
Section 10: Other Techniques



Next Generation Sequencing

The introduction of Next Generation Sequencing (NGS) added a

new dimension to the field of forensic genetics, providing distinct

advantages over traditional CE systems in terms of captured

information.

Locus Allele number Allele sequence
D3S1358 15 [TCTA][TCTG]3[TCTA]11
D3S1358 15 [TCTA][TCTG]2[TCTA]12
D18S51 20 [AGAA]20
D18S51 20 [AGAA]16GGAA[AGAA]3

NGS is also referred to as Massively Parallel Sequencing (MPS),

Second Generation Sequencing (SGS) or High-Throughput (HTP)

sequencing.
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NGS Workflow

By far the biggest player in the field of sequencing instruments is
Illumina. Their workflow includes four basic steps:

Source: An Introduction to NGS Technology (Illumina, 2015).
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NGS Workflow

The first three steps of the workflow consist of:

• Library preparation: A DNA sample gets fragmented and

adapters are added to both fragment ends, after which a

library is obtained through PCR amplification.

• Cluster generation: Each fragment bounds to the surface

of a flow cell and is amplified through bridge amplification,

resulting in a cluster that will produce a single sequencing

read.

• Sequencing: Base calls are made per cluster using fluores-

cently labeled and reversible terminator-bound nucleotides.
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NGS Data Output

The most common format for storing the output of NGS instru-

ments is a text-based FASTQ file. In addition to the observed

sequence string, the file also lists its corresponding quality score,

representing an estimate by the base calling software of the

potential error at each sequence position.
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NGS Data

Results from sequencing platforms usually entail raw data, and
need to be translated into information suitable for further (statis-
tical) analysis.

• Software tools are available that align the reads to a reference
sequence (alignment);

• Detect variations in the individual’s genome (variant calling);

• And annotate the data using external information, resulting
in a summarized data structure (annotation).

Instead of aligning to a reference sequence, sequence-searching
techniques can be used that will use flanking sequences to detect
STRs.
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NGS Data Output

STRait Razor is an example of a sequence-searching technique,

and produces output that looks as follows:
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NGS Data Output

NGS output can be annotated further based on method response
categories:

Source: A technique for setting analytical thresholds in MPS-based forensic DNA analysis
(Young et al., 2017).

NGS data makes it easier to classify products, when compared
with CE data.
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NGS Data Output

A DNA profile can be visualized similar to an epg:
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NGS Data Output

A DNA profile can be visualized similar to an epg:
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NGS Considerations

• Reads vs. peaks (discrete vs. continuous data)

• Discovery of previously unknown alleles and more variability

• New system of nomenclature needed

• Direction of strand reporting

Source: https://www.khanacademy.org/science/biology/dna-as-the-genetic-material/
dna-replication/a/molecular-mechanism-of-dna-replication.
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Length-based Allele Callings

NGS data mainly leads to a gain in discrimination for compound

and complex STRs, although this will be minimal for already

highly polymorphic loci.
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LB vs. SB Allele Callings

Locus Penta E is already quite polymorphic, so NGS data does not

lead to significant improvements. For locus D8S1179, sequencing

leads to a substantial increase in variability.
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Sequence-based Allele Callings
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Flanking Region SNPs

Additional variation has been found in the flanking regions adja-

cent to repeat motifs.

Source: Forensic DNA Evidence Interpretation (Buckleton et al., 2016).

For STR loci in which repeat regions do not display sequence dif-

ferences, flanking region SNPs may still add substantial variability.

Knowledge of these variants can be utilized in primer design to

ensure optimal positioning during the PCR process.

Locus LB Allele SB Allele SB Allele with SNPs
D16S539 11 [GATA]11 [GATA]11rs11642858[A]
D16S539 11 [GATA]11 [GATA]11rs11642858[C]
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Observed Sequence Variation

STR sequence variation divided in length variation, additional

sequence variation, and SNP variation:

Source: Massively parallel sequencing of short tandem repeats (van der Gaag et al., 2016).
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NGS Modeling

New models need to be developed and implemented to accommo-

date NGS data, with the ultimate goal of developing a probabilistic

approach for NGS mixture interpretation.

CE-based models can be used as a basis for NGS modeling. Both

methods make use of the PCR process, so it is expected that

artifacts such as stutter are similar.

However, peak heights need to be substituted with read counts

and the remaining biological processes differ. This will materially

affect the modeling parameters.
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NGS Stutter Modeling

NGS data generally show higher stutter percentages than CE data.

Illumina’s ForenSeq uses the following thresholds (compared with

Thermo Fisher’s NGM Select Kit for CE data):

Stutter Filter (%)
Locus CE NGS
TH01 5 10
D2S441 9 7.5
vWA 11 22
FGA 11.5 25
D12S391 15 33
D22S1045 17 20
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Multi-sequence Stutter Model

A multi-sequence model takes into account all uninterrupted

stretches (AUS) as potentially contributing to stuttering.

Allele Repeat motif
21.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]11G AAGG[AAAG]2AG
21.2 [AAAG]2AG[AAAG]3AG[AAAG]11AA AAAG[AAAG]9G AAGG[AAAG]2AG
22 [AAAG]2AG[AAAG]3AG[AAAG]22G[AAAG]3AG

22.2 [AAAG]2AG[AAAG]3AG[AAAG]7AA AAAG[AAAG]14GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]8[AG]5[AAAG]12GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]12GAAGG[AAAG]2AG

Examples of locus SE33 sequences.

SR ∼ AUS ⇒ SR = m
∑
i

max (li − x,0) + c,

where li is the length of sequence i, and m, c and x are constants.

The term x is called the lag, and can be interpreted as the number

of repeats before stuttering begins.
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Multi-sequence Stutter Model for SE33

SR = m
∑
i

max (li − 6.11,0) + c
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Stutter Modeling and Sequence Variation

What about variation that is suggested to be attributable to
sequence motif?

Stutter ratios for locus D2S1338.

Models fitted based on AUS still left some variability unexplained
for some loci.
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NGS Stutter Modeling - Sequence Variation

A slightly different model can allow for the sequence variations:

SR ∼ AUS + motif ⇒ SR = m
∑
i

max (li − x,0) + (c+ bj),

with bj a constant for sequence variation (or motif) j. This

effectively scales the regression line somewhat up or down.

Section 10 Slide 22



NGS Stutter Modeling - Sequence Variation

Stutter ratio model for locus D2S1338.
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NGS Stutter Modeling - Sequence Variation

Alternatively, an interaction term can be introduced to allow for

different slopes per motif:

SR ∼ AUS×motif

SR = (m+ fj)
∑
i

max (li − x,0) + (c+ bj),

with bj and fj constants depending on the motif.
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NGS Stutter Modeling - Sequence Variation

Stutter ratio model for locus D2S1338.

The added value seems only marginal at the expense of a more
complicated model.
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NGS Stutter Modeling

With the sequence variations now in hand, it is possible to decom-

pose certain stutter affected heterozygotes, composite stutter

and regular stutter products.

For locus TH01, for example, there are two possible (back) stutter

products:

Product LB Allele SB Allele
A 8.3 [AATG]6ATG[AATG]2
B 8.3 [AATG]5ATG[AATG]3
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NGS Stutter Modeling

The total expected stutter count is now the sum of the two

stutter products:

Product LB Allele SB Allele
A 8.3 [AATG]6ATG[AATG]2
B 8.3 [AATG]5ATG[AATG]3

E(a−1) = φAEA + φBEB,

with φA and φB the proportion of stutter product A and B,

respectively.

These proportions will likely reflect previous observations (e.g.

longer sequences stutter more, but not all stutter come from the

LUS).
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NGS Stutter Modeling

Recall the definition of the stutter ratio:

SR =
Oa−1

Oa
=
OA +OB

Oa
=
OA
Oa

+
OB
Oa

Instead of modeling stutter per parental allele, you can also model

the ratios per different stutter sequence. This was not possible

for CE data.

Category Allele Sequence Count SR
Allele 9.3 [AATG]6ATG[AATG]3 100 0.25
Stutter 8.3 [AATG]6ATG[AATG]2 5 0.05
Stutter 8.3 [AATG]5ATG[AATG]3 20 0.20
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NGS Stutter Modeling - BLMM Model

Model stutter per stutter sequence instead of parental allele,

based on the block length of the missing motif (BLMM).

Category Allele Sequence BLMM
Allele 9.3 [AATG]6ATG[AATG]3 −
Stutter 8.3 [AATG]6ATG[AATG]2 3
Stutter 8.3 [AATG]5ATG[AATG]3 6

A linear model can be fitted with intercept through (1,0), based

on the idea that stutter can occur only after the first repeat.

SR′ = β(BLMM− 1)

This also avoids the problem of predicting negative stutter ratios.

Source: Stutter analysis of complex STR MPS data (Vilsen et al., 2018).
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NGS Stutter Modeling - BLMM Model

In addition, you can also consider models depending on the

missing motif.

· · · AATG AATG AATG ATG AATG AATG AATG

· · · AATG AATG A--- -TG AATG AATG AATG

The missing motif is in this case ATGA for a BLMM of 6.

SR′ = βmotif(BLMM− 1)
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NGS Stutter Modeling - BLMM Model

Stutter ratio model for locus D12S391.

The larger stutter ratios result from stutter from the LUS of the

parental allele. The missing motif is in this case a good indicator

for the split.
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NGS Stutter Modeling - BLMM Model

Missing motif sometimes corresponds with sequence variation,

but this is not always the case.

Stutter ratio model for locus SE33.

Section 10 Slide 32



NGS Stutter Modeling - Discussion

• How to determine variation?

• What about micro-variants?

• What about the possible influence from flanking variation?

• What about dependencies between stretches?
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NGS Population Structure

Likelihood ratios use match probabilities, which rely on appropriate

estimation of the population structure parameter θ. Values of

1%− 3% are common in forensic DNA evidence evaluations.

When implementing NGS-based methods, the effect of sequence

data on θ estimates needs to be analyzed.

Allele and/or genotype matching between individuals within and

between populations can help us assess relative relatedness1.

1 Population-specific FST values for forensic STR markers: A worldwide survey (Buckleton
et al., 2016).
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NGS Population Structure

Length-based genotype matching gives M̃S = 0.2104 and M̃B =

0.1914, while sequence-based genotype matching gives M̃S =

0.1873 and M̃B = 0.1666. These results suggest using a slightly

greater θ value for NGS data as compared to CE data (β̂ST =

0.0235 vs. β̂ST = 0.0248).
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NGS Cases
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Duplex Sequencing

Most NGS approaches have a relatively high error rate and are

therefore not suitable for detecting in vivo mutations. To over-

come this limitation, a highly sensitive sequencing methodology

termed Duplex Sequencing (DS) has been developed.

• DNA fragments get labeled with their own unique tag;

• After PCR amplification, each group yields one consensus

sequence;

• Two complementary consensus sequences, derived from the

same fragment, are then compared to yield a ‘duplex consen-

sus sequence’.

Source: Detecting ultralow-frequency mutations by Duplex Sequencing (Kennedy et al.,
2014).
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Duplex Sequencing

Only true mutations will appear in both duplex sequences, while

PCR-related artifacts will be eliminated when establishing the

final consensus sequence.

Source: Detecting ultralow-frequency mutations by Duplex Sequencing (Kennedy et al.,
2014).
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Microhaplotypes

Instead of looking at individual SNPs, it has been suggested that

combining multiple SNPs into a microhap that renders highly

informative for forensic purposes.

Although microhaps are more sensitive, the absence of stutter

yields an increase in potential for mixture deconvolution. SNPs

are also shown to be correlated with physical phenotypic traits,

information the STRs cannot provide.

To make the use of microhaps feasible for forensic purposes,

however, backward compatibility is required with CE data. This

might be established through record linkage, based on STR

inference from SNP data.

Source: Criteria for selecting microhaplotypes: mixture detection and deconvolution (Kidd
& Speed, 2015).
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Protein-Based Human Identification

Whereas DNA is prone to degradation, protein is chemically more

robust and can persist for longer periods.

Protein contains genetic variation in the form of single amino acid

polymorphisms (SAPs), resulting in a genetically variant peptide

(GVP), which can be used to infer SNP profiles, regardless of

the presence of DNA template in the sample.

Protein-based methodologies therefore have the potential to

provide a complementary and, if necessary, alternative method

for use in forensic practice in cases where DNA is absent or not

sufficiently informative.

Source: Demonstration of Protein-Based Human Identification Using the Hair Shaft Pro-
teome (Parker et al., 2016).

Section 10 Slide 40



Protein-Based Human Identification

Certain sections of DNA, called exons, are coded for a protein,

i.e. a macro-molecule consisting of one or more long chains of

amino acid residues performing a vast array of functions within

organisms. Two steps are required to read the information

encoded in a gene’s DNA and produce the protein it specifies:

• Transcription: produces nucleotide sequences complemen-

tary to the DNA from which it is transcribed, known as

messenger RNA (mRNA);

• Translation: is the process by which a mRNA molecule is

used as a template for synthesizing a new protein.
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Protein-Based Human Identification

During translation, the genetic code is read three nucleotides at

a time, in units called codons, which correspond to an amino

acid.

Source: https://en.wikipedia.org/wiki/Gene

Since there are 64 possible codons (four possible nucleotides at

each of the three positions) and only 20 standard amino acids,

multiple codons can specify the same amino acid.
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Protein-Based Human Identification

Amino Acid Codes Codons

Alanine Ala A GCT, GCC, GCA, GCG
Cysteine Cys C TGT, TGC
Aspartic acid Asp D GAT, GAC
Glutamic acid Glu E GAA, GAG
Phenylalanine Phe F TTT, TTC
Glycine Gly G GGT, GGC, GGA, GGG
Histidine His H CAT, CAC
Isoleucine Ile I ATT, ATC, ATA
Lysine Lys K AAA, AAG
Leucine Leu L CTT, CTC, CTA, CTG, TTA, TTG
Methionine (start) Met M ATG
Asparagine Asn N AAT, AAC
Proline Pro P CCT, CCC, CCA, CCG
Glutamine Gln Q CAA, CAG
Arginine Arg R CGT, CGC, CGA, CGG, AGA, AGG
Serine Ser S TCT, TCC, TCA, TCG, AGT, AGC
Threonine Thr T ACT, ACC, ACA, ACG
Valine Val V GTT, GTC, GTA, GTG
Tryptophan Trp W TGG
Tyrosine Tyr Y TAT, TAC
Stop codons − − TAA, TAG, TGA
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Protein-Based Human Identification

It is well-known that human variation is caused by mutations

(during DNA replication), leading to polymorphism, i.e. the pres-

ence of multiple different alleles in a gene. Most variants are

functionally equivalent, although some can give rise to differences,

e.g. in phenotypic traits.

Mutations in coding regions compromise less than 2% of all

genetic variation, and can be divided into two types:

• Synonymous mutations

• Nonsynonymous mutations
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Protein-Based Human Identification

Synonymous mutations: Around 30% of mutations do not

change the amino acid sequence, as a result of multiple codons

encoding the same amino acid. A silent mutation does not affect

the individual’s fitness, whereas non-neutral changes involve sub-

optimal synonyms (i.e. codons that translate less efficiently).

Nonsynonymous mutations: A mutation may also lead to an

alteration of the amino acid sequence of the protein, with 10%

resulting in nonsense mutations (e.g. a premature stop codon

and consequently nonfunctional protein product). The remaining

60% are missense mutations and are of most relevance to this

program.
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Protein-Based Human Identification

When a mutation involves the substitution of one base for an-
other, it is called a single nucleotide polymorphism (SNP). A
nonsynonymous SNP (nsSNP) leads to an altered amino acid,
called a single amino acid polymorphism (SAP), which in turn re-
sults in a peptide (i.e. a relatively short amino acid chain, smaller
than proteins) containing a SAP, a so-called genetically variant
peptide (GVP).
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Protein-Based Human Identification

Proteomic data sets can be obtained by analyzing samples via

liquid chromatography mass spectrometry (LC/MS), resulting in

a peptide fragment spectrum.
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Protein-Based Human Identification

The obtained spectrum can be compared to protein reference

databases to identify the protein and underlying peptide sequence.

Peptides containing candidate GVPs need to be filtered to reduce

false positive assignments. The accepted SAPs can then be used

to impute nsSNPs.

Protein SAP nsSNP REF/GVP Allele

HEXB I207V rs10805890 GILIDTSR A
GILVDTSR G

KRT32 T395M rs2071563 LEGEINTYR G
LEGEINMYR A

KRT32 R280H rs72830046 CQYEAMVEANRR C
CQYEAMVEANHR T
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Protein-Based Human Identification

Source: Demonstration of Protein-Based Human Identification Using the Hair Shaft Pro-
teome (Parker et al., 2016).
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