leap of faith that characterizes the essence of a
conclusion of identity of source and, as he points out, that is a fundamental
difference between fingerprint evidence and DNA evidence. Stoney’s “leap
of faith” is equivalent to attaining an infinite likelihood ratio: this kind of
belief cannot derive from any scientific process.

Ultimately, it must always be the jurors, or other triers of fact, whose
belief in the proposition of an identical source that matters. The question
is about the role that the scientist plays in determining that state of belief
in the juror’s mind. With conventional evidence types it has long been
accepted in the courts that it is right and proper for the scientist to give
his view on the proposition of an identical source and then it is a matter
for the juror to decide on his confidence in the expert’s judgment. However,
the judgment in R. v. Doheny and R. v. G. Adams means that, for British
scientists at least, that must not be done with DNA evidence.

So, in considering the question “Is it as good as a fingerprint?” we
must recognize that a fingerprint identification is based on a process that is
quite different in nature from that which we follow in interpreting a DNA
match. The fingerprint identification means that the expert has reached a
characteristic mental state of complete certainty based on the skilled and
complex comparison that he has made. No juror is competent to attempt
that comparison. As Stoney says, the expert does not prove individuality,
he becomes mentally convinced by it. The issue is only proved when the
court decides that he is competent to give that opinion and the jury decides
that he can be believed.

With DNA, on the other hand, once the genotypes of the crime profile
and the suspect have been determined, the comparison is trivial–any juror
can see whether or not they are the same. Whereas the fingerprint expert
does not consciously dissociate the two components, numerator and denom-
inator, of the likelihood ratio, with a DNA match we are generally happy
with the notion that the numerator is one and the assessment of the weight
of the evidence comes down to considering the magnitude of the denomina-
tor. Once we assign a number to the denominator then we must recognize
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that we have given the court something that they may choose to work with
without our assistance. Certainly, the idea that the scientist has some par-
ticular power to take that number and take a step equivalent to the Stoney
“leap of faith” is misconceived. If he really wishes to emulate the fingerprint
expert, he must say “that match probability is so small that no amount of
contrary evidence will shake me from the opinion that the crime sample was
left by the defendant.”

The expression “DNA fingerprinting” fosters an unrealistic impression
of the technology, and it should not be encouraged in forensic circles.

Independence Across Loci

There is a key statement in the 1996 NRC report:

We foresee a time when each person can be identified uniquely
(except for identical twins).

The report contains language to the effect that, when DNA profiles match
at a large number of loci, it is not reasonable to believe that they come from
different people. This is based on our understanding that each person is ge-
netically unique, identical twins excepted. The NRC statement reflects the
widespread view that individualization through DNA profiling is a matter of
testing at a sufficient number of loci. This is an understandable position to
take: it appears to be inarguable that the more matching loci, the better the
evidence. But how do we combine likelihood ratios from the different loci?
Clearly, we would prefer to multiply them and justify this by an indepen-
dence assumption. Providing the likelihood ratios are moderate enough that
matches can be found in a database, then we can investigate the robustness
of the assumption by suitable experiments based on between-person com-
parisons as we described in Chapter 5. As a rough guide, it seems reasonable
that a likelihood ratio of, say, one million can be presented credibly if the
scientist can quote a between-person experiment based on at least a mil-
lion comparisons. The experiments of Lambert et al. (1995) and Evett et
al. (1996) describe millions of comparisons, the former based on four-locus
RFLP data and the latter on four-locus STR data. Larger experiments on
RFLP data were conducted by Risch and Devlin (1992).

As we test more and more loci, we find larger and larger likelihood ra-
tios for matching profiles, and we face two problems. First the credibility
problem: “How can you quote such large numbers based on such relatively
small databases?” Second, the closely related problem of testing robust-
ness because we are combining the evidence by a method whose robustness
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we cannot possibly test. Certainly there are strong a priori reasons to be-
lieve that if all the loci are well separated throughout the genome, then the
weight of evidence increases as more and more loci are added. This be-
lief is strengthened by the decreasing proportion of matching profiles found
in between-person experiments as more loci are considered. However, the
computed statistic, as Stoney (1991) pointed out, is a personal statement
of belief, and most certainly not an objective “statistical probability.” As
an illustration, imagine that we have a 12-locus match for which we have
computed a likelihood ratio of 10 billion. We now test an extra four loci, all
of which match. Is it now meaningful to say that the likelihood ratio is 100
trillion? Whether or not it is meaningful to quote such an extravagant num-
ber, we must be in no doubt that its magnitude depends on independence
assumptions to a measure that we cannot possibly support by data. So when
we add more loci, the notion that the evidence is becoming more and more
compelling is intimately related to personal belief. There is nothing wrong
with this, and indeed there is nothing new about it because it is the notion
that fingerprint experts invoke as they find more and more points of compar-
ison. The same applies to handwriting comparison, toolmark examination,
and so on. So, whereas we sympathize with the view that the weight of
the evidence increases with an increasing number of matching loci, we must
accept that an assessment made on the basis of a large number of loci is nec-
essarily subjective. We also note that further work is needed to quantify the
effects of multilocus associations (Donnelly 1995; J.S. Buckleton, personal
communication).

Statistical Basis for Individualization?

One of the questions often asked is just how small the DNA match proba-
bility should be, or how large should the likelihood ratio be, to prove a case
beyond reasonable doubt “in the absence of other evidence.” Several points
need to be made. First, it is difficult to envisage a trial in which there really
is no other evidence. At the very least, there is likely to be evidence relating
to the location where the crime occurred and some general area where the
defendant might have been expected to be, however ill-defined. A useful
discussion of how geographic considerations may be used to formulate prior
odds has been given by Walsh et al. (1994). Second, “beyond reasonable
doubt” has no numerical standard, so the search for a threshold value for
the posterior odds is doomed to fail. Third, the issue is related to that of
individuality as it is expressed in other areas of forensic science.

When DNA evidence is presented statistically, it is natural to attempt
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to rationalize individualization from statistical lines of reasoning. The 1996
NRC report took a classical statistical view by asking what would be needed
to make it very unlikely that a profile occurs in two people. Their argument
proceeds as follows. Assume that we find that the suspect has the same
genotype as a crime sample. If the match probability is P , then the proba-
bility that an unknown person would not be the same genotype is (1− P ).
In a population of unrelated people of size N the probability that no one
has this genotype is (1 − P )N . The probability that there is at least one
other person in the population is (1 − (1− P )N ). Denote this probability
by α:

α = 1− (1− P )N

For a given value of the population size N , we can calculate the value of P
that satisfies a chosen value of α by rearranging the formula:

P = 1− (1− α)1/N ≈ α/N

We could arrive at the same numerical value for P by means of the Poisson
approximation to the binomial.

For example, if N = 260 million, and if we specify that α should be
less than 0.001, then P should be less than one in 260 billion. This might
be viewed as implying a 99.9% probability that nobody else in the popu-
lation has the profile. An immediate problem with this formulation is the
assumption of independence between all the genotypes in the population,
which cannot be true. Furthermore, the apparent objectivity of the calcula-
tion is an illusion. Recall our discussion of combining genotypes across loci:
We cannot carry out experiments to investigate the robustness of the inde-
pendence assumptions inherent in a match probability as small as 1 in 260
billion. The number is heavily dependent on subjective judgment; whether
it has any real provenance is a matter of opinion.

There is a directly equivalent Bayesian argument based on the idea that
every one of the N people in the population has the same chance of being the
offender. Then the prior odds in relation to the prosecution proposition are
(approximately) 1/N . The likelihood ratio is 1/P , so the posterior odds are
1/NP . Using the above values for N and P we see that the posterior odds
are 1000–equivalent to a posterior probability in favor of the prosecution
proposition of 0.999. Of course, the scientist is in no position to determine
whether 0.999 satisfies the criterion of “beyond reasonable doubt.” The NRC
report also makes the point that the magnitude of α would be a matter for
the court.
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We have seen that it is not reasonable to attempt to draw a simple
parallel between DNA evidence and a fingerprint identification. The goal of
individualization is “beyond reasonable doubt” based on all the evidence,
and this should be made clear to the court. We see no great problem,
providing the evidence justifies it, in an expert saying something of the form,
“In my opinion, it is unlikely that there is another person in the country
with that profile.” How the jury views that opinion and combines it with
the non-scientific evidence is another matter. In the UK, at least, it has
been heavily implied by the courts that is not for the scientist to consider.
However, we have difficulty with a statement of the form, “In my opinion,
the crime sample was left by the suspect.” This is a quite different kind of
opinion and we have seen that such a statement cannot be made without
invoking a prior of some kind–unless, like the fingerprint expert, we believe
the LR to be so large that it does not matter how small the prior is. In
such an instance, perhaps the expert should say, “No matter what evidence
the court hears to the contrary, it should accept my opinion that the crime
stain came from the suspect.” It remains to be seen how the court would
react.

DNA EVIDENCE IN COURT: A FUTURE VIEW

We have explained how we believe the statement should be written in the
case of Mr. S. We are conscious that we have said more about what the
scientist should not say if the case comes to court than what he should say.
We hope we have said enough to guide him away from the more obvious
pitfalls. In this particular case, involving only one sample of transferred
material, there is no strong case for preferring a LR over a match probability.
How that is combined with the other evidence in the case depends on the
court, and the scientist might not be asked for an opinion on this. If he
is, however, we believe that there is no more cogent way of explaining the
weight of the evidence than by the simple prior/posterior argument, which,
after careful explanation to the jury might culminate with an illustration as
follows:

If, based on all the non-DNA evidence the jury consider the odds
in favor of the defendant being the assailant to be ten thousand
to one against, then the DNA evidence turns those into odds of
one hundred to one on.

No doubt it could be argued that the prior of ten thousand to one against
might put the wrong idea into the mind of the jury, so it would be better to
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elaborate with a range of examples based on a range of illustrative values
for the prior. This was suggested in the paternity field by Berry and Geisser
(1986), who also provided a useful discussion of how the quantification
of priors might be worked at with a jury. There is no doubt that the vast
majority of forensic scientists who are currently practicing in this field would
be apprehensive about taking this line. This is hardly surprising because it
is largely novel and runs counter to whatever training they have received.
Courts themselves are steeped in traditional approaches and are naturally
conservative. The reactions of British courts demonstrate how far the logical
thinking about legal inference has outstripped practice. But this is the way
forward. Forensic science ought to be logical, and we have offered a logical
approach. Inferentially, practical forensic science has evolved little, if at
all, from its dawn–in spite of penetrating insights of Kirk (1963), Kingston
(1965), and Stoney (1991). The wonderful new techniques of DNA profiling
provide us with an opportunity to progress into the next millenium with
the knowledge that forensic science is a true science and with a deeper
understanding of its fundamental principles.

SUMMARY

In this final chapter we have shown how the ideas in the preceding chap-
ters are brought together to present DNA profiling evidence in a balanced
and robust manner. We have shown that the Bayesian view of evidence
provides principles for a scientific approach to interpretation and how those
principles provide a basis for balanced and comprehensible reporting. We
have discussed the challenges associated with presenting evidence at court
and have explained the nature of the fallacious lines of reasoning that the
scientist may encounter.

We have considered the issues that are central to the concept of forensic
individualization and have talked about the differences in approach between
fingerprint and DNA experts. For non-DNA evidence, individualization de-
pends on a leap of faith that, in Bayesian terms, is equivalent to saying
“My personal likelihood ratio is so large that, no matter how small the prior
odds are, the posterior odds are large enough for me to individualize with
certainty.” For DNA evidence such a state could be reached only by testing
at more and more loci, but the apparent objectivity of numerical statements
then becomes increasingly illusory, and the element of personal belief totally
dominates the data.
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Table A.1: Areas under the standard normal density curve, beyond value z.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

4.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table A.2: Chi-square values that are exceeded with specified probabilities.

Probability
d.f. 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005

1 0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21 10.6
3 0.07 0.12 0.22 0.35 0.58 6.25 7.81 9.35 11.3 12.8
4 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.1 13.3 14.9
5 0.41 0.55 0.83 1.15 1.61 9.24 11.1 12.8 15.1 16.7

6 0.68 0.87 1.24 1.64 2.20 10.6 12.6 14.4 16.8 18.5
7 0.99 1.24 1.69 2.17 2.83 12.0 14.1 16.0 18.5 20.3
8 1.34 1.65 2.18 2.73 3.49 13.4 15.5 17.5 20.1 22.0
9 1.73 2.09 2.70 3.33 4.17 14.7 16.9 19.0 21.7 23.6

10 2.16 2.56 3.25 3.94 4.87 16.0 18.3 20.5 23.2 25.2

11 2.60 3.05 3.82 4.57 5.58 17.3 19.7 21.9 24.7 26.8
12 3.07 3.57 4.40 5.23 6.30 18.5 21.0 23.3 26.2 28.3
13 3.57 4.11 5.01 5.89 7.04 19.8 22.4 24.7 27.7 29.8
14 4.07 4.66 5.63 6.57 7.79 21.1 23.7 26.1 29.1 31.3
15 4.60 5.23 6.26 7.26 8.55 22.3 25.0 27.5 30.6 32.8

16 5.14 5.81 6.91 7.96 9.31 23.5 26.3 28.8 32.0 34.3
17 5.70 6.41 7.56 8.67 10.1 24.8 27.6 30.2 33.4 35.7
18 6.26 7.01 8.23 9.39 10.9 26.0 28.9 31.5 34.8 37.2
19 6.84 7.63 8.91 10.1 11.7 27.2 30.1 32.9 36.2 38.6
20 7.43 8.26 9.59 10.9 12.4 28.4 31.4 34.2 37.6 40.0

21 8.03 8.90 10.3 11.6 13.2 29.6 32.7 35.5 38.9 41.4
22 8.64 9.54 11.0 12.3 14.0 30.8 33.9 36.8 40.3 42.8
23 9.26 10.2 11.7 13.1 14.8 32.0 35.2 38.1 41.6 44.2
24 9.89 10.9 12.4 13.8 15.7 33.2 36.4 39.4 43.0 45.6
25 10.5 11.5 13.1 14.6 16.5 34.4 37.7 40.6 44.3 46.9

26 11.2 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6 48.3
27 11.8 12.9 14.6 16.2 18.1 36.7 40.1 43.2 47.0 49.6
28 12.5 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3 51.0
29 13.1 14.3 16.0 17.7 19.8 39.1 42.6 45.7 49.6 52.3
30 13.8 15.0 16.8 18.5 20.6 40.3 43.8 47.0 50.9 53.7

40 20.7 22.2 24.4 26.5 29.1 51.8 55.8 59.3 63.7 66.8
50 28.0 29.7 32.4 34.8 37.7 63.2 67.5 71.4 76.2 79.5
60 35.5 37.5 40.5 43.2 46.5 74.4 79.1 83.3 88.4 92.0
70 43.3 45.4 48.8 51.7 55.3 85.5 90.5 95.0 100.4 104.2
80 51.2 53.5 57.2 60.4 64.3 96.6 101.9 106.6 112.3 116.3

100 67.3 70.1 74.2 77.9 82.4 118.5 124.3 129.6 135.8 140.2
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Table A.3: Two thousand random digits.

5 10 15 20 25 30 35 40 45 50

1 30246 86149 45548 80480 85924 02411 46456 23952 55145 18300
2 02806 20733 30853 08034 21238 39933 90958 87912 82486 96960
3 84868 17425 91536 08208 44761 40101 74109 08696 73249 10885
4 65043 86343 36953 04658 42008 84984 49584 53872 52737 24217
5 59792 12608 73246 57277 29384 02608 78779 59311 08421 72618
6 29008 02705 38780 09675 32573 74039 85654 12731 36846 21341
7 74800 20695 99211 38699 28454 21400 11524 81212 55327 93367
8 45715 29459 60745 64762 81553 00401 21852 65586 51269 73813
9 70056 78054 16563 32244 81117 26808 94318 00873 00154 81690

10 30072 38515 52181 21872 17193 57361 16000 51633 70345 48725
11 19490 00789 48629 84877 18858 73868 05461 57469 58009 23998
12 79558 05067 71799 72777 45475 39847 14211 09764 38988 94242
13 18072 34286 46778 95843 31600 57151 89995 58712 46820 81464
14 09933 43223 27657 00697 84736 96171 18120 74205 86558 72670
15 68396 26040 44227 73036 11903 59352 73105 88131 25523 48473
16 76023 01624 74545 18347 66573 79479 24729 98822 93629 72477
17 52257 64895 96218 45817 93951 30547 93632 21510 17326 95743
18 27531 76301 89645 24680 93157 56419 92677 05539 81408 37221
19 17406 68465 66526 13785 92655 25101 95658 54255 07336 17904
20 87810 83955 12467 83985 39484 80179 96878 67468 16173 29937
21 01109 37024 09219 04303 65058 07201 50126 56572 97194 99595
22 67362 79269 61078 70412 89414 45697 17368 48025 41999 45286
23 38002 58000 50220 34603 73647 06894 84712 52922 73303 22802
24 60044 14258 82451 24551 14223 77858 61729 69565 62211 90630
25 55818 55177 80015 88181 96369 57150 37206 02369 18457 29621
26 82646 47169 71375 65259 13194 59086 81076 08421 47402 25764
27 47133 75669 28424 83710 21907 46183 21782 04475 88099 33155
28 62065 06444 34797 56543 90176 41665 53588 71810 26557 83977
29 52765 89407 17693 33927 97348 72061 14231 12340 44493 64194
30 68651 84960 60535 51369 08459 97693 31991 37836 37247 50762
31 74437 48122 89309 16025 06062 10840 22809 28746 30682 48082
32 49051 14405 76357 57632 46511 00666 09647 61493 66875 29164
33 95023 70370 60841 58975 63641 71478 48327 82378 17689 49232
34 19358 28765 57897 93980 61832 10202 79416 40162 85205 87337
35 95489 73778 86660 39424 89005 68527 85534 77132 95116 65790
36 07758 15002 18281 35417 07440 56681 31392 91160 85337 79306
37 27602 69590 13299 50384 25829 85184 89773 97149 16399 41287
38 75864 68804 37205 39021 67019 38964 62848 40359 22254 54700
39 47313 78390 64495 14918 97584 73636 55745 33592 16050 86578
40 13406 80860 65073 73149 74121 97974 60190 50744 52846 91673
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SOLUTIONS TO
EXERCISES

CHAPTER 1

Exercise 1.1

Pr(H1|E) =
1
3

Pr(H1 or H2|E) =
1
3

+
1
3

=
2
3

Pr(H̄1|E) = 1− 1
3

=
2
3

Pr(H1|0) = 0

Exercise 1.2

Let C denote Caucasian, H denote highland, L denote Celtic language, and E
denote the information that the person is selected at random from the voter regis-
tration list. Then

Pr(C,H,L|E) = Pr(L|C,H,E) Pr(H|C,E) Pr(C|E)
= 0.75× 0.2× 0.8
= 0.12

Exercise 1.3

Let G denote the event that a person has the required genotype, Ca the event that
a person is Caucasian, Mo the event that a person is Maori, and Pa the event that

271
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a person is Pacific Islander. Then

Pr(G) = Pr(G|Ca) Pr(Ca) + Pr(G|Mo) Pr(Mo) + Pr(G|Pa) Pr(Pa)
= 0.013× 0.8347 + 0.045× 0.1219 + 0.039× 0.0434
= 0.018

Exercise 1.4

a.

Pr(Both dice are even) =
1
2
× 1

2
=

1
4

O(Both dice are even) =
1
4

1− 1
4

=
1
3

i.e., 3 to 1 against.
b.

Pr(Both dice show a six) =
1
6
× 1

6
=

1
36

O(Both dice show a six) =
1
36

1− 1
36

=
1
35

i.e., 35 to 1 against.

Exercise 1.5

a.

Pr(H) =
19

1 + 19
=

19
20

= 0.950

b.

Pr(H) =
0.2

1 + 0.2
=

1
6

= 0.167

c.

Pr(H) =
1000

1 + 1000
=

1000
1001

= 0.999

d.

Pr(H) =
1/1000

1 + 1/1000
=

1
1001

= 0.001
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Exercise 1.6

a.

Pr(D|I) = 1/10, 000 = 0.0001

b.

Pr(E|D, I) = 0.99

c.

Pr(E|D̄, I) = 0.05

d.

Prior Odds =
Pr(D|I)
Pr(D̄)|I

=
1/10, 000

1− 1/10, 000
= 1/9, 999

i.e., approximately 10,000 to 1 against.
e.

LR =
Pr(E|D, I)
Pr(E|D̄, I)

=
0.99
0.05

= 19.8

f.

Posterior Odds = 19.8× 1
9, 999

= 0.00198

The posterior odds are approximately 500 to 1 against X being infected with the
disease. Even though X has tested positive, the probability he has the disease is
small, approximately 0.002. Whereas Pr(E|D, I) = 0.99, we note that Pr(D|E, I) =
0.002. We meet an analogous situation when we discuss the transposed conditional
in Chapter 2.

CHAPTER 2

Exercise 2.1
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a. Correct. Use of the word “if” makes the conditioning clear.

b. Correct. However, the meaning is not conveyed as clearly as in a..

c. Wrong. A clear example of the prosecutor’s fallacy.

d. Correct. The evidence is described in terms of a likelihood ratio.

e. Wrong. The likelihood ratio has been transposed into a statement of poste-
rior odds.

f. Wrong. Another posterior odds statement.

g. Wrong.

h. Ambiguous. Depends on whether the sentence is read as: “The chance that
a man other than Smith would leave blood of this type . . .;” or “The chance that
a man other than Smith did leave blood of this type . . ..” The first is correct, and
the second is wrong.

i. Correct.

j. Wrong.

k. Wrong. Although not numerical, it is clearly a probability statement about
a proposition.

l. Correct. This form of reporting is discussed in Chapter 9.

CHAPTER 3

Exercise 3.1

a. 3 objects chosen from 5: (
5
3

)
=

5!
3!2!

= 10

b. 5 objects from 12: (
12
5

)
=

12!
5!7!

= 792
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c. 4 objects chosen from 40:(
40
4

)
=

40!
4!36!

= 91, 390

d. 36 objects from 40: (
40
36

)
=

40!
36!4!

= 91, 390

Exercise 3.2

a. 3 black balls chosen from 5 balls:

5!
3!2!

(0.5)5 = 0.3125

b. 5 objects from 12:

12!
5!7!

(0.5)12 = 0.1934

Exercise 3.3

a. n = 5, p = 1/16. The probability of two “6”s is

5!
2!3!

(
1
6

)2(5
6

)3

= 0.1608

b. For the probability of more than two “6”s, we note that

Pr(zero “6”s) =
(

5
6

)5

= 0.4019

Pr(one “6”s) = 5
(

1
6

)(
5
6

)4

= 0.4019

Therefore, the probability of two “6”s or less is 0.1608 + 0.4019 + 0.4019 = 0.9646,
and the probability of more than two “6”s must be 1− 0.9646 = 0.0354.

Exercise 3.4

The probability that a person’s birthday falls in a given week is (approximately)
1/52. For 50 people, in a given week,

Pr(none have a birthday) =
(

51
52

)50

= 0.3787
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Pr(one has a birthday) =
(

50
1

)(
1
52

)1(51
52

)49

= 0.3713

Pr(two have a birthday) =
(

50
2

)(
1
52

)2(51
52

)48

= 0.1784

Pr(two or fewer birthdays) = 0.3787 + 0.3713 + 0.1784
= 0.9284

Pr(more than two birthdays) = 1− 0.9284
= 0.0716

Exercise 3.5

a.

Number of Number
black balls of ways Probability

0 1 1× (0.9)6 = 0.531441
1 6 6× (0.9)5(0.1)1 = 0.354294
2 15 15× (0.9)4(0.1)2 = 0.098415
3 20 20× (0.9)3(0.1)3 = 0.014580
4 15 15× (0.9)2(0.1)4 = 0.001250
5 6 6× (0.9)1(0.1)5 = 0.000054
6 1 1× (0.1)6 = 0.000001

b.

Number of Number
black balls of ways Probability

0 1 1× (0.5)6 = 0.015625
1 6 6× (0.5)6 = 0.093750
2 15 15× (0.5)6 = 0.234375
3 20 20× (0.5)6 = 0.312500
4 15 15× (0.5)6 = 0.234375
5 6 6× (0.5)6 = 0.093750
6 1 1× (0.5)6 = 0.016525

Exercise 3.6

With n = 400 and p = 0.8:

Mean = np = 320
Variance = np(1− p) = 64

sd =
√
np(1− p) = 8
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Exercise 3.7

With n = 106, p = 10−6, we have λ = np = 1, so that

No. of men Probability
0 0.368
1 0.368
2 0.184

More than 2 0.080

Exercise 3.8

From Table 3.5:

Number of Number of Number of Number
black balls white balls red balls of ways Probability

3 0 0 1 1× (0.5)3 = 0.125
2 1 0 3 3× (0.5)2 × (0.3) = 0.225
2 0 1 3 3× (0.5)2 × (0.2) = 0.150
1 2 0 3 3× (0.5)× (0.3)2 = 0.135
1 1 1 6 6× (0.5)× (0.3)× (0.2) = 0.180
1 0 2 3 3× (0.5)× (0.2)2 = 0.060
0 3 0 1 1× (0.3)3 = 0.027
0 2 1 3 3× (0.3)2 × (0.2) = 0.054
0 1 2 3 3× (0.3)× (0.2)2 = 0.036
0 0 3 1 1× (0.2)3 = 0.008

Exercise 3.9

If x1, x2, or x3 are numbers of black, white, or red balls:

x1 x2 x3 x1! x2! x3! px1
i px2

2 px3
3 Prob.

3 0 0 6 1 1 0.125 1.000 1.000 0.125
2 1 0 2 1 1 0.250 0.300 1.000 0.225
2 0 1 2 1 1 0.250 1.000 0.200 0.150
1 2 0 1 2 1 0.500 0.090 1.000 0.135
1 1 1 1 1 1 0.500 0.300 0.200 0.180
1 0 2 1 1 2 0.500 1.000 0.040 0.060
0 3 0 1 6 1 1.000 0.027 1.000 0.027
0 2 1 1 2 1 1.000 0.090 0.200 0.054
0 1 2 1 1 1 1.000 0.300 0.040 0.036
0 0 3 1 1 6 1.000 1.000 0.008 0.008

Exercise 3.10

If p is the probability of a black ball, then p = 0.5 and q = 1− p = 0.5.
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No. of Binomial Lines in table Combined probabilities
black balls probability for Ex. 3.8 from Exercise 3.8

0 0.125 7,8,9,10 0.027 + 0.054 + 0.036 + 0.008 = 0.125
1 0.375 4,5,6 0.135 + 0.180 + 0.00 = 0.375
2 0.375 2,3 0.225 + 0.150 = 0.375
3 0.125 1 0.125

Exercise 3.11

a. The sample proportion is 8/50 = 0.16 and a normal-approximation confi-
dence interval is 0.16 ± 1.96

√
0.16× 0.84/50 = 0.16 ± 0.10. This is the interval

(0.06,0.26).
b. The sample proportion is 1/50 = 0.02 and the normal approximation would

not be appropriate. We would use bootstrapping to find a confidence interval
(Chapter 5). If the true proportion was 0.02, we can use the binomial theorem to
show that the probabilities of 0,1,2 or 3 occurrences of the genotype in a sample of
size 50 are 0.36, 0.37, 0.19, or 0.06. We might, therefore, take the range (0, 0.04)
to be a 92% confidence interval, and the range (0,0.06) to be a 98% confidence
interval.

Exercise 3.12

Category Observed (o) Expected e (o− e) (o− e)2/e
Red 7 5 2 0.8

Black 3 5 −2 0.8
Total 10 10 0 1.6

The null hypothesis is not rejected at the 5% level.

Exercise 3.13

Cumulative
x Probability probability

10 or 0 2× 0.0010 = 0.0020 0.0020
9 or 1 2× 0.0098 = 0.0195 0.0215
8 or 2 2× 0.0439 = 0.0879 0.1094
7 or 3 2× 0.1172 = 0.2344 0.3438
6 or 4 2× 0.2051 = 0.4102 0.7540

5 0.2460 1.0000

The P -value is 0.3438, so the null hypothesis is not rejected at the 5% level.
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CHAPTER 4

Exercise 4.1

The three allelic proportions are:

p1 = 0.36 +
1
2
0.36 +

1
2
0.12 = 0.60

p2 = 0.09 +
1
2
0.36 +

1
2
0.06 = 0.30

p3 = 0.01 +
1
2
0.12 +

1
2
0.06 = 0.10

Exercise 4.2

The three genotypic proportions are:

P11 = p2
1 = 0.49

P12 = 2p1p2 = 0.42
P22 = p2

2 = 0.09

Exercise 4.3

There are six genotypic proportions:

PAA = p2
A = 0.04

PAO = 2pApO = 0.28
PBB = p2

B = 0.01
PBO = 2pBpO = 0.14
PAB = 2pApB = 0.04
POO = p2

O = 0.49

This leads to four phenotypic proportions:

A : 0.04 + 0.28 = 0.32
B : 0.01 + 0.14 = 0.15

AB : 0.04
O : 0.49

Exercise 4.4

The average of the five allelic proportions is p̄ = 0.5, and this remains constant
over time. The proportions in populations I, II, III, IV and V after one or two
generations are:
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Time I II III IV V

0 0.1 0.3 0.5 0.7 0.9
1 0.14 0.32 0.50 0.68 0.86
2 0.176 0.338 0.500 0.662 0.824

Exercise 4.5

The following table displays each of the relevant quantities for subpopulations I, II,
III and the total population:

i = I i = II i = III Total
mi 0.5 0.3 0.2 1

pAi 0.4 0.6 0.2
mipAi

0.20 0.18 0.04 0.42

PAAi 0.16 0.36 0.04
miPAAi

0.080 0.108 0.008 0.196

Note that the Hardy-Weinberg proportion for homozygotes in the whole population
is 0.422 = 0.1764, which is less than the actual proportion of 0.1960. The data show
a homozygote excess.

Exercise 4.7

For the example shown in Exercise 4.6, the five genotypes in the three successive
generations are:

0 A1A2 A3A4 A5A6 A7A8 A9A10

1 A9A3 A10A9 A1A6 A10A2 A3A10

2 A6A10 A6A3 A9A10 A2A9 A10A3

and none of these individuals has two ibd alleles. All the F ’s are zero.

Exercise 4.8

There are three non-zero δ measures for uncle X(a, b) and nephew Y (c, d). If c is
the allele Y received from the sib of X, from Table 4.8:

δ0 = 1/2, δac = 1/4, δbc = 1/4

Putting these into Equation 4.17 provides

Pr(GX = A1A2, GY = A1A2) = 2p2
1p

2
2 + p1p2(p1 + p2)/2
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Exercise 4.9

Relationship G = AiAi G = AiAj

Parent− child pi (pi + pj)/2
Grandparent− grandchild pi(1 + pi)/2 (pi + pj + 4pipj)/4
Halfsibs pi(1 + pi)/2 (pi + pj + 4pipj)/4
Uncle− nephew pi(1 + pi)/2 (pi + pj + 4pipj)/4
First cousins pi(1 + 3pi)/4 (pi + pj + 12pipj)/8

Exercise 4.10

The calculations can be set out as

Proportions mα = 0.8 mβ = 0.2

A pAα = 0.4 pAβ
= 0.2

mpA 0.32 0.04 pA = 0.36

B pBα = 0.2 pBβ
= 0.6

mpB 0.16 0.12 pB = 0.28

AB PABα
= 0.08 PABβ

= 0.12
mPAB 0.064 0.024 PAB = 0.088

The overall linkage disequilibrium is therefore

DAB = 0.088− 0.36× 0.28 = −0.0128

CHAPTER 5

Exercise 5.1

a. GYPA

Genotype o e (o− e) (o− e)2/e
AA 31 29.91 1.09 0.04
AB 49 51.19 −2.19 0.09
BB 23 21.90 1.10 0.06

Total 103 103.00 0.00 0.19
(df) (1)

The hypothesis is not rejected at the 5% level.
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b. HBGG

Genotype o e (o− e) (o− e)2/e
AA 30 32.10 −2.10 0.14
AB 55 50.24 4.76 0.45
AC 0 0.56 −0.56 0.56
BB 17 19.66 −2.66 0.36
BC 1 0.44 0.56 0.73
CC 0 0.00 0.00 0.00

Total 103 103.00 0.00 2.24
(df) (3)

The hypothesis is not rejected at the 5% level.
c. D7S8

Genotype o e (o− e) (o− e)2/e
AA 31 30.45 0.55 0.01
AB 50 51.10 −1.10 0.02
BB 22 21.45 0.55 0.01

Total 103 103.00 0.00 0.05
(df) (1)

The hypothesis is not rejected at the 5% level.
d. Gc

Genotype o e (o− e) (o− e)2/e
AA 4 6.56 −2.56 1.00
AB 11 10.35 0.65 0.04
AC 33 28.52 4.48 0.70
BB 8 4.08 3.92 3.77
BC 14 22.49 −8.49 3.21
CC 33 31.00 2.00 0.13

Total 103 103.00 0.00 8.85
(df) (3)

The hypothesis is rejected at the 5% level.

CHAPTER 6

Exercise 6.1

a. In Table 6.2, we use the line for GC = AiAj , GM = AiAk, and GAF = AjAl

and see that the LR is 1/(2pj). In this case: Ai = A,Aj = B,Ak = C, and Al = C.
The fact that Ak = Al does not affect the calculation. From Table 5.4, we take
pj = 0.199, so LR= 2.51.

b. In Table 6.4, we use the line for GC = AiAj , GM = AiAk, and GAF = AjAl

and see that LR is the reciprocal of 2[pj(1− 2θAT ) + θAT ]. Setting θAT = 1/16 for
first cousins, and with pj = 0.199 as before, LR=2.11.
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Exercise 6.2

a. In Table 6.2, we use the line for GC = AiAj , GM = AiAj , and GAF = AjAk

and see that the LR is 1/2(pi + pj). In this case: Ai = A,Aj = B and Ak = C.
From Table 5.4, we take pi = 0.252 and pj = 0.199, so LR= 1.11.

b. In Table 6.4, we use the line for GC = AiAj , GM = AiAj , and GAF = AjAk

and see that LR is the reciprocal of 2[(pi +pj)(1−2θAT )+θAT ]. Setting θAT = 1/8
for half sibs, and with pi = 0.252 and pj = 0.199 as before, LR= 1.08.

Exercise 6.3

The numerator for LR is

Pr(GC = AiAj |GM = AiAj , GAF = AiAj ,Hp) =
1
2

Because there is doubt as to which of the child’s alleles is maternal and which
is paternal, we need to sum over both possibilities, as stated in the text. The
denominator for LR is

Den. = Pr(AM = Ai|GM ) Pr(AP = Aj |GM , GAF ,Hd)
+ Pr(AM = Aj |GM ) Pr(AP = Ai|GM , GAF ,Hd)

=
1
2
[Pr(AP = Aj |GM , GAF ,Hd) + Pr(AP = Ai|GM , GAF ,Hd)]

As in the text, we need to consider the possible genotypes for MM, and all we
know is that this person must have at least one of alleles Ai and Aj . The analog
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of Table 6.5 is:

T3

GMM Pr(GMM ) T1 T2 AP = Ai AP = Aj

AiAi p2
i

1
2

p2
i

pi+pj

3
4

1
4

AiAj 2pipj
1
2

2pipj

pi+pj

1
2

1
2

AjAj p2
j

1
2

p2
j

pi+pj

1
4

3
4

AiAk 2pipk
1
4

pipk

pi+pj

1
2

1
4

k 6= i, j
AjAk 2pjpk

1
4

pjpk

pi+pj

1
4

1
2

k 6= i, j

Pr(GM = AiAj |GAF = AiAj) = (pi + pj)/2
T1 = Pr(GM = AiAj |GMM , GAF = AiAj ,Hd)
T2 = Pr(GMM |GM , GAF )
T3 = Pr(AP |GMM , GAF = AiAj ,Hd)

Averaging over the two values for AM , the denominator becomes

Den. =
p2

i

2(pi + pj)
+

pipj

pi + pj
+

p2
j

2(pi + pj)

+
∑

k 6=i,j

3pipk

8(pi + pj)

+
∑

k 6=i,j

3pjpk

8(pi + pj)

=
3 + pi + pj

8

and LR is 4/(3 + pi + pj).

Exercise 6.4

Under the proposition Hp that the sample is from the missing person, the proba-
bility of the evidence is:

Pr(E|Hp) = Pr(GP , {GS}, GM , GC , GX |Hp)
= Pr(GC |GX , GM ) Pr(GX , GM , {GS}|GP ) Pr(GP )
= Pr(GC |GX , GM ) Pr(GM ) Pr(GX , {GS}|GP ) Pr(GP )

= Pr(GC |GX , GM ) Pr(GM ) Pr(GP )
∑
GF

Pr(GX , {GS}|GP , GF ) Pr(GF )
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where

Pr(GC = A3A5|GX = A3A3, GM = A5A6) = 1/4
Pr(GM ) = 2p5p6

Pr(GP ) = 2p3p4

Pr(GX , {GS}|GP = A3A4, GF = A2A3) = 1/1024
Pr(GX , {GS}|GP = A3A4, GF = A2A4) = 0

Pr(GF = A2A3) = 2p2p3

Pr(GF = A2A4) = 2p2p4

Therefore

Pr(E|Hp) = p2p
2
3p4p5p6/512

Under the proposition Hd that the sample is not from the missing person, the
probability of the evidence is:

Pr(E|Hp) = Pr(GP , {GS}, GM , GC , GX |Hp)
= Pr(GX) Pr(GM ) Pr(GC |GM ) Pr({GS}|GP ) Pr(GP )

= Pr(GX) Pr(GM ) Pr(GP )
∑
GF

Pr(GC |GM , GF ) Pr({GS}|GP , GF ) Pr(GF )

where

Pr(GX) = p2
3

Pr(GM ) = 2p5p6

Pr(GP ) = 2p3p4

Pr(GC = A3A5|GM = A5A6, GF = A2A3) = 1/4
Pr(GC = A3A5|GM = A5A6, GF = A2A4) = 1/8

Pr({GS}|GP = A3A4, GF = A2A3) = 1/1024
Pr({GS}|GP = A3A4, GF = A2A4) = 1/1024

Pr(GF = A2A3) = 2p2p3

Pr(GF = A2A3) = 2p2p4

Therefore

Pr(E|Hd) = p2p
2
3p4p5p6(2p3 + p4)/1024

and LR is

LR = 2/(2p3 + p4)
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CHAPTER 7

Exercise 7.1

In each case the two propositions are

Hp: The victim and suspect were the contributors.
Hd: The victim and an unknown person were the contributors.

The calculation can be set out in this table:

GV GS EC Pr(EC |GV , GS ,Hp) Pr(EC |GV ,Hd) LR
A1A1 A1A1 A1A1 1 p2

1 1/p2
1

A1A2 A1A2 A1A2 1 p2
1 + 2p1p2 + p2

2 1/(p1 + p2)2

A1A1 A1A2 A1A2 1 2p1p2 + p2
2 1/p2(2p1 + p2)

A1A2 A1A1 A1A2 1 p2
1 + 2p1p2 + p2

2 1/(p1 + p2)2

A1A1 A2A2 A1A2 1 2p1p2 + p2
2 1/p2(2p1 + p2)

Exercise 7.2

In this case EC = A1, A2, A3 and GS = A2A2. The two propositions are

Hp: The suspect and an unknown person were the contributors.
Hd: Two unknown people were the contributors.

Under Hp, the unknown person must be A1A3, so the evidence probability is

Pr(EC |GS ,Hp) = 2p1p3

UnderHd, the two unknown people can beA1A2, A2A3, orA2A2, A1A3, orA3A3, A1A2,
or A1A2, A1A3, or A1A2, A2A3, or A1A3, A2A3. The evidence probability is

Pr(EC |Hd) = 4p2
1p2p3 + 4p1p

2
2p3 + 4p1p2p

2
3

+ 8p2
1p2p3 + 8p1p

2
2p3 + 8p1p2p

2
3

= 12p1p2p3(p1 + p2 + p3)

and LR is 1/6p2(p1 + p2 + p3).
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