
Section 3:

Allelic Independence and Matching



Testing for Allelic Independence

What is the probability a person has a particular DNA profile?

What is the probability a person has a particular profile if it has

already been seen once?

The first question is a little easier to think about, but difficult

to answer in practice: it is very unlikely that a profile will be

seen in any sample of profiles. Even for one STR locus with 10

alleles, there are 55 different genotypes and most of those will

not occur in a sample of a few hundred profiles.

For locus D3S1358 in the African American population, the FBI

frequency database shows that 31 of the 55 genotype counts are

zero. Estimating the population frequencies for these 31 types

as zero doesn’t seem sensible.
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D3S1358 Genotype Counts

Observed <12 12 13 14 15 16 17 18 19 >19

<12 0
12 0 0
13 0 0 0
14 0 0 0 2
15 0 0 1 19 15
16 1 1 1 15 39 19
17 0 0 2 10 26 24 9
18 1 0 1 2 6 10 3 0
19 0 0 0 1 0 0 1 0 0

>19 0 0 0 0 1 0 0 0 0 0
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Hardy-Weinberg Law

A solution to the problem is to assume that the Hardy-Weinberg

Law holds. For a random mating population, expect that geno-

type frequencies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

For a locus with several alleles Ai:

PAiAi
= (pAi

)2

PAiAj
= 2pAi

pAj
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D3S1358 Hardy-Weinberg Calculations

The allele counts for D3S1358 in the African-American sample

are:

Total

Allele <12 12 13 14 15 16 17 18 19 >19
Count 2 1 5 51 122 129 84 23 2 1 420

If the Hardy-Weinberg Law holds, then we would expect to see

np̃2
13 = 210 × (5/420)2 = 0.03 individuals of type 13,13 in a

sample of 210 individuals.

Also, we would expect to see 2np̃13p̃14 = 420×(5/420)×(51/420) =

0.61 individuals of type 13,14 in a sample of 210 individuals.

Other values are shown on the next slide.
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D3S1358 Observed and Expected Counts

<12 12 13 14 15 16 17 18 19 >19
<12 Obs. 0

Exp. 0.0
12 Obs. 0 0

Exp. 0.0 0.0
13 Obs. 0 0 0

Exp. 0.0 0.0 0.0
14 Obs. 0 0 0 2

Exp. 0.2 0.1 0.6 3.1
15 Obs. 0 0 1 19 15

Exp. 0.6 0.3 1.5 14.8 17.7
16 Obs. 1 1 1 15 39 19

Exp. 0.6 0.3 1.5 15.7 37.5 19.8
17 Obs. 0 0 2 10 26 24 9

Exp. 0.4 0.2 1.0 10.2 24.4 25.8 8.4
18 Obs. 1 0 1 2 6 10 3 0

Exp. 0.1 0.1 0.3 2.8 6.7 7.1 4.6 0.6
19 Obs. 0 0 0 1 0 0 1 0 0

Exp. 0.0 0.0 0.0 0.2 0.6 0.6 0.4 0.1 0.0
>19 Obs. 0 0 0 0 1 0 0 0 0 0

Exp. 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0

Section 3 Slide 6



Testing for Hardy-Weinberg Equilibrium

A test of the Hardy-Weinberg Law will somehow decide if the

observed and expected numbers are sufficiently similar that we

can proceed as though the law can be used.

In one of the first applications of Hardy-Weinberg testing in a

US forensic setting:

“To justify applying the classical formulas of population

genetics in the Castro case the Hispanic population must

be in Hardy-Weinberg equilibrium. Applying this test

to the Hispanic sample, one finds spectacular deviations

from Hardy-Weinberg equilibrium.”

Lander ES. 1989. DNA fingerprinting on trial. Nature 339:

501-505.
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VNTR “Coalescence”

Forensic DNA profiling initially used minisatellites, or VNTR loci,

with large numbers of alleles. Heterozygotes would be scored as

homozygotes if the two alleles were so similar in length that they

coalesced into one band on an autoradiogram. Small alleles often

not detected at all, and this is a likely cause of Lander’s finding

(Devlin et al, Science 249:1416-1420.) .

Considerable debate in early 1990s on alternative “binning” strate-

gies for reducing the number of alleles (Science 253:1037-1041,

1991).

Typing has moved to microsatellites with fewer and more easily

distinguished alleles, but testing for Hardy-Weinberg equilibrium

continues. There are still reasons why the law may not hold.
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Population Structure can Cause Departure from

HWE

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Structure

Effect of population structure taken into account with the “theta-

correction.” Matching probabilities allow for a variance in allele

frequencies among subpopulations.

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

where pA is the average allele frequency over all subpopulations.

We will come back to this expression.
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Population Admixture

A population might represent the recent admixture of two parental

populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marriages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25
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Exact HWE Test

The preferred test for HWE is an “exact” one. The test rests

on the assumption that individuals are sampled randomly from

a population so that genotype counts have a multinomial distri-

bution:

Pr(nAA, nAa, naa) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

This equation is always true, and when there is HWE (PAA = p2
A

etc.) there is the additional result that the allele counts have a

binomial distribution:

Pr(nA, na) =
(2n)!

nA!na!
(pA)nA(pa)

na
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Exact HWE Test

Putting these together gives the conditional probability of the

genotypic data given the allelic data and given HWE:

Pr(nAA, nAa, naa|nA, na,HWE) =

n!
nAA!nAa!naa!

(p2
A)nAA(2pApa)nAa(p2

a)
naa

(2n)!
nA!na!

(pA)nA(pa)na

=
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this probability is un-

usually small.
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Exact HWE Test Example

Reject the HWE hypothesis if the probability of the genotypic

array, conditional on the allelic array, is among the smallest prob-

abilities for all the possible sets of genotypic counts for those

allele counts.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays:

AA Aa aa Pr(nAA, nAa, naa|nA, na,HWE)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99
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Exact HWE Test

The probability of the data on the previous slide, conditional on

the allele frequencies and on HWE, is 1/99 = 0.01. This is less

than the conventional 5% significance level.

In general, the p-value is the (conditional) probability of the data

plus the probabilities of all the less-probable datasets. The prob-

abilities are all calculated assuming HWE is true.
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Exact HWE Test

Still in the two-allele case, for a sample of size n = 100 with

minor allele frequency of 0.07, there are only 8 sets of genotype

counts:

Exact
nAA nAa naa Prob. p-value

93 0 7 0.0000 0.0000∗

92 2 6 0.0000 0.0000∗

91 4 5 0.0000 0.0000∗

90 6 4 0.0002 0.0002∗

89 8 3 0.0051 0.0053∗

88 10 2 0.0602 0.0654
87 12 1 0.3209 0.3863
86 14 0 0.6136 1.0000

So, for a nominal 5% significance level, the actual significance

level is 0.0053 for an exact test that rejects when nAa ≤ 8.
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Permutation Test

For large sample sizes and many alleles per locus, there are too

many genotypic arrays for a complete enumeration and a deter-

mination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting

the alleles among genotypes, and calculating the proportion of

these permuted genotypic arrays that have a smaller conditional

probability than the original data. If this proportion is small, the

Hardy-Weinberg hypothesis is rejected.
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Permutation Test

Mark a set of five index cards to represent five genotypes:

Card 1: A A

Card 2: A A

Card 3: A A

Card 4: a a

Card 5: a a

Tear the cards in half to give a deck of 10 cards, each with

one allele. Shuffle the deck and deal into 5 pairs, to give five

genotypes.
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Permutation Test

The permuted set of genotypes fall into one of four types:

AA Aa aa Number of times

3 0 2

2 2 1

1 4 0
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Permutation Test

Check the following theoretical values for the proportions of each

of the three types, from the expression:

n!

nAA!nAa!naa!
×

2nAanA!na!

(2n)!

AA Aa aa Conditional Probability

3 0 2 1
21 = 0.048

2 2 1 12
21 = 0.571

1 4 0 8
21 = 0.381

These should match the proportions found by repeating shuf-

flings of the deck of 10 allele cards.
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Permutation Test for D3S1358

For a STR locus, where {ng} are the genotype counts and n =
∑

g ng is the sample size, and {na} are the alleles counts with

2n =
∑

a na, the exact test statistic is

Pr({ng}|{na},HWE) =
n!2H ∏

a na!
∏

g ng!(2n)!

where H is the count of heterozygotes.

This probability for the African American genotypic counts at

D3S1358 is 0.6163 × 10−13, which is a very small number. But

it is not unusually small if HWE holds: a proportion 0.81 of 1000

permutations have an even smaller probability. We do not reject

the HWE hypothesis in this case.
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Linkage Disequilibrium

This term is generally reserved for association between pairs of

alleles – one at each of two loci. In the present context, it

may simply mean some lack of independence of profile or match

probabilities at different loci.

Unlinked loci are expected to be almost independent.

However, if two profiles match at several loci this may be because

they are from the same, or related, people and so are likely to

match at additional loci.
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Allele Matching

Forensic genetics is concerned with matching of genetic profiles

from evidence and from persons of interest. Profile match prob-

abilities rest on the probabilities of matching among the alleles

constituting the profiles.

Allele matching can refer to alleles within an individual (inbreed-

ing), between individuals within a population (relatedness) and

between populations (population structure). In all these cases

there are parameters that describe profile match probabilities,

and these parameters can be estimated by comparing the ob-

served matching for a target set of alleles with that between a

comparison set.

Section 3 Slide 23



Allele Matching Within Individuals

The inbreeding coefficient for an individual is the probability it

receives two alleles at a locus, one from each parent, that are
identical by descent.

What can be observed, however, is identity in state. An individual

is either homozygous or heterozygous at a locus: the two alleles
either match or miss-match at that locus. The proportion of
matching alleles at a locus is either zero or one, not a very

informative statistic, but the proportion of an individual’s loci
that are homozygous may be informative for their inbreeding

status.

There is still a need for a reference: for a locus such as a SNP

with a small number of alleles many loci will be homozygous
even for non-inbred individuals. Therefore we compare the pro-

portion of loci with matching alleles for an individual with the
matching proportion for pairs of alleles taken one from each of

two individuals: is allele matching higher within than between
individuals?
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Inbreeding

If M̃j is the observed proportion of loci with matching alleles (i.e.

homozygous) for individual j, and if M̃S is the observed propor-

tion of matching alleles, one from each of two individuals in the

population, then the within-population inbreeding coefficient fj
is estimated as

f̂j =
M̃j − M̃S

1 − M̃S

Note that this can be negative for individuals with high degrees

of heterozygosity.

The average of these estimates over all the individuals in a sam-

ple from a population estimates the within-population inbreeding

coefficient f :

f̂ =
M̃I − M̃S

1 − M̃S

where M̃I =
∑n

j=1 M̃j/n. Hardy-Weinberg equilibrium corre-

sponds to f = 0.
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SNP-based Inbreeding

From 400,000 SNPs on Chromosome 22 of the 1000 Genomes

ACB populations (96 Afro-Caribbeans in Barbados);

Inbreeding

Estimate
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0
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Allele Matching Between Individuals

How can we tell if a pair of individuals has a high degree of allele

matching? What does “high” mean?

We assess relatedness of individuals within a population by com-

paring their degree of allele matching with the degree for pairs

of individuals with one from each of two different populations.

Section 3 Slide 27



Allele Matching Between Individuals

If M̃jj′ is the observed proportion of loci with matching alleles,

one from each of individuals j and j′, and if M̃S is the average

of all the M̃jj′’s, then the within-population kinship coefficient

betajj′ is estimated as

β̂jj′ =
M̃jj′ − M̃S

1 − M̃S

Note that this can be negative for pairs of individuals less related

than the average pair-matching in the sample.

The average of these estimates over all pairs of individuals in a

sample is zero, but this doesn’t allow us to compare populations.
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SNP-based Coancestry

From 400,000 SNPs on Chromosome 22 of the 1000 Genomes

ACB populations (4560 pairs of Afro-Caribbeans in Barbados);
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Allele Matching Between Populations

We calibrated allele matching within individuals by comparison

with matching between pairs of individuals.

We calibrate the allele matching between pairs of individuals by

comparison with matching between pairs of populations. If M̃ ii′

is the observed proportion of loci with matching alleles, one from

each of populations i and i′, and if M̃B is the average of all the

M̃ ii′’s, then the total kinship coefficient βjj′ is estimated as

β̂jj′ =
M̃jj′ − M̃B

1 − M̃B

The average of these estimates over all pairs of individuals in a

sample from a population is

β̂ =
M̃S − M̃B

1 − M̃B

This is the “θ” needed for the “theta correction” discussed be-

low.
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Within-population Matching

We can get some empirical matching proportions when we have

a set of profiles. To simplify this initial discussion, consider

the following data for the Y-STR locus DYS390 from the NIST

database:

Population
Allele Afr.Am. Cauc. Hisp. Asian Total

20 4 1 1 0 6
21 176 4 17 1 198
22 43 45 14 17 119
23 36 116 50 17 219
24 56 145 129 21 351
25 23 46 21 36 126
26 3 2 2 4 11
27 0 0 2 0 2

Total 341 359 236 96 1032
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Within- and Between-population Matching for DYS390

Within the African-American sample there are 341×340 = 115,940

pairs of profiles and the number of between individual-pair matches

is

4×3+176×175+43×42+36×35+56×55+23×22+3×2 = 37,470

so the within-population matching proportion is 37,470/115,940 =

0.323.

Between the African-American and Caucasian samples, there are

341×359 = 122,419 pairs of profiles and the number of matches

is

4×1+176×4+43×45+36×116+56×145+23×4+3×2 = 12,403

so the between-population matching proportion is 12,403/122,419 =

0.101.
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Allele Counts in NIST Data for DYS391

Population
Allele Afr.Am. Cauc. Hisp. Asian Total

7 0 0 1 0 1
8 0 1 0 1 2
9 2 12 16 3 33
10 238 162 128 79 607
11 93 175 89 13 370
12 7 9 2 0 18
13 1 0 0 0 1

Total 341 359 236 96 1032

The within-population matching proportion for the African-American

sample is 65,006/115,940=0.561.

The between-population matching proportion for the African-

American and Caucasian samples is 54,918/122,419=0.449.
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Two-locus counts in NIST African-American Data
for DYS390, DYS391

DYS390 DYS391 Count ng ng(ng − 1)
22 10 34 1122
22 11 9 72
24 10 15 210
24 11 39 1482
24 12 1 0
24 9 1 0
23 10 19 342
23 11 14 182
23 12 3 6
21 10 157 24492
21 11 15 210
21 12 2 2
21 9 1 0
21 13 1 0
25 10 11 110
25 11 12 132
26 10 1 0
26 11 2 2
20 10 1 0
20 11 2 2
20 12 1 0
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Two-locus counts in NIST Caucasian Data for

DYS390, DYS391

DYS390 DYS391 Count ng ng(ng − 1)
22 10 43 1806
22 11 1 0
22 9 1 0
24 10 48 2256
24 11 88 7656
24 12 4 12
24 9 5 20
23 10 50 2450
23 11 60 3540
23 12 2 2
23 9 3 6
23 8 1 0
21 10 3 6
21 11 1 0
25 10 18 306
25 11 22 462
25 12 3 6
25 9 3 6
26 11 2 2
20 11 1 0
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Two-locus Matches

The within-population matching proportion for the African-American

sample is 28,366/115,940=0.245.

The within-population matching proportion for the Caucasian

sample is 18,536/128,522=0.144.

The between-population matching proportion for the African-

American and Caucasian samples is 8,347/122,419=0.068.

There is a clear decrease in matching between populations from

within populations.
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Will match probabilities keep decreasing?

Ge et al, Investigative Genetics 3:1-14, 2012.

Section 3 Slide 37



Will match probabilities keep decreasing?

How do these match probabilities address the observation of

Donnelly:

“after the observation of matches at some loci, it is rel-

atively much more likely that the individuals involved are

related (precisely because matches between unrelated in-

dividuals are unusual) in which case matches observed at

subsequent loci will be less surprising. That is, knowl-

edge of matches at some loci will increase the chances

of matches at subsequent loci, in contrast to the inde-

pendence assumption.”

Donnelly P. 1995. Heredity 75:26-64.
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Are match probabilities independent over loci?

Is the problem that we keep on multiplying match probabilities

over loci under the assumption they are independent? Can we

even test that assumption for 10 or more loci?

Or is our standard “random match probability” not the appro-

priate statistic to be reporting in casework? Is it actually appro-

priate to report statements such as

The approximate incidence of this profile is 1 in 810 quin-

tillion Caucasians, 1 in 4.9 sextillion African Americans

and 1 in 410 quadrillion Hispanics.
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Putting “match” back in “match probability”

Let’s reserve “match” for a statement we make about two pro-

files and take “match probability” to mean the probability that

two profiles match. This requires calculations about pairs of

profiles.

If the source of an evidence profile is unknown (e.g. is not the

person of interest), then the match probability is the probability

this unknown person has the profile already seen in the POI. No

two profiles are truly independent, and their dependence affects

match probabilities across loci.
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Likelihood ratios use match probabilities

As with many other issues on forensic genetics, the issue of multi-

locus match probability dependencies is best addressed by com-

paring the probabilities of the evidence under alternative propo-

sitions:

Hp: the person of interest is the source of the evidence

DNA profile.

Hd: an unknown person is the source of the evidence

DNA profile.

Write the profiles of the POI and the source of the evidence as

Gs and Gc. The evidence is the pair of profiles Gc, Gc.
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Likelihood ratios use match probabilities

The likelihood ratio is

LR =
Pr(E|Hp)

Pr(E|Hd)

=
Pr(Gc, Gs|Hp)

Pr(Gc, Gs|Hd)

=
1

Pr(Gc|Gs, Hd)

=
1

Match probability

providing Gc = Gs under Hp. The match probability is the chance

an unknown person has the evidence profile given that the POI

has the profile: this is not the profile probability.
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Empirical dependencies: 2849 20-locus profiles
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