
Section 4: DNA Interpretation and Modeling



DNA Interpretation and Modeling

• Thresholds

• Weight of evidence

• LR calculations

• LR modeling
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Thresholds

The most straightforward way to interpret an STR profile is with

the use of thresholds.

• High thresholds: will reduce the number of artifacts and

remove a lot of background noise. However, it may potentially

lead to a number of drop-outs.

• Low thresholds: will detect more authentic alleles, but have

a higher probability of showing drop-ins.
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Thresholds

An analytical threshold (AT) is usually set as a limit above which
method response is interpreted as an authentic allele.

Additional stutter thresholds can help improve mixture profile
interpretation (e.g. 5− 15% of the main allele).
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Weight of Evidence

An STR profile obtained from a crime scene sample can be

compared to a person of interest, and it may be found that this

person cannot be excluded. An ‘inclusion’ may be reported, but

is practically worthless without some expression on the strength

of this evidence.
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The Island Problem

Suppose there is a crime committed on a remote island with a

population of size 101. A suspect Q is found to match the crime

scene profile. What is the probability that Q is the source of the

profile, assuming that:

• All individuals are equally likely to be the source.

• The DNA profiles of all the other individuals are unknown.

• We expect 1 person in 100 to possess this observed profile.

Source: Weight-of-Evidence for Forensic DNA Profiles (Balding & Steele, 2015)
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The Island Problem - Solution

In addition to Q, we expect one other individual on the island to

match. So, even though the profile is rare, there is only a 50%

chance that Q is the source.

Individuals: 101

Source: 1 Not source: 100

Matching: 2

100% TP 1% FP
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The Island Problem - Odds Version

Recalling the odds form of Bayes’ theorem:

Pr(Hp|E)

Pr(Hd|E)
=

Pr(E|Hp)
Pr(E|Hd)

×
Pr(Hp)

Pr(Hd)
,

with

Pr(Hp) =
1

101
Pr(E|Hp) = 100%

Pr(Hd) =
100

101
Pr(E|Hd) = 1%,

yielding prior odds of 1
100 and a likelihood ratio of 100. Combining

this gives posterior odd of 1, or equivalently, a 50%/50% chance.
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The Island Problem - Odds Version

A more general formula can be derived by writing:

Pr(Hp|E) =
Pr(E|Hp) Pr(Hp)

Pr(E|Hp) Pr(Hp) + Pr(E|Hd) Pr(Hd)

=
1

1 + Pr(E|Hd)
Pr(E|Hp)

Pr(Hd)
Pr(Hp)

Note that it is assumed that Hp and Hd are mutually exclusive

and collectively exhaustive.
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The Island Problem - Odds Version

When N denotes the number of individuals on the island other

than the suspect, and p is the profile probability of the observed

DNA sample:

Pr(Hp|E) =
1

1 +Np

Extreme oversimplification of assessing the weight of evidence:

• Uncertainty about N and p

• Effect of searches, typing errors, other evidence

• Population structure and relatives
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The Island Problem - Searches

Now suppose Q was identified through a search, with the suspect

being the only one among 21 tested individuals who matches the

crime scene profile.

• How does this knowledge affect the probability of being the

source?

• What is the general expression for the probability of being

the source, using k for the number of individuals who have

been excluded?
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The Island Problem - Searches

In this case we can exclude individuals from our pool of possible

donors, such that our prior odds will slightly increase.

Out of the N−k = 80 individuals, we expect another 0.8 matches,

yielding a probability of being the source of 1/1.8 ≈ 56%. Or, in

formula:

Pr(Hp|E) =
1

1 + (N − k)p
,

where setting k = 0 gives the original expression and k = N gives

Pr(Hp|E) = 1.
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Likelihood Ratio

As seen previously, the forensic scientist is concerned with assign-

ing the likelihood ratio

LR =
Pr(GC|GS, Hp, I)

Pr(GC|GS, Hd, I)
,

which is equivalent to the reciprocal of the profile probability for

the island problem:

LR =
1

Pr(GC|Hd, I)
=

1

p
,

although we observed that the match probability is a more relevant

quantity:

LR =
1

Pr(GC|GS, Hd, I)
.
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Match Probabilities

Recall the match probabilities for homozygotes:

Pr(AA|AA) =
[3θ + (1− θ)pA][2θ + (1− θ)pA]

(1 + θ)(1 + 2θ)

= p2
A (if θ = 0),

and for heterozygotes:

Pr(AB|AB) =
2[θ + (1− θ)pA][θ + (1− θ)pB]

(1 + θ)(1 + 2θ)

= 2pApB (if θ = 0).
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LR for a Single Locus

Consider a simple two-person mixture profile (e.g. contributors

are unrelated, ignoring population structure, no drop-outs/drop-

ins), where GC = ABCD. What is the appropriate single-locus

LR (assuming HWE and pA, pB, pC and pD are known) when:

• GS = AB and GK = CD, with

Hp : K + POI (S) and Hd : K + Unknown (U)

• GS = AA and GK = CD, with:

Hp : K + S and Hd : K + U

• GS = AB and the second contributor is unknown

Hp : S + U and Hd : 2U
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LR for a Single Locus

Consider a simple two-person mixture profile (e.g. contributors

are unrelated, ignoring population structure, no drop-outs/drop-

ins), where GC = ABCD. What is the appropriate single-locus

LR (assuming HWE and pA, pB, pC and pD are known) when:

• LR =
Pr(ABCD|AB,CD,Hp)

Pr(ABCD|CD,Hd)
= 1

2pApB
;

• LR =
Pr(ABCD|AA,CD,Hp)

Pr(ABCD|CD,Hd)
= 0;

• LR =
Pr(ABCD|AB,Hp)

Pr(ABCD|Hd)
= 2pCpD

6·4pApBpCpD
= 1

12pApB
.
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LR Modeling

Different approaches can be used to assess the likelihood ratio:

• Binary model

• Semi-continuous model

• Continuous model
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Binary Model

A binary model limits interpretation of DNA profiles to qualitative

allele callings only, without any attempt to infer the underlying

genotypes (i.e. each are regarded as equally likely).

Just as in our previous example, single-locus LRs can be calculated

and combined across loci via multiplication.
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Semi-continuous Model

A semi-continuous model retains the simplicity of binary meth-

ods, but combines this with probabilistic modeling of known

phenomena such as drop-ins and drop-outs.

Since these models still suffer from a significant loss of informa-

tion, a more quantitative approach might be preferred.

Ideally, a statistical framework utilizes as much available quantita-

tive information as possible, while maintaining comprehensibility.
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Semi-continuous Model

The semi-continuous model will be of value when quantitative

data is not available (e.g. old cases may only consist of allelic

profiles).

Until now we have assumed that the definition of a match is clear.

In practice, however, Pr(E|Hp) 6= 1.

Alleles carried by (hypothesized) contributors may not be detected

in the evidence or vice versa. Drop-out and drop-in probabilities

allow us to consider such situations.
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Semi-continuous Model - Drop-out

For simplicity, consider a single-source profile evaluated while

allowing for drop-out only in the crime scene profile GC, as it will

commonly be the stain that is of limited quantity or quality.

Two drop-out probabilities are usually considered: the probability

D that an allele of a heterozygote drops out and the probability

D2 that both alleles of a homozygote drop out, with D2 < D2.

Assuming that drop-out is independent over alleles and markers,

for GC = A and GS = AB the LR becomes:

LR =
Pr(GC|GS, Hp)
Pr(GC|GS, Hd)

=
D(1−D)

(1−D2)PAA +D(1−D)
∑
Q 6=A PAQ
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Semi-continuous Model - Drop-out

Other LRs can be constructed in a similar fashion:

Pr(GC|GS, Hp)
GC GS = AB GS = AA Pr(GC|GS, Hd)

A D(1−D) 1−D2 (1−D2)PAA +D(1−D)
∑
Q 6=A PAQ

AB (1−D)2 0 (1−D)2PAB
∅ D2 D2 D2 ∑

Q PQQ +D2 ∑
QQ′ PQQ′

Omitting loci where no data has been observed in the crime

scene profile would only be acceptable if LR ≥ 1, which is not

true in general. Ignoring such loci may raise concern that those

potentially fail to exclude non-contributors.
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Semi-continuous Model - Drop-in

Let C denote the probability that a single allele has dropped in

at a particular locus. If drop-ins at different loci are mutually

independent and furthermore also independent of any drop-outs:

Pr(GS → GC)
GC GS = AB GS = AA

A D(1−D)(1− C) 1−D2(1− C)
AB (1−D)2(1− C) (1−D2)Cp∗B
AQ D(1−D)Cp∗Q (1−D2)Cp∗Q
ABQ (1−D)2Cp∗Q 0

Q D2Cp∗Q D2Cp
∗
Q

∅ D2(1− C) D2(1− C)

Literature usually interprets p∗Q as the allele frequency of allele Q,

estimated as the sample frequency or a variation while allowing

for sampling uncertainty.
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Semi-continuous Model - Drop-in

LRs can now be constructed for different scenarios. For GC = A

and GS = AB:

• Under Hp, Pr(GC|GS, Hp) = Pr(AB → A)

• Under Hd, GS can be AA,AQ,QQ or QQ′ with Q,Q′ 6= A such

that Pr(GC|GS, Hd) = Pr(AA → A)PAA +
∑
Q 6=A[Pr(AQ →

A)PAQ + Pr(QQ→ A)PQQ] +
∑
Q,Q′ 6=APr(QQ′ → A)PQQ′

Multiple drop-ins in a profile may be better interpreted as an

additional (unknown) contributor.
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Estimating Drop-in and Drop-out Probabilities

Drop-in and drop-out probabilities may be assigned by the forensic
laboratory.

• Several models have been proposed for modeling drop-out
probabilities, such as a multidose drop-out model and degra-
dation model. Laboratory trials can be used to choose α when
modeling D2 = αD2, with 0 < α ≤ 1. Instead of assigning
probabilities to the drop-out rate they can be integrated out
over a range of values1.

• In case of independence, only a single drop-in probability C

is needed, which may be calculated based on observations
from negative controls: C = x

NL, where x is the number of
observed drop-ins in N profiles over L loci.

1 Accurate assessment of the weight of evidence for DNA mixtures by integrating the likeli-
hood ratio (Slooten, 2017).
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Continuous Model

The key point of a fully continuous model is that it considers
peak heights as a continuous variable.

Weights Weights
Donor 1 Donor 2 (Qualitative) (Quantitative)

20,21 22,24 1 0.05
20,22 21,24 1 0.05
20,24 21,22 1 0.75
21,22 20,24 1 0.05
21,24 20,22 1 0.05
22,24 20,21 1 0.05
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Peak Height Modeling

Peak heights can be modeled by defining the total allelic product
(TAP), which will be a function of

• the template amount tn;

• a measure of degradation dn;

• a locus-specific amplification efficiency Al;

• a replicate multiplier Rr;

• and allele dosage Xl
an.

T larn then describes the TAP of allele a at locus l, for replicate r

from contributor n.
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TAP Modeling

Theoretically, the previous slide models the peak heights, but in

practice, we will observe slightly different values. This is because

we haven’t incorporated the concept of stutter yet.

If we allow for back stutter and forward stutter, we can write:

Ta = Oa−1 +Oa +Oa+1.

Section 4 Slide 28



Stacking

Note that we assume that expected peak heights are additive, i.e.

if there are multiple sources of a single allele, the height of that

allele will equal the sum of the individual expected heights from

each source.

This assumption of additivity is called stacking.

Recent talks (Rudin, AAFS 2017) emphasize that this assump-

tion has not been validated. To determine if this practice is

scientifically supportable, it would be good to obtain a large set

of mixtures from known profiles to look at the expected combined

versus observed combined peak heights.
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Modeling Degradation

A simple model for degradation would be a linear model, i.e. peak

heights decline constantly with respect to molecular weight.

If we assume that the breakdown of a DNA strand is random with

respect to location, an exponential model seems more reasonable.
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Modeling Degradation

• Consider a DNA fragment of length l.

• Let p be the probability of a break at any of the locations

1, . . . , l.

• The chance of the full fragment being amplified is (1− p)l.

• This describes an exponential decline in peak heights.

Source: Forensic DNA Evidence Interpretation (Buckleton et al., 2016).
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Modeling Degradation
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Modeling Degradation

Source: Degradation of Forensic DNA Profiles (Bright et al., 2013).
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Modeling Degradation

Source: Degradation of Forensic DNA Profiles (Bright et al., 2013).
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Modeling Heterozygote Balance

The heterozygote balance (Hb) is usually expressed as a peak

height ratio, i.e. the ratio of two heterozygote peaks at a locus.

There are two common definitions:

Hb1 =
OHMW

OLMW
, and Hb2 =

Osmaller

Olarger
,

where O is the observed peak height; smaller and larger refer to

the height of the alleles, and HMW and LMW refer to the higher

and lower molecular weight allele, respectively.
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Modeling Hb

Hb1 =
OHMW

OLMW

=
620

800
= 0.775

= Hb2

• Hb1 has the highest information content, because it maintains

peak order.

• Hb2 may be obtained from Hb1, but not vice versa.
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Modeling Hb

The following figure shows Hb rates versus the average peak

height (APH), which is simply the average of two observed

heterozygote alleles at a locus.
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Stutter Modeling

Stutter modeling becomes especially important in case of mix-

tures, when a true (minor) contributor’s alleles are approximately

the same height as stutter products from the major contributor.

Stutter is typically modeled by a stutter ratio (SR):

SR =
Oa−1

Oa
,

where Oa−1 refers to the observed peak height of the back stutter

of parent peak Oa.
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Stutter Modeling

As we’ve seen earlier, stutter thresholds can be set to help

interpret a mixture profile. Locus-specific thresholds account for

the variability observed between loci. Traditionally, fixed rates of

around 15% are used to remove stutter.

Locus Stutter Filter (%)
TH01 5
D2S441 9
vWA 11
FGA 11.5
SE33 15
D22S1045 17

However, fixed stutter thresholds have the disadvantage that they

do not incorporate the well-known stutter characteristics (such

as the correlation with the number of repeats).
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Stutter Modeling - Locus Specific Thresholds

Source: Implementation and validation of an improved allele specific stutter filtering
method for epg interpretation (Buckleton et al., 2017).
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Stutter Modeling - Locus Specific Thresholds

Fixed stutter thresholds lead to over filtering and under filtering:

• Over filtering: leads to potential data loss and difficulties in

interpretation when true allelic peaks of a minor contributor

get filtered.

• Under filtering: leads to the possibility that stutter peaks

are treated as allelic, and difficulties in determining genotypes

for a minor contributor and the number of contributors.
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Stutter Modeling - Allele Specific Thresholds

Source: Implementation and validation of an improved allele specific stutter filtering
method for epg interpretation (Buckleton et al., 2017).
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Stutter Modeling - Thresholds

These observations suggest that stutter thresholds should not only

be locus-based, but at a minimum also allele-based. Moreover:

• Thresholds do not account for more complex situations such

as composite stutter;

• And still result in a binary decision (i.e. the peak is either

ignored or labeled as allelic).

Fully continuous models have the potential to overcome such

problems, since there is no need for thresholds within a proba-

bilistic approach.
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Stutter Modeling - Allele Model

A simple linear, allele specific, model can be fitted for each locus:

SR ∼ Allele number ⇒ SR = ma+ c,

with a the allele number, and m and c are constants that can be

fitted to the data.

An R-squared measure (R2) can be used to measure how close

the data are fitted to the regression line.
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Stutter Modeling - Allele Model

The following figure shows locus D18S51 with a fitted model of
SR = 0.013a− 0.07 (R2 = 85%).
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Stutter Modeling - Allele Model

But this does not seem to work for all loci:

Locus TH01
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Stutter Modeling - LUS

Such observations suggested that there exists a linear relationship

between stutter ratio and the longest uninterrupted stretch (LUS).

Repeat motif Allele LUS
[AATG]6 6 6
[AATG]7 7 7
[AATG]8 8 8
[AATG]9 9 9

[AATG]6ATG[AATG]3 9.3 6

Common TH01 allele sequences.
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Stutter Modeling - LUS Model

A model based on the LUS can be fitted as follows:

SR ∼ LUS ⇒ SR = ml + c,

with l the LUS, and m and c are constants that can be fitted to

the data.
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Stutter Modeling - LUS Model

Locus TH01 allele vs. LUS
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Stutter Modeling - LUS Model

What about more complex loci?
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Stutter Modeling - AUS

It seems like the LUS still leaves some of the stutter variation
unexplained. A multi-sequence model takes into account all
uninterrupted stretches (AUS) as potentially contributing to
stuttering.

Allele Repeat motif
21.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]11G AAGG[AAAG]2AG
21.2 [AAAG]2AG[AAAG]3AG[AAAG]11AA AAAG[AAAG]9G AAGG[AAAG]2AG
22 [AAAG]2AG[AAAG]3AG[AAAG]22G[AAAG]3AG

22.2 [AAAG]2AG[AAAG]3AG[AAAG]7AA AAAG[AAAG]14GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]8[AG]5[AAAG]12GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]12GAAGG[AAAG]2AG

Examples of locus SE33 sequences.

SR ∼ AUS ⇒ SR = m
∑
i

max (li − x,0) + c,

where li is the length of sequence i, and m, c and x are constants.
The term x is called the lag, and can be interpreted as the number
of repeats before stuttering begins.
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Stutter Modeling - AUS Model

SR = m
∑
i

max (li − 6.11,0) + c
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Stutter Modeling - AUS Model

How to determine the length of the stretches for CE data?

Allele Repeat motif
21.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]11G AAGG[AAAG]2AG
21.2 [AAAG]2AG[AAAG]3AG[AAAG]11AA AAAG[AAAG]9G AAGG[AAAG]2AG
22 [AAAG]2AG[AAAG]3AG[AAAG]22G[AAAG]3AG

22.2 [AAAG]2AG[AAAG]3AG[AAAG]7AA AAAG[AAAG]14GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]8[AG]5[AAAG]12GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]12GAAGG[AAAG]2AG
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Stutter Modeling - AUS Model

What about variation that is suggested to be attributable to
sequence motif? Models fitted based on AUS still left some
variability unexplained for some loci.

Stutter ratios for locus D2S1338.
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Stutter Modeling

• Note that for simple repeats there is no difference between

the three approaches:

[AATG]8 ⇒ Allele nr = LUS = AUS = 8

• What about other stutter products?

We can model forward stutter as well, and can now use these

expectations to decompose peak heights (e.g. for composite

stutter or stutter affected heterozygotes).

However, the occurrence of artifacts such as double back and

2bp stutter is likely to be so rare that modeling them statistically

can hardly be justified.
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Forward Stutter Modeling

Forward stutter can be quantified by a stutter ratio as well (FSR):

FSR =
Oa+1

Oa
,

where Oa+1 refers to the observed peak height of the forward
stutter of parent peak Oa.

Forward stutter is observed less often than back stutter, and
peaks are more likely to fall below the limit of detection:

Locus Stutter Filter (%)
TH01 0.06
vWA 0.33
FGA 0.30
D2S441 0.55
SE33 0.59
D10S1248 1.28
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LR Modeling

The LR can now be assessed by writing the ratio in the form:

LR =
Pr(GC|GS, Hp, I)

Pr(GC|GS, Hd, I)

=

∑
j Pr(GC|Sj) Pr(Sj|Hp)∑
j′Pr(GC|Sj′) Pr(Sj′|Hd)

=

∑
j wj Pr(Sj|Hp)∑
j′wj′Pr(Sj′|Hd)

.

The two propositions each define sets of genotypes S, and the

weights w describe how well these sets fit our observed data GC.

Under Hp all the genotype sets Sj usually include GS.
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LR Modeling

The full profile weight can be obtained as a product of the weights

at each locus:

wj =
∏
l

wlj.

In case of the binary model, the weights are set either as 1 or

0, depending on whether or not the crime scene profile can be

explained based on the genotype set under consideration.

Weights Weights
Donor 1 Donor 2 (Binary) (Continuous)

20,21 22,24 1 0.05
20,22 21,24 1 0.05
20,24 21,22 1 0.75
21,22 20,24 1 0.05
21,24 20,22 1 0.05
22,24 20,21 1 0.05
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Modeling Strategies

Now that a model has been developed, we require information

about the input parameters.

• Maximization: Parameters can be chosen that maximize the

likelihood of the observations under each hypothesis.

• Integration: Rather than knowing the true values of the

parameters, we need to know the effect they have on the

probability of the observed data.

• Markov chain Monte Carlo: Instead of testing every possi-

ble combination of parameters, only a small distribution of

parameter values and genotype sets will accurately describe

the data.
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Markov chain Monte Carlo (MCMC)

MCMC will start by choosing parameter values at random, even-
tually leading to more sensible options, until it has reached an
equilibrium state.
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Expected Peak Heights

Based on a set of input parameters, an expected profile can be
generated.

Step 1: Genotypes are chosen.
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Expected Peak Heights

Step 2: Template amounts per contributor are incorporated.
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Expected Peak Heights

Step 3: Degradation is taken into account.
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Expected Peak Heights

Step 4: Stutter is taken into account.
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Expected Peak Heights

Step 5: Locus specific amplification efficiencies are introduced.
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The Perfect Model

We can now compare our expected profile with the observed STR

profile.

What would a perfect model look like?
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The Perfect Model

Observations show that the relative variance of small peaks is large
and the relative variance of large peaks is small. This suggests
that the variance is inversely proportional to the expected peak
height.
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Generating Weights

The weights can now be calculated by considering the ratio of

the observed and expected peak heights, assuming the log of this

ratio has mean 0 and variance proportional to 1/E.
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Continuous Model Network

Combining all elements leads to an overall continuous model

network:
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Worked Example for the Continuous Model

The epg for a 3-person mixture at locus vWA is as follows:

We would like to assess the LR under the hypothesis that:

Hp : GS = 17,18 and 2U are the source of the sample.

Hd : 3U are the source of the sample.

Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Worked Example for the Continuous Model

The LR can now be assessed by writing the ratio in the form:

LR =
Pr(GC|GS, Hp, I)

Pr(GC|GS, Hd, I)

=

∑
j Pr(GC|Sj) Pr(Sj|Hp)∑
j′Pr(GC|Sj′) Pr(Sj′|Hd)

=

∑
j wj Pr(Sj|Hp)∑
j′wj′Pr(Sj′|Hd)

.

The two propositions each define sets of genotypes S, and the

weights w describe how well these sets fit our observed data GC.

Under Hp all the genotype sets Sj usually include GS.
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Worked Example for the Continuous Model

Suppose the following weights have been established for locus

vWA:

Genotype Set Donor 1 Donor 2 Donor 3 Weight
S1 16,18 17,17 14,14 0.00045
S2 16,18 17,17 14,15 0.00017
S3 16,16 17,17 14,16 0.00008
S4 16,18 17,17 14,17 0.00002
S5 16,18 17,17 14,18 0.00054
... ... ... ... ...
S15 16,17 17,18 14,15 0.15800
S16 16,17 17,18 14,16 0.28700
S17 16,17 17,18 14,17 0.21000
S18 16,17 17,18 14,18 0.11400
S19 17,17 17,18 14,16 0.00016

The actual reference profiles of the three known contributors are:

Locus Donor 1 Donor 2 Donor 3
vWA 16,17 17,18 14,16

Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Worked Example for the Continuous Model

Under Hp only the genotype sets containing GS are relevant:

Set Donor 1 Donor 2 Donor 3 Weight Pr(Sj|Hp)
S1 16,18 17,17 14,14 0.00045 0
S2 16,18 17,17 14,15 0.00017 0
S3 16,16 17,17 14,16 0.00008 0
S4 16,18 17,17 14,17 0.00002 0
S5 16,18 17,17 14,18 0.00054 0
... ... ... ... ... ...
S15 16,17 17,18 14,15 0.15800 2p16p17 · 2p14p15
S16 16,17 17,18 14,16 0.28700 2p16p17 · 2p14p16
S17 16,17 17,18 14,17 0.21000 2p16p17 · 2p14p17
S18 16,17 17,18 14,18 0.11400 2p16p17 · 2p14p18
S19 17,17 17,18 14,16 0.00016 p2

17 · 2p14p16

Note that these calculations can be modified to allow for popula-
tion substructure.

Multiplication of the weights with the probabilities, and summing
over them, results in the numerator of the LR Pr(E|Hp).
Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Worked Example for the Continuous Model

Using allele frequencies (in this case from an Australian Caucasian
sub-population):

Allele Frequency
14 0.1146
15 0.1071
16 0.2044
17 0.2726
18 0.2090

yields: Pr(E|Hp) = 4.4 × 10−3. Similarly, we can calculate the
probabilities under Hd, now considering all genotype sets and
corresponding donors, we get: Pr(E|Hd) = 5.0× 10−4.

Combining this gives us the LR for this specific locus:

LR =
Pr(E|Hp)
Pr(E|Hd)

=
4.4× 10−3

5.0× 10−4
= 8.8

Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Worked Example for the Continuous Model

The overall LR is a combination of all loci (here compared with
a binary model):

Locus LRB LRC
D10S1248 0.97 4.69
vWA 1.24 8.21
D16S539 0.45 5.32
D2S1338 2.27 31.22
D8S1179 0.51 7.79
D21S11 0.94 9.98
D18S51 3.85 52.08
D22S1045 4.32 59.18
D19S433 0.92 7.17
TH01 0.97 13.31
FGA 1.39 21.14
D2S441 0.65 4.84
D3S1358 0.93 13.22
D1S1656 5.55 106.14
D12S391 1.42 21.34
SE33 6.23 69.53
Overall LR 356 3.13× 1019

Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Available Software

The Scientific Working Group on DNA Analysis Methods (SWG-

DAM) defines probabilistic genotyping as

“. . . the use of biological modeling, statistical theory, computer al-
gorithms, and probability distributions to calculate likelihood ratios
(LRs) and/or infer genotypes for the DNA typing results of forensic
samples (“forensic DNA typing results”)”.

Over the years, several probabilistic genotyping programs have

been developed across the globe, ranging from commercial pack-

ages to open-source platforms, with the main goal to interpret

complex DNA mixtures for CE data.
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Available Software

Not all models as published in literature have been translated

into software. A non-exhaustive list:

Software Class Availability Optimization
LRmix Studio semi-continuous open-source ML
Lab Retriever semi-continuous open-source ML
MixKin semi-continuous in-house Integration
DNA LiRA (semi-)continuous open-source Bayes
likeLTD (semi-)continuous open-source ML
STRmix continuous commercial Bayes
TrueAllele continuous commercial Bayes
DNA·VIEW continuous commercial ML
DNAmixtures continuous open-source∗ ML
EuroForMix continuous open-source ML or Bayes
DNAStatistX continuous in development ML

See also: Probabilistic Genotyping Software: An Overview (Coble & Bright, 2019).
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Available Software - Discussion

There are no ground truths for probabilistic genotyping calcu-

lations. Moreover, the 2016 PCAST (President’s Council of

Advisors on Science and Technology) report stated:

“[w]hile likelihood ratios are a mathematically sound concept, their
application requires making a set of assumptions about DNA profiles
that require empirical testing. Errors in the assumptions can lead to
errors in the results”.

• Under what circumstances have the methods been validated?

What are their limitations?

• Commercial software has received criticism regarding their

black-box nature. Should source code be made accessible (to

the defense)?
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Available Software - Discussion

What about the consistency between software programs when

they examine the same evidence?

Method Sample A Sample B Sample C
LRmix Studio 1.29 1.85× 1014 0.0212
Lab Retriever 1.20 1.89× 1014 0.0241
DNA·VIEW 1.09× 10−14 4.66× 1011 2.24× 108

Combined Inconclusive Support to Hp Inconclusive

Another example can be found in the People v. Hillary (NY) case:

TrueAllele reported no statistical support for a match (LR < 0),

whereas STRmix inculpated the defendant with a likelihood ratio

of 360 000. The evidence consisted of an LTDNA sample with

an extreme mixture ratio.

Source: An alternative application of the consensus method to DNA typing interpretation
for Low Template-DNA mixtures (Garofano et al., 2015).
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