
Section 1: Overview



HISTORY OF IDENTIFICATION

Legal v. Scientific Thinking

“The very goals of science and law differ.

Science searches for the truth and seeks to increase knowledge by

formulating and testing theories. Law seeks justice by resolving

individual conflicts, although this search often coincides with one

for truth.”

“Rules of decision that are not tailored to individual cases, such

as those that turn on statistical reasoning, are often viewed as

suspect.”

Feinberg SE (Editor). 1989. The Evolving Role of Statistical

Assessments as Evidence in the Courts. Springer.
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Forensic Science Approach

“The central problem of the criminal investigator is the estab-

lishment of personal identity – usually of the criminal, sometimes

of the victim.”

Need to distinguish between identity and individualization. Iden-

tity refers to unique existence – no two different things can be

identical. The DNA profiles from a suspect and a crime scene

are different things.

Individualization points to a specific person. A fingerprint from

a crime scene is not identical to a suspect’s recorded fingerprint,

but can be used to identify him and prove his individuality.

Kirk PL. 1974. Crime Investigation, (Second Edition). Krieger,
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Uniqueness

“no two objects can ever be identical. They can and often do

have properties that are not distinguishable. If enough of these

properties exist ... identity of source is established.”

“The criminalist of the future may well be able to individualize

the criminal directly through the hair he has dropped, the blood

he has shed, or the semen he has deposited. All these things

are unique to the individual, just as his fingerprints are unique to

him.”

Kirk PL. 1974. Crime Investigation, (Second Edition). Krieger,
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Forensic science question

Not: “Is this profile unique?” (it is).

Not: “Are these two profiles identical?” (they can’t be).

But: “ Is there sufficient evidence to demonstrate that these

two profiles originate from the same source?”
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Bertillonage

Alphonse Bertillon (1853-1914), French anthropometrist. Son

and brother of statisticians. Used 11 measurements:

1. Standing height
2. Arm reach
3. Sitting height

4.∗ Head length
5.∗ Head breadth
6. Length of right ear
7. Cheek width

8.∗ Length of left foot
9.∗ Length of left middle finger
10. Length of left little finger
11. Length of the left forearm and hand to

the tip of extended middle finger
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Bertillonage

Searching was done on four categories 4, 5, 8, 9. Each measure-

ment divided into three subdivisions (large, medium, small) i.e.

34 = 81 categories per person. Filing cabinets with 81 drawers

used.

Using all 11 characters, plus 7 eye colors, the number of possible

profiles is 311 × 7 = 1,240,029.
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Wikipedia entry for Alphonse Bertillon

“Being an orderly man, he was dissatisfied with the ad hoc meth-

ods used to identify the increasing number of captured criminals

who had been arrested before. This, together with the steadily

rising recidivism rate in France since 1870, motivated his inven-

tion of anthropometrics. His road to fame was a protracted and

hard one, as he was forced to do his measurements in his spare

time. He used the famous La Sant Prison in Paris for his activi-

ties, facing jeers from the prison inmates as well as police officers.

He is also the inventor of the mug shot. Photographing of crim-

inals began in the 1840s only a few years after the invention of

photography, but it was not until 1888 that Bertillon standard-

ized the process.”

https://en.wikipedia.org/wiki/Alphonse Bertillon
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Coincidental match

Two different men at Leavenworth in 1903 had very similar

Bertillon dimensions (lengths in mm):

Will West William West

1 19.7 19.8
2 15.8 15.9
3 12.3 12.2
4 28.2 27.5
5 50.2 50.3
6 178.5 177.5
7 9.7 9.6
8 91.3 91.3
9 187.0 188.0

10 6.6 6.6
11 14.8 14.8

http://www.globalsecurity.org/security/systems/biometrics-history.htm
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Fingerprints

“The arrangement of skin ridges is never duplicated in two per-

sons.”

J.C.A. Mayer, 1783.

J.E. Purkinje established categories of fingerprints in early 19th

century.

W. Herschel, a British administrator, used fingerprints in India in

1850’s.

H. Faulds, a British physician, used fingerprints in Japan.

Francis Galton wrote the book “Fingerprints” in 1892, and gave

some probabilities for coincidental matches.
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Fingerprints

Galton considered that the chance that a random fingerprint

would match a specified print was 2−36. For a population of size

1.6 × 109, the odds were 1 to 39 that the print of any single

finger would be exactly like the same finger of any other person.

[This is based on the probability of not finding the print in a

sample of size 1.6 billion.]
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Heritability of fingerprints

Galton looked at 105 sib-pairs:

Second First sib
sib Arches Loops Whorls

Arches 5 12 2
Loops 4 42 15
Whorls 1 14 10

Galton noticed that the diagonal counts of 5, 42, 10 are larger

than those (2, 40, 6) expected if the sibs had independent fin-

gerprints, but not as great as they could be (10, 68, 27). He did

not have the chi-square test available in 1892, but did conclude

that there was an association.

He did not find racial differences.
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Uniqueness of fingerprints

Probability arguments not used. By 1924, textbooks would say

“No two fingerprints are identical in pattern.” In 1939 J.Edgar

Hoover wrote that fingerprints were “a certain and quick means

of identification.”

Acceptance of uniqueness probably followed from “(i) striking

visual appearance of fingerprints in court, (ii) a few dramatically

successful cases, and (iii) a long period in which they were used

without a single case being noted where two different individuals

exhibited the same pattern.”

Stigler SM. 1995. Galton and identification by fingerprints. Ge-

netics 140:857-860.

Stigler anticipated the same growing acceptance of DNA profiles

being unique.
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Misuse of Fingerprints

Oregon attorney Brandon Mayfield was wrongly identified by the

FBI as the source of a fingerprint on an item of evidence in the

2004 Madrid train bombings.

https://en.wikipedia.org/wiki/Brandon Mayfield

A subsequent report by the FBI admitted the error

https://www.fbi.gov/about-us/lab/forensic-science-communications

/fsc/jan2005/special report/2005 special report.htm

Section 1 Slide 14



Accuracy of Fingerprints

A subsequent study by Ulerya et al “Accuracy and reliability of

forensic latent fingerprint decisions” was published

“169 latent print examiners each compared approximately 100

pairs of latent and exemplar fingerprints from a pool of 744 pairs.

...Five examiners made false positive errors for an overall false

positive rate of 0.1%. Eighty-five percent of examiners made at

least one false negative error for an overall false negative rate of

7.5%.”

Ulerya BT, Hicklina RA, Buscagliab J, Roberts A. 2011. Proc

Natl Acad Sci USA 108: 77337738.
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Statistical approach

Partial transfer evidence: physical material or impressions trans-

ferred from crime scene to perpetrator (or perpetrator’s posses-

sions), or vice versa.

PTE is characterized and assigned to an identity-set. Does a

particular person (or their type) belong to the set? Does anyone

else belong to the set?

“If it is highly improbable that another member could be found,

we would be reasonably sure that the correct origin has been

located. But if it is quite probable that other members exist, we

would not be so sure that we have the correct origin.”

Kingston CR. 1965. J Am Stat Assoc 60:70-80, 1028-1034.
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Blood Typing

Human ABO blood groups discovered in 1900. ABO gene on

human chromosome 9 has 3 alleles: A, B, O. Six genotypes but

only four phenotypes (blood groups):

Genotypes Phenotype

AA, AO A
BB, BO B

AB AB
OO O
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ABO System

The possible offspring blood groups for each pair of parents:

Mother
Father A B AB O

A A,O A,B,AB,O A,B,AB A,O
B A,B,AB,O B,O A,B,AB B,O
AB A,B,AB A,B,AB A,B,AB A,B
O A,O B,O A,B O
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ABO System

Blood group Antigens in red blood cells Antibodies in serum

O None Anti-A and Anti-B
A A Anti-B
B B Anti-A
AB A and B None

http://www.redcrossblood.org/learn-about-blood/blood-types
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ABO System

For blood transfusions, recipient should not produce antibodies

to the donor’s antigens:

Donor
Recipient O A B AB

O OK
A OK OK
B OK OK
AB OK OK OK OK
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Charlie Chaplin and ABO Testing

Relationship Person Blood Group Genotype

Mother Joan Berry A AA or AO
Child Carol Ann Berry B BB or BO
Alleged Father Charles Chaplin O OO

The obligate paternal allele was B, so the true father must have

been of blood group B or AB.

Berry v. Chaplin, 74 Cal. App. 2d 652
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California Court of Appeals, 1946

“Concerning the immutability of the scientific law of blood-

grouping, which we have no reason to question ...”

“Whatever claims the medical profession may make for blood

tests to determine paternity, no evidence is by law made con-

clusive or unanswerable unless so declared by the Code of Civil

Procedure of the State of California ”

74 Cal.App.2d 652 (1946)
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Outcome of Chaplin Trial

“The brouhaha surrounding Chaplin’s case and similar paternity

suits (like 1937’s Arais v. Kalensnikoff and 1951’s Hill v. John-

son) led to the reformation of paternity laws in the state of

California, with other states eventually following suit. In 1953,

along with Oregon and New Hampshire, California drafted the

Uniform Act on Blood Tests to Determine Paternity, which in

legalese states that: ‘If the court finds that the conclusions of

all the experts as disclosed by the evidence based upon the tests

are that the alleged father is not the father of the child, the

question of paternity shall be resolved accordingly.’ ”

http://mentalfloss.com/article/63158/how-charlie-chaplin-changed-

paternity-laws-america
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Spencer v Commonwealth of Virginia

From the Supreme Court of Virginia, September 22, 1989.

“Timothy Wilson Spencer was indicted for the capital murder of

Susan Tucker, i.e., the willful, deliberate, and premeditated mur-

der during the commission of, or subsequent to, rape. Spencer

also was indicted for the rape of Tucker. ... a jury convicted

Spencer of capital murder and fixed his punishment at death.

The jury also convicted Spencer of rape and fixed his punish-

ment at life imprisonment. Following a sentencing hearing, the

trial court imposed the sentences fixed by the jury and entered

judgments on the jury verdicts.

... We have considered all of Spencer’s assignments of error and

find no reversible error. We also have made the review of the

death sentence mandated by Code 17-110.1 and conclude that

the sentence should be affirmed. Accordingly, the judgments of

the trial court will be affirmed.”
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Spencer v Commonwealth of Virginia (contd.)

“The parties stipulated that Spencer does not have an identi-

cal twin and that none of his blood relatives had committed the

murder. Therefore, the chances that anyone other than Spencer

produced the semen stains was one in 135 million. There are

approximately 10 million adult black males in the United States.”

Spencer was the first person executed after a conviction based

on DNA evidence.

SPENCER v. COM 384 S.E.2d 775 (Va. 1989)

aw.justia.com/cases/virginia/supreme-court/1989/890579-1.html
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Extreme Numbers: Robinson v. Mandell, 1868.

Two signatures matched at 30 downstrokes. The probability of

a coincidental match was estimated to be 1 in 5. The proba-

bility of 30 coincidences in one pair of signatures was “once in

2,666 millions of millions of millions.” (Mathematics professor

Benjamin Pierce.)

“This number far transcends human experience. So vast an im-

probability is practically an impossibility. Such evanescent shad-

ows of probability cannot belong to actual life. They are unimag-

inably less than those least things which the law cares not for.”

Refers to chance of a coincidental match between two handwrit-

ing samples.

https://en.wikipedia.org/wiki/Howland will forgery trial
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No Extreme Numbers in Minnesota

“Schwartz contends that any probative value of statistical fre-

quency evidence is outweighed by its prejudicial effect, as illus-

trated by the media exposure forensic DNA typing has received

implying its infallibility. In dealing with complex technology, like

DNA testing, we remain convinced that juries in criminal cases

may give undue weight and deference to presented statistical

evidence and are reluctant to take that risk.”

447 N.W.2d 422 (1989)

Refers to matching DNA profile with a frequency reported as 1

in 33 billion.
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Extreme numbers: Fingerprints

Chance of a match for a single finger print estimated to be less

than 1 in 64 thousand million.

“When two fingers of each of two persons are compared, and

found to have the same minutiae, the improbability [of 1 in 236]

becomes squared, and reaches a figure altogether beyond the

range of the imagination.”

Galton F. 1892. Fingerpints.
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DNA Profiling

Human Genome has about 3,000,000,000 elements (base pairs).

Any two people differ at about 3,000,000 of these.

Forensic profiles use 20 STR markers. Each of these markers as

at least 10 variant forms, or at least 55 different combinations.

Therefore there are about 5520 = 6.4 × 1034 different profiles

possible.

Only 1 in 1024 of the possible profiles exists in the whole world.
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Beyond Reasonable Doubt?

After forensic evidence is presented, a jury or judge may have to

make a decision, based on the concept of “beyond reasonable

doubt.” What does that mean? A survey found:

Probability Judges Jurors Students
0–50% 0 5 3
50% 1 6 2
55% 2 2 1
60% 8 4 1
65% 2 1 0
70% 14 2 1
75% 23 2 1
80% 58 8 9
85% 21 2 3
90% 68 9 20
95% 44 3 17
100% 106 25 30
Total 347 69 88

Source unknown.
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People v. Collins

Another attempt to introduce probabilities into court:

Characteristic Frequency

Girl with blond hair 1 in 3
Girl with ponytail 1 in 10
Man with mustache 1 in 4
Black man with beard 1 in 10
Yellow car 1 in 10
Interracial couple in car 1 in 1000

All six characteristics 1 in 12 million

https://en.wikipedia.org/wiki/People v. Collins
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Alec Jeffreys

For forensic applications, the work of Alec Jeffreys with on Re-

striction Fragment Length Polymorphisms (RFLPs) or Variable

Number of Tandem Repeats (VNTRs) used electrophoresis. Dif-

ferent alleles now represented different numbers of repeat units

and therefore different length molecules. Smaller molecules move

faster through a gel and so move further in a given amount of

time.

Initial work was on mini-satellites, where repeat unit lengths were

in the tens of bases and fragment lengths were in thousands of

bases. Jeffrey’s multi-locus probes detected regions from several

pats of the genome and resulted in many detectable fragments

per individual. This gave high discrimination but difficulty in

assigning numerical strength to matching profiles.

Jeffreys et al. 1985. Nature 316:76-79 and 317: 818-819.
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Single-locus Probes

Next development for gel-electrophoresis used probes for single

mini-satellites. Only two fragments were detected per individ-

ual, but there was difficulty in determining when two profiles

matched.

The technology also required “large” amounts of DNA and was

not suitable for degraded samples.
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PCR-based STR Markers

The ability to increase the amount of DNA in a sample by the

Polymerase Chain Reaction (PCR) was of substantial benefit to

forensic science. The typing technology changed to the use of

capillary tube electrophoresis, where the time taken by a DNA

molecule to pass a fixed point was measured and used to infer

the number of repeat units in an allele.

“Following multiplex PCR amplification, DNA samples contain-

ing the length-variant STR alleles are typically separated by cap-

illary electrophoresis and genotyped by comparison to an allelic

ladder supplied with a commercial kit. ”

Butler JM. Short tandem repeat typing technologies used in hu-

man identity testing. BioTechniques 43:Sii-Sv (October 2007)

doi 10.2144/000112582
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Sequencing of STR Alleles

“STR typing in forensic genetics has been performed traditionally

using capillary electrophoresis (CE). Massively parallel sequenc-

ing (MPS) has been considered a viable technology in recent

years allowing high-throughput coverage at a relatively afford-

able price. Some of the CE-based limitations may be overcome

with the application of MPS ... generate reliable STR profiles

at a sensitivity level that competes with current widely used CE-

based method.”

Zeng XP, King JL, Stoljarova M, Warshauer DH, LaRue BL, Sa-

jantila A, Patel J, Storts DR, Budowle B. 2015. High sensitivity

multiplex short tandem repeat loci analyses with massively par-

allel sequencing. Forensic Science International: Genetics 16:38-

47.

MPS also called NGS (Next Generation Sequencing.)
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Single Nucleotide Polymorphisms (SNPs)

“Single nucleotide polymorphisms (SNPs) are the most frequently

occurring genetic variation in the human genome, with the total

number of SNPs reported in public SNP databases currently ex-

ceeding 9 million. SNPs are important markers in many studies

that link sequence variations to phenotypic changes; such studies

are expected to advance the understanding of human physiology

and elucidate the molecular bases of diseases. For this reason,

over the past several years a great deal of effort has been devoted

to developing accurate, rapid, and cost-effective technologies for

SNP analysis, yielding a large number of distinct approaches. ”

Kim S. Misra A. 2007. SNP genotyping: technologies and

biomedical applications. Annu Rev Biomed Eng. 2007;9:289-

320.
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Phase 3 1000Genomes Data

• 84.4 million variants

• 2504 individuals

• 26 populations

www.1000Genomes.org
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Whole-genome Sequence Studies

One current study is the NHLBI Trans-Omics for Precision Medicine

(TOPMed) project. www.nhlbiwgs.org

In the first data freeze of Phase 1 of this study, from 18,000

whole-genome sequences:

Total number of SNPs 86,974,704

Singletons 35,883,567
% Singletons 41.3%

Number in dbSNP 43,141,144
% in dbSNP 49.6%

Abecasis et al. 2016. ASHG Poster.

In Freeze 6: 800 million Single Nulceotide Variants.
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Probability Theory

We wish to attach probabilities to different kinds of events (or

hypotheses or propositions):

• Event A: the next card is an Ace.

• Event R: it will rain tomorrow.

• Event C: the suspect left the crime stain.
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Probabilities

Assign probabilities to events: Pr(A) or pA or even p means “the

probability that event A is true.” All probabilities are conditional

on some information I, so should write Pr(A|I) for “the proba-

bility that A is true given that I is known.”

No matter how probabilities are defined, they need to follow some

mathematical laws in order to lead to consistent theories.
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First Law of Probability

0 ≤ Pr(A|I) ≤ 1

Pr(A|A, I) = 1

If A is the event that a die shows an even face (2, 4, or 6), what

is I? What is Pr(A|I)?
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Second Law of Probability

If A, B are mutually exclusive given I

Pr(A or B|I) = Pr(A|I) + Pr(B|I)

so Pr(Ā|I) = 1 −Pr(A|I)

(Ā means not-A).

If A is the event that a die shows an even face, and B is the

event that the die shows a 1, verify the Second Law.
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Third Law of Probability

Pr(A and B|I) = Pr(A|B, I) × Pr(B|I)

If A is event that die shows an even face, and B is the event that

the die shows a 1, verify the Third Law.

Will generally omit the I from now on.
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Independent Events

Events A and B are independent if knowledge of one does not

affect probability of the other:

Pr(A|B) = Pr(A)

Pr(B|A) = Pr(B)

Therefore, for independent events

Pr(A and B) = Pr(A)Pr(B)

This may be written as

Pr(AB) = Pr(A)Pr(B)
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Law of Total Probability

Because B and B̄ are mutually exclusive and exhaustive:

Pr(A) = Pr(A|B)Pr(B) + Pr(A|B̄)Pr(B̄)

If A is the event that die shows a 3, B is the event that the die

shows an even face, and B̄ the event that the die shows an odd

face, verify the Law of Total Probability.
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Odds

The odds O(A) of an event A are the probability of the event

being true divided by the probability of the event not being true:

O(A) =
Pr(A)

Pr(Ā)

This can be rearranged to give

Pr(A) =
O(A)

1 + O(A)

Odds of 10 to 1 are equivalent to a probability of 10/11.

Section 1 Slide 46



Bayes’ Theorem

The third law of probability can be used twice to reverse the

order of conditioning:

Pr(B|A) =
Pr(B and A)

Pr(A)

=
Pr(A|B) Pr(B)

Pr(A)
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Odds Form of Bayes’ Theorem

From the third law of probability

Pr(B|A) = Pr(A|B)Pr(B)/Pr(A)

Pr(B̄|A) = Pr(A|B̄)Pr(B̄)/Pr(A)

Taking the ratio of these two equations:

Pr(B|A)

Pr(B̄|A)
=

Pr(A|B)

Pr(A|B̄)
×

Pr(B)

Pr(B̄)

Posterior odds = likelihood ratio × prior odds.
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Birthday Problem

Forensic scientists in Arizona looked at the 65,493 profiles in the

Arizona database and reported that two profiles matched at 9

loci out of 13. They reported a “match probability” for those 9

loci of 1 in 754 million. Are the numbers 65,493 and 754 million

inconsistent?

(Troyer et al., 2001. Proc Promega 12th Int Symp Human Iden-

tification.)

To begin to answer this question suppose that every possible

profile has the same profile probability P and that there are N

profiles in a database (or in a population). The probability of at

least one pair of matching profiles in the database is one minus

the probability of no matches.
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Birthday Problem

Choose profile 1. The probability that profile 2 does not match

profile 1 is (1−P ). The probability that profile 3 does not match

profiles 1 or 2 is (1−2P ), etc. So, the probability PM of at least

one matching pair is

PM = 1 − {1(1 − P )(1 − 2P ) · · · [1 − (N − 1)P ]}

≈ 1 −
N−1∏

i=0

e−iP ≈ 1 − e−N2P/2

If P = 1/365 and N = 23, then PM = 0.51. So, approximately,

in a room of 23 people there is greater than a 50% probability

that two people have the same birthday.
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Birthday Problem

If P = 1/(754 million) and N = 65,493, then PM = 0.98 so it is

highly probable there would be a match. There are other issues,

having to do with the four non-matching loci, and the possible

presence of relatives in the database.

If P = 10−16 and N = 300 million, then PM = is essentially 1. It

is almost certain that two people in the US have the same rare

DNA profile.
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Statistics

• Probability: For a given model, what do we expect to see?

• Statistics: For some given data, what can we say about the

model?

• Example: A marker has an allele A with frequency pA.

– Probability question: If pA = 0.5, and if alleles are inde-

pendent, what is the probability of AA?

– Statistics question: If a sample of 100 individuals has 23

AA’s, 48 Aa’s and 29 aa’s, what is an estimate of pA?
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Transfer Evidence

Relevant Evidence

Rule 401 of the US Federal Rules of Evidence:

“Relevant evidence” means evidence having any tendency to

make the existence of any fact that is of consequence to the

determination of the action more probable or less probable than

it would be without the evidence.
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Single Crime Scene Stain

Suppose a blood stain is found at a crime scene, and it must

have come from the offender. A suspect is identified and pro-

vides a blood sample. The crime scene sample and the suspect

have the same (DNA) “type.”

The prosecution subsequently puts to the court the proposition

(or hypothesis or explanation):

Hp: The suspect left the crime stain.

The symbol Hp is just to assist in the formal analysis. It need

not be given in court.
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Transfer Evidence Notation

GS, GC are the DNA types for suspect and crime sample. GS =

GC. I is non-DNA evidence.

Before the DNA typing, probability of Hp is conditioned on I.

After the typing, probability of Hp is conditioned on GS, GC , I.
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Updating Uncertainty

Method of updating uncertainty, or changing Pr(Hp|I) to

Pr(Hp|GS, GC , I) uses Bayes’ theorem:

Pr(Hp|GS, GC , I) =
Pr(Hp, GS, GC|I)

Pr(GS, GC|I)

=
Pr(GS, GC|Hp, I) Pr(Hp|I)

Pr(GS, GC |I)

We can’t evaluate Pr(GS, GC|I) without additional information,

and we don’t know Pr(Hp|I).

Can proceed by introducing alternative to Hp.
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First Principle of Evidence Interpretation

To evaluate the uncertainty of a proposition, it is necessary to

consider at least one alternative proposition.

The simplest alternative explanation for a single stain is:

Hd: Some other person left the crime stain.

Evett IW, Weir BS. 1998. “Interpreting DNA Evidence.” Can

be downloaded from

www.biostat.washington.edu/ bsweir/InterpretingDNAEvidence
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Updating Odds

From the odds form of Bayes’ theorem:

Pr(Hp|GS, GC , I)

Pr(Hd|GS , GC, I)
=

Pr(GS, GC |Hp, I)

Pr(GS, GC|Hd, I)
×

Pr(Hp|I)

Pr(Hd|I)

i.e. Posterior odds = LR × Prior odds

where

LR =
Pr(GS, GC|Hp, I)

Pr(GS, GC |Hd, I)
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Questions for a Court to Consider

The trier of fact needs to address questions of the kind

• What is the probability that the prosecution proposition is

true given the evidence,

Pr(Hp|GC , GS, I)?

• What is the probability that the defense proposition is true

given the evidence,

Pr(Hd|GC , GS, I)?
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Questions for Forensic Scientist to Consider

The forensic scientist must address different questions:

• What is the probability of the DNA evidence if the prosecu-

tion proposition is true,

Pr(GC , GS|Hp, I)?

• What is the probability of the DNA evidence if the defense

proposition is true,

Pr(GC , GS|Hd, I)?

Important to articulate Hp, Hd. Also important not to confuse

the difference between these two sets of questions.

Section 1 Slide 60



Second Principle of Evidence Interpretation

Evidence interpretation is based on questions of the kind ‘What

is the probability of the evidence given the proposition.’

This question is answered for alternative explanations, and the

ratio of the probabilities presented. It is not necessary to use the

words “likelihood ratio”. Use phrases such as:

‘The probability that the crime scene DNA type is the same as

the suspect’s DNA type is one million times higher if the suspect

left the crime sample than if someone else left the sample.’
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Third Principle of Evidence Interpretation

Evidence interpretation is conditioned not only on the alternative

propositions, but also on the framework of circumstances within

which they are to be evaluated.

The circumstances may simply be the population to which the

offender belongs so that probabilities can be calculated. Forensic

scientists must be clear in court about the nature of the non-

DNA evidence I, as it appeared to them when they made their

assessment. If the court has a different view then the scientist

must review the interpretation of the evidence.
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Example

“In the analysis of the results I carried out I considered two alter-

natives: either that the blood samples originated from Pengelly

or that the . . . blood was from another individual. I find that the

results I obtained were at least 12,450 times more likely to have

occurred if the blood had originated from Pengelly than if it had

originated from someone else.”
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Example

Question:“Can you express that in another way?”

Answer:“It could also be said that 1 in 12,450 people would have

the same profile . . . and that Pengelly was included in that num-

ber . . . very strongly suggests the premise that the two blood

stains examined came from Pengelly.”

[Testimony of M. Lawton in R. v Pengelly 1 NZLR 545 (CA),

quoted by

Robertson B, Vignaux GA, Berger CEH. 2016.Interpreting Evi-

dence (Second Edition). Wiley.
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Likelihood Ratio

LR =
Pr(GC, GS|Hp, I)

Pr(GC , GS|Hd, I)

Apply laws of probability to change this into

LR =
Pr(GC |GS, Hp, I)Pr(GS|Hp, I)

Pr(GC |GS, Hd, I)Pr(GS|Hd, I)
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Likelihood Ratio

Whether or not the suspect left the crime sample (i.e. whether or

not Hp or Hd is true) provides no information about his genotype:

Pr(GS|Hp, I) = Pr(GS|Hd, I) = Pr(GS|I)

so that

LR =
Pr(GC|GS, Hp, I)

Pr(GC |GS, Hd, I)
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Likelihood Ratio

LR =
Pr(GC|GS, Hp, I)

Pr(GC |GS, Hd, I)

When GC = GS, and when they are for the same person (Hp is

true):

Pr(GC|GS , Hp, I) = 1

so the likelihood ratio becomes

LR =
1

Pr(GC |GS, Hd, I)

This is the reciprocal of the probability of the match probability,

the probability of profile GC, conditioned on having seen profile

GS in a different person (i.e. Hd) and on I.
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Likelihood Ratio

LR =
1

Pr(GC |GS, Hd, I)

The next step depends on the circumstances I. If these say that

knowledge of the suspect’s type does not affect our uncertainty

about the offender’s type when they are different people (i.e.

when Hd is true):

Pr(GC |GS, Hd, I) = Pr(GC |Hd, I)

and then likelihood ratio becomes

LR =
1

Pr(GC |Hd, I)

The LR is now the reciprocal of the profile probability of profile

GC.
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Profile and Match Probabilities

Dropping mention of the other information I, the quantity Pr(GC)

is the probability that a person randomly chosen from a popula-

tion will have profile type GC. This profile probability usually very

small and, although it is interesting, it is not the most relevant

quantity.

Of relevance is the match probability, the probability of seeing

the profile in a randomly chosen person after we have already

seen that profile in a typed person (the suspect). The match

probability is bigger than the profile probability. Having seen a

profile once there is an increased chance we will see it again.

This is the genetic essence of DNA evidence.
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Likelihood Ratio

The estimated probability in the denominator of LR is determined

on the basis of judgment, informed by I. Therefore the nature of

I (as it appeared to the forensic scientist at the time of analysis)

must be explained in court along with the value of LR. If the

court has a different view of I, then the scientist will need to

review the interpretation of the DNA evidence.
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Random Samples

The circumstances I may define a population or racial group.

The probability is estimated on the basis of a sample from that

population.

When we talk about DNA types, by “selecting a person at ran-

dom” we mean choosing him in such a way as to be as uncertain

as possible about their DNA type.
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Convenience Samples

The problem with a formal approach is that of defining the pop-

ulation: if we mean the population of a town, do we mean every

person in the town at the time the crime was committed? Do

we mean some particular area of the town? One sex? Some age

range?

It seems satisfactory instead to use a convenience sample, i.e. a

set of people from whom it is easy to collect biological material

in order to determine their DNA profiles. These people are not

a random sample of people, but they have not been selected on

the basis of their DNA profiles.
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Meaning of Likelihood Ratios

There is a personal element to interpreting DNA evidence, and

there is no “right” value for the LR. (There is a right answer

to the question of whether the suspect left the crime stain, but

that is not for the forensic scientist to decide.)

The denominator for LR is conditioned on the stain coming from

an unknown person, and “unknown” may be hard to define. A

relative? Someone in that town? Someone in the same ethnic

group? (What is an ethnic group?)
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Meaning of Frequencies

What is meant by “the frequency of the matching profile is 1 in

57 billion”?

It is an estimated probability, obtained by multiplying together

the allele frequencies, and refers to an infinite random mating

population. It has nothing to do with the size of the world’s

population.

The question is really whether we would see the profile in two

people, given that we have already seen it in one person. This

conditional probability may be very low, but has nothing to do

with the size of the population.
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STR Typing

Forensic DNA interpretation has been centered on the analysis of
STRs (short tandem repeats), i.e. short DNA sequences that are
repeated several times. These repeat patterns are located in areas
called loci and vary among individuals. Variants for a given locus
are called alleles and it is this variation (called polymorphism)
that allows us to associate a particular DNA sample with an
individual person.

To effectively interpret DNA evidence, we need to understand
STR typing characteristics such as

• the PCR process

• anomalies (like mutations, stutter, and drop-ins/drop-outs)

• peak height variability
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Understanding PCR

To produce an STR profile from a biological sample many identical

copies of the DNA molecules within the target region (i.e. the

DNA template) are needed. PCR (polymerase chain reaction)

can be used to copy, or amplify, DNA through the following steps:

• Denaturation: Melting DNA such that the double-stranded

template separates into two single-stranded DNA molecules.

• Annealing: Cooling the mixture to let primers bind to the

strands.

• Elongation: DNA polymerase (a special copier molecule)

completes missing sequences using available nucleotides.
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Understanding PCR

These basic steps constitute one cycle, so by repeating this

process, the DNA target gets amplified to millions of copies.

Source: https://en.wikipedia.org/wiki/Polymerase_chain_reaction
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Capillary Electrophoresis

To obtain meaningful results from the PCR process, capillary

electrophoresis (CE) has traditionally been used, allowing forensic

scientists to gain access to the allele numbers contained in a

DNA sample.

• DNA products are injected into the capillary where they travel

in the direction of a positive charge;

• The travel time depends on the fragment size and can thus

be used to infer the number of repeats;

• Primers are labeled with fluorescent dye, which will emit

visible light at the detector window of the capillary.

• The fluorescence, measured in relative fluorescence units

(RFU), is recorded over time and can be visualized with an

electropherogram (epg).
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Allelic Ladders

PCR-CE output can be compared to allelic ladders to determine

allele designations.

Source: AmpF`STR Yfiler PCR Amplification Kit User Guide.
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Example of an Electropherogram

An epg shows allelic designations, represented by peaks, with

integer values indicating the number of complete repeat motifs

and additional nucleotides separated by a decimal point.

Source: https://en.wikipedia.org/wiki/Microsatellite
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STR Classes

STR loci may be categorized in three different classes, based on

how well alleles conform to the core repeat pattern:

• Simple STRs: only show variation in the number of repeats

without additional sequence variation.

• Compound STRs: consist of several adjacent repeats of

the same repeat unit length.

• Complex STRs: contain repeats of variable length as well

as sequences.
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Examples of STR Classes

STR loci may be categorized in three different classes, based on

how well alleles conform to the core repeat pattern:

Class Locus Allele sequence
Simple CSF1PO [TCTA]8
Simple Penta D [AAAGA]12
Compound vWA [TCTA][TCTG]4[TCTA]13
Compound D22S1045 [ATT]7ACT[ATT]2
Complex FGA [TTTC]3TTTTTT[CTTT]11CTCC[TTCC]2
Complex D1S1656 [TAGA]4TGA[TAGA]13TAGG[TG]5
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Anomalies

If DNA profiling technologies were flawless, and no other (human)

errors have been introduced, an STR profile would provide a

perfect representation.

For good-quality samples, this is a reasonable assumption and

STR allele calling is usually pretty straightforward.

However, a number of anomalies may still arise. And more

importantly, crime scene profiles rarely belong to this category and

usually consist of low template samples that may be contaminated

and/or degraded, making them even more prone to typing errors.
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PCR-CE Method Response Categories

PCR-CE method response can be classified into several categories:

• Analyte signal: peaks corresponding to one or both authentic

alleles at a locus.

• Molecular artifacts: peaks identifiable as systematic method

error, such as stutter.

• Background noise: method response resulting from negative

controls or that cannot be classified as analyte signal or

molecular artifact.
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Mutations

Mutations are the cause of the variation encountered in DNA

and one of the reasons that STR loci render highly informative

markers in forensic genetics. Most of the mutations are caused by

an error during DNA replication (although other mechanisms and

external influences can also lead to a change in DNA sequence).

Examples of mutations:

• Substitutions: A point mutation where one base is substi-

tuted for another, such as a SNP.

• Indels: Small insertions/deletions due to the addition of one

or more extra nucleotides into the DNA or the loss of a section

of DNA.
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Slipped Strand Mispairing

STR polymorphisms derive mainly from variability in length. A

proposed mechanism for these genetic variations is the slipped

strand mispairing (SSM) mechanism: the dissociation of replicat-

ing DNA strands followed by misaligned re-association.

Source: Microsatellites: simple sequences with complex evolution (Ellengren, 2004).

Section 2 Slide 13



Mutations

The average in vivo mutational rates of the core STR loci are

estimated to be between 0.01% and 0.64%, although the exact

mutation rate of a locus is associated with the base composition

of the repeats and the length of the allele.

Meiotic mutations, occurring in the process of transmitting an

allele from a parent to a child, can cause the child’s allele to

differ from its parental type and can be important for paternity

and other relatedness testing.

Mitotic mutations, or somatic mutations, occur within an indi-

vidual and are of importance for identification and, although rare,

could result in different profiles being recorded from the same

individual (and hence possibly lead to a false exclusion).
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Copy Number Variants

When mutations affect relatively large segments of DNA (1 kb

or larger) the resulting difference is called a copy number variant

(CNV).

This can lead to difficulties in forensic applications when:

• a deletion or duplication leads to an unusual pattern of peak

heights (single peak with height similar to heterozygote alleles

or unbalanced heights)

• a single-contributor profile contains a locus displaying three

peaks (and may be confused with a low-template second

contributor)
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Micro-variants and sequence variations

An allele that contains an incomplete repeat unit is called a

micro-variant. They are usually rare, with the exception of allele

9.3 at THO1, and can be reliably distinguished if the variant

alters the allele length.

However, same-length variants (i.e. isoalleles) will be recorded as

matching alleles even if they differ at sequence level. This means

that CE-based methods have less discriminatory capability than

is potentially available via sequencing techniques.

Locus Allele number Allele sequence
D3S1358 15 [TCTA][TCTG]3[TCTA]11
D3S1358 15 [TCTA][TCTG]2[TCTA]12
D18S51 20 [AGAA]20
D18S51 20 [AGAA]16GGAA[AGAA]3
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Stutter

Since STR typing methods make use of the PCR process, which

relies on DNA replication characteristics, replication slippage also

exists during DNA amplification of STRs in vitro.

This phenomenon manifests itself in an epg in the form of a

stutter peak, i.e. a non-allelic peak that differs in size from the

main product, usually by multiples of the length of the repeat

unit, appearing adjacent to an allelic peak.

As a consequence, most profiling techniques cannot be used to

study in vivo mutational dynamics.
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Stutter Characteristics

The characteristics shared by mutations and stutter are consider-

able:

• Rates increase with the number of repeat units (i.e. less

stutter for shorter alleles, more stutter for longer alleles);

• Are inversely correlated with repeat unit length (i.e more

stutter for dinucleotide repeats, less stutter for tetranucleotide

repeats);

• And typically involve the insertion or deletion of a complete

repeat unit.
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Stutter Categories

Stutter can be primarily recognized as peaks whose length places

them in ‘stutter position’ of other peaks present within a sample.

• Back stutter

• Forward stutter

• Double back stutter

• Two bp stutter
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Stutter Difficulties

It is not always possible to distinguish stutter from other molecular

artifacts or analyte signal:

• Stutter affected heterozygous genotypes;

• Composite stutter;

• Increase in repeat motif canceled out by a contraction;

• Compound repeats differing one nucleotide in repeat motif.
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Stutter Affected Heterozygotes

Stutter affected heterozygous genotypes occur when two authen-

tic alleles are separated by one repeat, and the total peak heights

are a combination of analyte signal and stutter.
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Composite Stutter

Composite stutter arises when the difference between two au-

thentic alleles consist of two repeats and forward stutter of the

low molecular weight allele coincides with back stutter of the

high molecular weight allele.
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Stutter Expansion and Contraction

In rare situations, an increase in repeat motif may cancel out a

repeat contraction. This artifact would not be in stutter position

and can only be recognized if the expansion and contraction

involve different repeats.

[TCTA][TCTG]3[TCTA]11 ⇔ [TCTA][TCTG]2[TCTA]12
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Stutter vs. Substitutions

If adjacent repeats of compound STR loci differ by a single

nucleotide and are repeated only once or twice, stutter products

can possibly not be distinguished from substitution errors.

[TCTA][TCTG]1−2[TCTA]13−15 ⇒ [TCTA]13−17
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Back Stutter

Back stutter is the most prevailing type of stutter, suggesting

a preference for repeat contractions over expansions (which are

energetically less favorable).
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Double Back Stutter

There are two possible mechanisms for the creation of double
back stutter:

• Direct creation caused by a double loop during slipped strand
mispairing;

• Stutter of a previously formed stutter product.

It is suggested that a double loop is more likely than stutter of
stutter, at least for Y-STR data.

[AATG]6ATG[AATG]3 ⇒ [AATG]4ATG[AATG]3
⇒ [AATG]5ATG[AATG]2

Source: Modelling PowerPlex Y stutter and artefacts (Bright et al., 2011).
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Drop-ins

Allelic peaks that do not come from any of the assumed contrib-
utors to a DNA sample are termed drop-ins.

• Drop-ins may arise from airborne DNA fragments in a labora-
tory, or due to environmental exposure at the crime scene,
and can typically not be reproduced on subsequent analysis
of the same DNA extract.

• Verification of the source of drop-ins is not usually possible,
although the existence of drop-ins can be confirmed through
negative controls.

• As techniques become more sensitive, more drop-ins will occur,
and potential difficulties may arise when they are incorrectly
classified as analyte signal.
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Contamination

Drop-ins are related to the concept of contamination.

• Contamination is one of the causes for drop-ins, as a result of
DNA that got into a sample during collection or subsequent
analysis.

• Databases of lab and scene staff can facilitate the identifica-
tion of certain kinds of contamination.

• The most dangerous form of contamination is between differ-
ent evidence samples, from either the same or different crime
scenes.

• The observation of a more complete profile resulting from
contamination is referred to as gross contamination.
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Drop-outs

A drop-out occurs when an allele from a contributor to the crime

scene sample is not reported in the STR profile.

• This happens when a peak fails to reach the detection thresh-

old, meaning that they cannot be reliably distinguished from

background noise.

• Low template DNA samples and degradation increase the

drop-out rate, which is believed to be associated with DNA

fragment length.

• Drop-outs should not be confused with silent alleles, in which

a system is unable to visualize an allele.
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Peak Height Variability

Besides the anomalies already discussed, several other factors

play a role in observed variations within STR profiles.

Source: https://en.wikipedia.org/wiki/Microsatellite
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Template

In theory, peak heights from a single contributor are expected

to be approximately proportional to the amount of undegraded

DNA template.
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Template

The amount of DNA for each contributor to a sample will therefore

directly relate to the peak height of contributors.

In practice, there exists some stochastic variation in peak height.

Nowadays, only a couple of picograms of DNA is sufficient to

produce results. However, for these low template DNA (LTDNA)

samples, stochastic effects can play a major role and will invariably

influence the analysis (and likely decrease the statistical weight

of the evidence).
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Degradation

DNA evidence is prone to degradation due to a variety of mecha-

nisms and circumstances, including chemical processes and envi-

ronmental conditions, causing breakage of previously intact DNA

molecules.

If breakage occurs in regions where primers anneal, or between

the forward and reverse primers, target regions may not amplify

efficiently or fail to amplify at all.
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Degradation

Studies suggest that degradation leads to peak heights showing

a downward trend with increasing molecular weight, supposedly

because smaller alleles are more resistant to degradation.

This observation is sometimes referred to as the degradation

slope or the ski slope.
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Locus Specific Amplification Efficiency

Additional variability arises from differences in amplification effi-

ciency per locus. Observations show that some loci amplify more

efficiently than others, and that these differences appear to vary

over time.

Amplification bias is thought to be a result of the large variation

in target loci length.
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Replicates

Replicates will show different replicate amplification efficiencies,
but can be consolidated into a single analysis, even for different
amounts of template DNA. As long as replicates originate from
the same DNA extract, they can be used to obtain a more
accurate genotype profile.

Replication is not always possible, and in case of a LTDNA sample
it would probably be preferable to use as much as possible of the
available DNA to give the best possible single-run profile.
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Replicate Consistency vs. Template Amount

Higher template amounts result in more balanced peak heights
between replicates.
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Heterozygote Balance

A consequence of all the stochastic variations that have been

introduced into the process, is that the two peaks of heterozygous

alleles will also show variability, termed the heterozygote balance.

The difference is thought to be affected by the number of repeat

sequences, since high molecular weight alleles:

• Stutter more;

• And amplify less.
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Heterozygote Balance

Understanding the variability in heterozygous balance is important

for the interpretation of mixed profiles and low template DNA:

• For LTDNA, peaks may be so imbalanced that it leads to

alleles not exceeding the allelic threshold or even a drop-out.

• It may be used to classify combinations of alleles (or geno-

types) as possible or impossible when considering a mixture.
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STR Typing Characteristics

To effectively interpret DNA evidence, phenomena and factors like

mutations, CNVs, contamination, template amount, repli-

cates, amplification efficiency, and degradation should be

considered.

These lead to observations in the form of stutter, drop-ins,

drop-outs, peak height variability and heterozygote balance,

that may need to be incorporated in weight-of-evidence calcula-

tions.
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Testing for Allelic Independence

What is the probability a person has a particular DNA profile?

What is the probability a person has a particular profile if it has

already been seen once?

The first question is a little easier to think about, but difficult

to answer in practice: it is very unlikely that a profile will be

seen in any sample of profiles. Even for one STR locus with 10

alleles, there are 55 different genotypes and most of those will

not occur in a sample of a few hundred profiles.

For locus D3S1358 in the African American population, the FBI

frequency database shows that 31 of the 55 genotype counts are

zero. Estimating the population frequencies for these 31 types

as zero doesn’t seem sensible.
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D3S1358 Genotype Counts

Observed <12 12 13 14 15 16 17 18 19 >19

<12 0
12 0 0
13 0 0 0
14 0 0 0 2
15 0 0 1 19 15
16 1 1 1 15 39 19
17 0 0 2 10 26 24 9
18 1 0 1 2 6 10 3 0
19 0 0 0 1 0 0 1 0 0

>19 0 0 0 0 1 0 0 0 0 0

Section 3 Slide 3



Hardy-Weinberg Law

A solution to the problem is to assume that the Hardy-Weinberg

Law holds. For a random mating population, expect that geno-

type frequencies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

For a locus with several alleles Ai:

PAiAi
= (pAi

)2

PAiAj
= 2pAi

pAj
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D3S1358 Hardy-Weinberg Calculations

The allele counts for D3S1358 in the African-American sample

are:

Total

Allele <12 12 13 14 15 16 17 18 19 >19
Count 2 1 5 51 122 129 84 23 2 1 420

If the Hardy-Weinberg Law holds, then we would expect to see

np̃2
13 = 210 × (5/420)2 = 0.03 individuals of type 13,13 in a

sample of 210 individuals.

Also, we would expect to see 2np̃13p̃14 = 420×(5/420)×(51/420) =

0.61 individuals of type 13,14 in a sample of 210 individuals.

Other values are shown on the next slide.
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D3S1358 Observed and Expected Counts

<12 12 13 14 15 16 17 18 19 >19
<12 Obs. 0

Exp. 0.0
12 Obs. 0 0

Exp. 0.0 0.0
13 Obs. 0 0 0

Exp. 0.0 0.0 0.0
14 Obs. 0 0 0 2

Exp. 0.2 0.1 0.6 3.1
15 Obs. 0 0 1 19 15

Exp. 0.6 0.3 1.5 14.8 17.7
16 Obs. 1 1 1 15 39 19

Exp. 0.6 0.3 1.5 15.7 37.5 19.8
17 Obs. 0 0 2 10 26 24 9

Exp. 0.4 0.2 1.0 10.2 24.4 25.8 8.4
18 Obs. 1 0 1 2 6 10 3 0

Exp. 0.1 0.1 0.3 2.8 6.7 7.1 4.6 0.6
19 Obs. 0 0 0 1 0 0 1 0 0

Exp. 0.0 0.0 0.0 0.2 0.6 0.6 0.4 0.1 0.0
>19 Obs. 0 0 0 0 1 0 0 0 0 0

Exp. 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0
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Testing for Hardy-Weinberg Equilibrium

A test of the Hardy-Weinberg Law will somehow decide if the

observed and expected numbers are sufficiently similar that we

can proceed as though the law can be used.

In one of the first applications of Hardy-Weinberg testing in a

US forensic setting:

“To justify applying the classical formulas of population

genetics in the Castro case the Hispanic population must

be in Hardy-Weinberg equilibrium. Applying this test

to the Hispanic sample, one finds spectacular deviations

from Hardy-Weinberg equilibrium.”

Lander ES. 1989. DNA fingerprinting on trial. Nature 339:

501-505.

Section 3 Slide 7



VNTR “Coalescence”

Forensic DNA profiling initially used minisatellites, or VNTR loci,

with large numbers of alleles. Heterozygotes would be scored as

homozygotes if the two alleles were so similar in length that they

coalesced into one band on an autoradiogram. Small alleles often

not detected at all, and this is the cause of Lander’s finding.

Considerable debate in early 1990s on alternative “binning” strate-

gies for reducing the number of alleles (Science 253:1037-1041,

1991).

Typing has moved to microsatellites with fewer and more easily

distinguished alleles, but testing for Hardy-Weinberg equilibrium

continues. There are still reasons why the law may not hold.
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Population Structure can Cause Departure from

HWE

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Structure

Effect of population structure taken into account with the “theta-

correction.” Matching probabilities allow for a variance in allele

frequencies among subpopulations.

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

where pA is the average allele frequency over all subpopulations.

We will come back to this expression.
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Population Admixture

A population might represent the recent admixture of two parental

populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marriages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25
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Exact HWE Test

The preferred test for HWE is an “exact” one. The test rests

on the assumption that individuals are sampled randomly from

a population so that genotype counts have a multinomial distri-

bution:

Pr(nAA, nAa, naa) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

This equation is always true, and when there is HWE (PAA = p2
A

etc.) there is the additional result that the allele counts have a

binomial distribution:

Pr(nA, na) =
(2n)!

nA!na!
(pA)nA(pa)

na
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Exact HWE Test

Putting these together gives the conditional probability of the

genotypic data given the allelic data and given HWE:

Pr(nAA, nAa, naa|nA, na,HWE) =

n!
nAA!nAa!naa!

(p2
A)nAA(2pApa)nAa(p2

a)
naa

(2n)!
nA!na!

(pA)nA(pa)na

=
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this probability is un-

usually small.

Section 3 Slide 13



Exact HWE Test Example

Reject the HWE hypothesis if the probability of the genotypic

array, conditional on the allelic array, is among the smallest prob-

abilities for all the possible sets of genotypic counts for those

allele counts.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays:

AA Aa aa Pr(nAA, nAa, naa|nA, na,HWE)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99
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Exact HWE Test

The probability of the data on the previous slide, conditional on

the allele frequencies and on HWE, is 1/99 = 0.01. This is less

than the conventional 5% significance level.

In general, the p-value is the (conditional) probability of the data

plus the probabilities of all the less-probable datasets. The prob-

abilities are all calculated assuming HWE is true.
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Exact HWE Test

Still in the two-allele case, for a sample of size n = 100 with

minor allele frequency of 0.07, there are only 8 sets of genotype

counts:

Exact
nAA nAa naa Prob. p-value

93 0 7 0.0000 0.0000∗

92 2 6 0.0000 0.0000∗

91 4 5 0.0000 0.0000∗

90 6 4 0.0002 0.0002∗

89 8 3 0.0051 0.0053∗

88 10 2 0.0602 0.0654
87 12 1 0.3209 0.3863
86 14 0 0.6136 1.0000

So, for a nominal 5% significance level, the actual significance

level is 0.0053 for an exact test that rejects when nAa ≤ 8.
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Permutation Test

For large sample sizes and many alleles per locus, there are too

many genotypic arrays for a complete enumeration and a deter-

mination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting

the alleles among genotypes, and calculating the proportion of

these permuted genotypic arrays that have a smaller conditional

probability than the original data. If this proportion is small, the

Hardy-Weinberg hypothesis is rejected.
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Permutation Test

Mark a set of five index cards to represent five genotypes:

Card 1: A A

Card 2: A A

Card 3: A A

Card 4: a a

Card 5: a a

Tear the cards in half to give a deck of 10 cards, each with

one allele. Shuffle the deck and deal into 5 pairs, to give five

genotypes.
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Permutation Test

The permuted set of genotypes fall into one of four types:

AA Aa aa Number of times

3 0 2

2 2 1

1 4 0
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Permutation Test

Check the following theoretical values for the proportions of each

of the three types, from the expression:

n!

nAA!nAa!naa!
×

2nAanA!na!

(2n)!

AA Aa aa Conditional Probability

3 0 2 1
21 = 0.048

2 2 1 12
21 = 0.571

1 4 0 8
21 = 0.381

These should match the proportions found by repeating shuf-

flings of the deck of 10 allele cards.
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Permutation Test for D3S1358

For a STR locus, where {ng} are the genotype counts and n =
∑

g ng is the sample size, and {na} are the alleles counts with

2n =
∑

a na, the exact test statistic is

Pr({ng}|{na},HWE) =
n!2H ∏

a na!
∏

g ng!(2n)!

where H is the count of heterozygotes.

This probability for the African American genotypic counts at

D3S1358 is 0.6163 × 10−13, which is a very small number. But

it is not unusually small if HWE holds: a proportion 0.81 of 1000

permutations have an even smaller probability. We do not reject

the HWE hypothesis in this case.
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Linkage Disequilibrium

This term is generally reserved for association between pairs of

alleles – one at each of two loci. In the present context, it

may simply mean some lack of independence of profile or match

probabilities at different loci.

Unlinked loci are expected to be almost independent.

However, if two profiles match at several loci this may be because

they are from the same, or related, people and so are likely to

match at additional loci.
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Allele Matching

Forensic genetics is concerned with matching of genetic profiles

from evidence and from persons of interest. Profile match prob-

abilities rest on the probabilities of matching among the alleles

constituting the profiles.

Allele matching can refer to alleles within an individual (inbreed-

ing), between individuals within a population (relatedness) and

between populations (population structure). In all these cases

there are parameters that describe profile match probabilities,

and these parameters can be estimated by comparing the ob-

served matching for a target set of alleles with that between a

comparison set.

Section 3 Slide 23



Allele Matching Within Individuals

The inbreeding coefficient for an individual is the probability it

receives two alleles at a locus, one from each parent, that are
identical by descent.

What can be observed, however, is identity in state. An individual

is either homozygous or heterozygous at a locus: the two alleles
either match or miss-match at that locus. The proportion of
matching alleles at a locus is either zero or one, not a very

informative statistic, but the proportion of an individual’s loci
that are homozygous may be informative for their inbreeding

status.

There is still a need for a reference: for a locus such as a SNP

with a small number of alleles many loci will be homozygous
even for non-inbred individuals. Therefore we compare the pro-

portion of loci with matching alleles for an individual with the
matching proportion for pairs of alleles taken one from each of

two individuals: is allele matching higher within than between
individuals?
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Inbreeding

If M̃j is the observed proportion of loci with matching alleles (i.e.

homozygous) for individual j, and if M̃S is the observed propor-

tion of matching alleles, one from each of two individuals in the

population, then the within-population inbreeding coefficient fj
is estimated as

f̂j =
M̃j − M̃S

1 − M̃S

Note that this can be negative for individuals with high degrees

of heterozygosity.

The average of these estimates over all the individuals in a sam-

ple from a population estimates the within-population inbreeding

coefficient f :

f̂ =
M̃I − M̃S

1 − M̃S

where M̃I =
∑n

j=1 M̃j/n. Hardy-Weinberg equilibrium corre-

sponds to f = 0.
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SNP-based Inbreeding

From 400,000 SNPs on Chromosome 22 of the 1000 Genomes

ACB populations (96 Afro-Caribbeans in Barbados);

Inbreeding

Estimate

F
re

q
u

e
n

c
y

−0.10 0.00 0.10

0
1

0
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Allele Matching Between Individuals

How can we tell if a pair of individuals has a high degree of allele

matching? What does “high” mean?

We assess relatedness of individuals within a population by com-

paring their degree of allele matching with the degree for pairs

of individuals with one from each of two different populations.
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Allele Matching Between Individuals

If M̃jj′ is the observed proportion of loci with matching alleles,

one from each of individuals j and j′, and if M̃S is the average

of all the M̃jj′’s, then the within-population kinship coefficient

betajj′ is estimated as

β̂jj′ =
M̃jj′ − M̃S

1 − M̃S

Note that this can be negative for pairs of individuals less related

than the average pair-matching in the sample.

The average of these estimates over all pairs of individuals in a

sample is zero, but this doesn’t allow us to compare populations.
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SNP-based Coancestry

From 400,000 SNPs on Chromosome 22 of the 1000 Genomes

ACB populations (4560 pairs of Afro-Caribbeans in Barbados);
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Allele Matching Between Populations

We calibrated allele matching within individuals by comparison

with matching between pairs of individuals.

We calibrate the allele matching between pairs of individuals by

comparison with matching between pairs of populations. If M̃ ii′

is the observed proportion of loci with matching alleles, one from

each of populations i and i′, and if M̃B is the average of all the

M̃ ii′’s, then the total kinship coefficient βjj′ is estimated as

β̂jj′ =
M̃jj′ − M̃B

1 − M̃B

The average of these estimates over all pairs of individuals in a

sample from a population is

β̂ =
M̃S − M̃B

1 − M̃B

This is the “θ” needed for the “theta correction” discussed be-

low.
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Within-population Matching

We can get some empirical matching proportions when we have

a set of profiles. To simplify this initial discussion, consider

the following data for the Y-STR locus DYS390 from the NIST

database:

Population
Allele Afr.Am. Cauc. Hisp. Asian Total

20 4 1 1 0 6
21 176 4 17 1 198
22 43 45 14 17 119
23 36 116 50 17 219
24 56 145 129 21 351
25 23 46 21 36 126
26 3 2 2 4 11
27 0 0 2 0 2

Total 341 359 236 96 1032
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Within- and Between-population Matching for DYS390

Within the African-American sample there are 341×340 = 115,940

pairs of profiles and the number of between individual-pair matches

is

4×3+176×175+43×42+36×35+56×55+23×22+3×2 = 37,470

so the within-population matching proportion is 37,470/115,940 =

0.323.

Between the African-American and Caucasian samples, there are

341×359 = 122,419 pairs of profiles and the number of matches

is

4×1+176×4+43×45+36×116+56×145+23×4+3×2 = 12,403

so the between-population matching proportion is 12,403/122,419 =

0.101.
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Allele Counts in NIST Data for DYS391

Population
Allele Afr.Am. Cauc. Hisp. Asian Total

7 0 0 1 0 1
8 0 1 0 1 2
9 2 12 16 3 33
10 238 162 128 79 607
11 93 175 89 13 370
12 7 9 2 0 18
13 1 0 0 0 1

Total 341 359 236 96 1032

The within-population matching proportion for the African-American

sample is 65,006/115,940=0.561.

The between-population matching proportion for the African-

American and Caucasian samples is 54,918/122,419=0.449.
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Two-locus counts in NIST African-American Data
for DYS390, DYS391

DYS390 DYS391 Count ng ng(ng − 1)
22 10 34 1122
22 11 9 72
24 10 15 210
24 11 39 1482
24 12 1 0
24 9 1 0
23 10 19 342
23 11 14 182
23 12 3 6
21 10 157 24492
21 11 15 210
21 12 2 2
21 9 1 0
21 13 1 0
25 10 11 110
25 11 12 132
26 10 1 0
26 11 2 2
20 10 1 0
20 11 2 2
20 12 1 0
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Two-locus counts in NIST Caucasian Data for

DYS390, DYS391

DYS390 DYS391 Count ng ng(ng − 1)
22 10 43 1806
22 11 1 0
22 9 1 0
24 10 48 2256
24 11 88 7656
24 12 4 12
24 9 5 20
23 10 50 2450
23 11 60 3540
23 12 2 2
23 9 3 6
23 8 1 0
21 10 3 6
21 11 1 0
25 10 18 306
25 11 22 462
25 12 3 6
25 9 3 6
26 11 2 2
20 11 1 0
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Two-locus Matches

The within-population matching proportion for the African-American

sample is 28,366/115,940=0.245.

The within-population matching proportion for the Caucasian

sample is 18,536/128,522=0.144.

The between-population matching proportion for the African-

American and Caucasian samples is 8,347/122,419=0.068.

There is a clear decrease in matching between populations from

within populations.
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Section 4: DNA Interpretation and Modeling



DNA Interpretation and Modeling

• Thresholds

• Weight of evidence

• LR calculations

• LR modeling
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Thresholds

The most straightforward way to interpret an STR profile is with

the use of thresholds.

• High thresholds: will reduce the number of artifacts and

remove a lot of background noise. However, it may potentially

lead to a number of drop-outs.

• Low thresholds: will detect more authentic alleles, but have

a higher probability of showing drop-ins.
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Thresholds

An analytical threshold (AT) is usually set as a limit above which
method response is interpreted as an authentic allele.

Additional stutter thresholds can help improve mixture profile
interpretation (e.g. 5− 15% of the main allele).
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Weight of Evidence

An STR profile obtained from a crime scene sample can be

compared to a person of interest, and it may be found that this

person cannot be excluded. An ‘inclusion’ may be reported, but

is practically worthless without some expression on the strength

of this evidence.
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The Island Problem

Suppose there is a crime committed on a remote island with a

population of size 101. A suspect Q is found to match the crime

scene profile. What is the probability that Q is the source of the

profile, assuming that:

• All individuals are equally likely to be the source.

• The DNA profiles of all the other individuals are unknown.

• We expect 1 person in 100 to possess this observed profile.

Source: Weight-of-Evidence for Forensic DNA Profiles (Balding & Steele, 2015)
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The Island Problem - Solution

In addition to Q, we expect one other individual on the island to

match. So, even though the profile is rare, there is only a 50%

chance that Q is the source.

Individuals: 101

Source: 1 Not source: 100

Matching: 2

100% TP 1% FP
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The Island Problem - Odds Version

Recalling the odds form of Bayes’ theorem:

P (Hp|E)

P (Hd|E)
=
P (E|Hp)
P (E|Hd)

×
P (Hp)

P (Hd)
,

with

P (Hp) =
1

101
P (E|Hp) = 100%

P (Hd) =
100

101
P (E|Hd) = 1%,

yielding prior odds of 1
100 and a likelihood ratio of 100. Combining

this gives posterior odd of 1, or equivalently, a 50%/50% chance.
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The Island Problem - Odds Version

More generally,

P (Hp|E) =
1

1 +Np
,

with N the number of individuals on the island other than the

suspect, and p the profile probability of the observed DNA sample.

Extreme oversimplification of assessing the weight of evidence:

• Uncertainty about N and p

• Effect of searches, typing errors, other evidence

• Population structure and relatives
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The Island Problem - Searches

Now suppose Q was identified through a search, with the suspect

being the only one among 21 tested individuals who matches the

crime scene profile.

• How does this knowledge affect the probability of being the

source?

• What is the general expression for the probability of being

the source, using k for the number of individuals who have

been excluded?
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The Island Problem - Searches

In this case we can exclude individuals from our pool of possible

donors, such that our prior odds will slightly increase.

Out of the N−k = 80 individuals, we expect another 0.8 matches,

yielding a probability of being the source of 1/1.8 ≈ 56%. Or, in

formula:

P (Hp|E) =
1

1 + (N − k)p
,

where setting k = 0 gives the original expression and k = N gives

P (Hp|E) = 1.
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Likelihood Ratio

As seen previously, the forensic scientist is concerned with assign-

ing the likelihood ratio

LR =
P (GC|GS, Hp, I)

P (GC|GS, Hd, I)
,

which is equivalent to the reciprocal of the profile probability for

the island problem:

LR =
1

P (GC|Hd, I)
=

1

p
,

although we observed that the match probability is a more relevant

quantity:

LR =
1

P (GC|GS, Hd, I)
.
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Match Probabilities

Recall the match probabilities for homozygotes:

P (AA|AA) =
[3θ + (1− θ)pA][2θ + (1− θ)pA]

(1 + θ)(1 + 2θ)

= p2
A (if θ = 0),

and for heterozygotes:

P (AB|AB) =
2[θ + (1− θ)pA][θ + (1− θ)pB]

(1 + θ)(1 + 2θ)

= 2pApB (if θ = 0).
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LR for a Single Locus

Consider a simple two-person mixture profile (e.g. contributors

are unrelated, ignoring population structure, no drop-outs/drop-

ins), where GC = ABCD. What is the appropriate single-locus

LR (assuming HWE and pA, pB, pC and pD are known) when:

• GS = AB and GK = CD, with

Hp : K + POI (S) and Hd : K + Unknown (U)

• GS = AA, with:

Hp : K + S and Hd : K + U

• GS = AB and the second contributor is unknown

Hp : S + U and Hd : 2U
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LR for a Single Locus

Consider a simple two-person mixture profile (e.g. contributors

are unrelated, ignoring population structure, no drop-outs/drop-

ins), where GC = ABCD. What is the appropriate single-locus

LR (assuming HWE and pA, pB, pC and pD are known) when:

• LR =
P (ABCD|AB,CD,Hp)
P (ABCD|CD,Hd)

= 1
2pApB

;

• LR =
P (ABCD|AA,CD,Hp)
P (ABCD|CD,Hd)

= 0;

• LR =
P (ABCD|AB,Hp)
P (ABCD|Hd)

= 2pCpD
6·4pApBpCpD

= 1
12pApB

.
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LR Modeling

Different approaches can be used to assess the likelihood ratio:

• Binary model

• Semi-continuous model

• Continuous model
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Binary Model

A binary model limits interpretation of DNA profiles to qualitative

allele callings only, without any attempt to infer the underlying

genotypes (i.e. each are regarded as equally likely).

Just as in our previous example, single-locus LRs can be calculated

and combined across loci via multiplication.
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Semi-continuous Model

A semi-continuous model retains the simplicity of binary meth-

ods, but combines this with probabilistic modeling of known

phenomena such as drop-ins and drop-outs.

Since these models still suffer from a significant loss of informa-

tion, a more quantitative approach might be preferred.

Ideally, a statistical framework utilizes as much available quantita-

tive information as possible, while maintaining comprehensibility.
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Continuous Model

The key point of a fully continuous model is that it considers
peak heights as a continuous variable.

Weights Weights
Donor 1 Donor 2 (Qualitative) (Quantitative)

20,21 22,24 1 0.05
20,22 21,24 1 0.05
20,24 21,22 1 0.75
21,22 20,24 1 0.05
21,24 20,22 1 0.05
22,24 20,21 1 0.05
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Peak Height Modeling

Peak heights can be modeled by defining the total allelic product
(TAP), which will be a function of

• the template amount tn;

• a measure of degradation dn;

• a locus-specific amplification efficiency Al;

• a replicate multiplier Rr;

• and allele dosage Xl
an.

T larn then describes the TAP of allele a at locus l, for replicate r

from contributor n.
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TAP Modeling

Theoretically, the previous slide models the peak heights, but in

practice, we will observe slightly different values. This is because

we haven’t incorporated the concept of stutter yet.

If we allow for back stutter and forward stutter, we can write:

Ta = Oa−1 +Oa +Oa+1.
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Stacking

Note that we assume that expected peak heights are additive, i.e.

if there are multiple sources of a single allele, the height of that

allele will equal the sum of the individual expected heights from

each source.

This assumption of additivity is called stacking.

Recent talks (Rudin, AAFS 2017) emphasize that this assump-

tion has not been validated. To determine if this practice is

scientifically supportable, it would be good to obtain a large set

of mixtures from known profiles to look at the expected combined

versus observed combined peak heights.
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Modeling Degradation

A simple model for degradation would be a linear model, i.e. peak

heights decline constantly with respect to molecular weight.

If we assume that the breakdown of a DNA strand is random with

respect to location, an exponential model seems more reasonable.
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Modeling Degradation

• Consider a DNA fragment of length l.

• Let p be the probability of a break at any of the locations

1, . . . , l.

• The chance of the full fragment being amplified is (1− p)l.

• This describes an exponential decline in peak heights.

Source: Forensic DNA Evidence Interpretation (Buckleton et al., 2016).
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Modeling Degradation

Section 4 Slide 25



Modeling Degradation

Source: Degradation of Forensic DNA Profiles (Bright et al., 2013).
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Modeling Degradation

Source: Degradation of Forensic DNA Profiles (Bright et al., 2013).
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Modeling Heterozygote Balance

The heterozygote balance (Hb) is usually expressed as a peak

height ratio, i.e. the ratio of two heterozygote peaks at a locus.

There are two common definitions:

Hb1 =
OHMW

OLMW
, and Hb2 =

Osmaller

Olarger
,

where O is the observed peak height; smaller and larger refer to

the height of the alleles, and HMW and LMW refer to the higher

and lower molecular weight allele, respectively.
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Modeling Hb

Hb1 =
OHMW

OLMW

=
620

800
= 0.775

= Hb2

• Hb1 has the highest information content, because it maintains

peak order.

• Hb2 may be obtained from Hb1, but not vice versa.

Section 4 Slide 29



Modeling Hb

The following figure shows Hb rates versus the average peak

height (APH), which is simply the average of two observed

heterozygote alleles at a locus.
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Stutter Modeling

Stutter modeling becomes especially important in case of mix-

tures, when a true (minor) contributor’s alleles are approximately

the same height as stutter products from the major contributor.

Stutter is typically modeled by a stutter ratio (SR):

SR =
Oa−1

Oa
,

where Oa−1 refers to the observed peak height of the back stutter

of parent peak Oa.
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Stutter Modeling

As we’ve seen earlier, stutter thresholds can be set to help

interpret a mixture profile. Locus-specific thresholds account for

the variability observed between loci. Traditionally, fixed rates of

around 15% are used to remove stutter.

Locus Stutter Filter (%)
TH01 5
D2S441 9
vWA 11
FGA 11.5
SE33 15
D22S1045 17

However, fixed stutter thresholds have the disadvantage that they

do not incorporate the well-known stutter characteristics (such

as the correlation with the number of repeats).
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Stutter Modeling - Locus Specific Thresholds

Source: Implementation and validation of an improved allele specific stutter filtering
method for epg interpretation (Buckleton et al., 2017).
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Stutter Modeling - Locus Specific Thresholds

Fixed stutter thresholds lead to over filtering and under filtering:

• Over filtering: leads to potential data loss and difficulties in

interpretation when true allelic peaks of a minor contributor

get filtered.

• Under filtering: leads to the possibility that stutter peaks

are treated as allelic, and difficulties in determining genotypes

for a minor contributor and the number of contributors.
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Stutter Modeling - Allele Specific Thresholds

Source: Implementation and validation of an improved allele specific stutter filtering
method for epg interpretation (Buckleton et al., 2017).
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Stutter Modeling - Thresholds

These observations suggest that stutter thresholds should not only

be locus-based, but at a minimum also allele-based. Moreover:

• Thresholds do not account for more complex situations such

as composite stutter;

• And still result in a binary decision (i.e. the peak is either

ignored or labeled as allelic).

Fully continuous models have the potential to overcome such

problems, since there is no need for thresholds within a proba-

bilistic approach.
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Stutter Modeling - Allele Model

A simple linear, allele specific, model can be fitted for each locus:

SR ∼ Allele number ⇒ SR = ma+ c,

with a the allele number, and m and c are constants that can be

fitted to the data.

An R-squared measure (R2) can be used to measure how close

the data are fitted to the regression line.
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Stutter Modeling - Allele Model

The following figure shows locus D18S51 with a fitted model of

SR = 0.013a− 0.073 (R2 = 82%).
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Stutter Modeling - Allele Model

But this does not seem to work for all loci:

Locus TH01 and D9S1122.
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Stutter Modeling - LUS

These observations suggest that there exists a linear relationship

between stutter ratio and the longest uninterrupted stretch (LUS).

Repeat motif Allele LUS
[AATG]6 6 6
[AATG]7 7 7
[AATG]8 8 8
[AATG]9 9 9

[AATG]6ATG[AATG]3 9.3 6

Common TH01 allele sequences.
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Stutter Modeling - LUS Model

A model based on the LUS can be fitted as follows:

SR ∼ LUS ⇒ SR = ml + c,

with l the LUS, and m and c are constants that can be fitted to

the data.
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Stutter Modeling - LUS Model

Locus TH01 allele vs. LUS.
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Stutter Modeling - LUS Model

What about more complex loci?
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Stutter Modeling - AUS

It seems like the LUS still leaves some of the stutter variation
unexplained. A multi-sequence model takes into account all
uninterrupted stretches (AUS) as potentially contributing to
stuttering.

Allele Repeat motif
21.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]11G AAGG[AAAG]2AG
21.2 [AAAG]2AG[AAAG]3AG[AAAG]11AA AAAG[AAAG]9G AAGG[AAAG]2AG
22 [AAAG]2AG[AAAG]3AG[AAAG]22G[AAAG]3AG

22.2 [AAAG]2AG[AAAG]3AG[AAAG]7AA AAAG[AAAG]14GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]8[AG]5[AAAG]12GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]12GAAGG[AAAG]2AG

Examples of locus SE33 sequences.

SR ∼ AUS ⇒ SR = m
∑
i

max (li − x,0) + c,

where li is the length of sequence i, and m, c and x are constants.
The term x is called the lag, and can be interpreted as the number
of repeats before stuttering begins.
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Stutter Modeling - AUS Model

SR = m
∑
i

max (li − 6.11,0) + c
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Stutter Modeling

• Note that for simple repeats there is no difference between

the three approaches:

[AATG]8 ⇒ Allele nr = LUS = AUS = 8

• What about other stutter products?

We can model forward stutter as well, and can now use these

expectations to decompose peak heights (e.g. for composite

stutter or stutter affected heterozygotes).

However, the occurrence of artifacts such as double back and

2bp stutter is likely to be so rare that modeling them statistically

can hardly be justified.
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Forward Stutter Modeling

Forward stutter can be quantified by a stutter ratio as well (FSR):

FSR =
Oa+1

Oa
,

where Oa+1 refers to the observed peak height of the forward
stutter of parent peak Oa.

Forward stutter is observed less often than back stutter, and
peaks are more likely to fall below the limit of detection:

Locus Stutter Filter (%)
TH01 0.06
vWA 0.33
FGA 0.30
D2S441 0.55
SE33 0.59
D10S1248 1.28
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Stutter Modeling - Discussion

How to determine the sequence length for CE data?

Allele Repeat motif
21.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]11G AAGG[AAAG]2AG
21.2 [AAAG]2AG[AAAG]3AG[AAAG]11AA AAAG[AAAG]9G AAGG[AAAG]2AG
22 [AAAG]2AG[AAAG]3AG[AAAG]22G[AAAG]3AG

22.2 [AAAG]2AG[AAAG]3AG[AAAG]7AA AAAG[AAAG]14GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]8[AG]5[AAAG]12GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]12GAAGG[AAAG]2AG
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Stutter Modeling - Discussion

What about variation that is suggested to be attributable to

sequence motif?

Stutter ratios for locus D2S1338.

Models fitted based on AUS still left some variability unexplained

for some loci.
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LR Modeling

The LR can now be assessed by writing the ratio in the form:

LR =
P (GC|GS, Hp, I)

P (GC|GS, Hd, I)

=

∑
j P (GC|Sj)P (Sj|Hp)∑
j′ P (GC|Sj′)P (Sj′|Hd)

=

∑
j wjP (Sj|Hp)∑
j′wj′P (Sj′|Hd)

.

The two propositions each define sets of genotypes S, and the

weights w describe how well these sets fit our observed data GC.

Under Hp all the genotype sets Sj usually include GS.
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LR Modeling

The full profile weight can be obtained as a product of the weights

at each locus:

wj =
∏
l

wlj.

In case of the binary model, the weights are set either as 1 or

0, depending on whether or not the crime scene profile can be

explained based on the genotype set under consideration.

Weights Weights
Donor 1 Donor 2 (Binary) (Continuous)

20,21 22,24 1 0.05
20,22 21,24 1 0.05
20,24 21,22 1 0.75
21,22 20,24 1 0.05
21,24 20,22 1 0.05
22,24 20,21 1 0.05
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Modeling Strategies

Now that a model has been developed, we require information

about the input parameters.

• Maximization: Parameters can be chosen that maximize the

likelihood of the observations under each hypothesis.

• Integration: Rather than knowing the true values of the

parameters, we need to know the effect they have on the

probability of the observed data.

• Markov chain Monte Carlo: Instead of testing every possi-

ble combination of parameters, only a small distribution of

parameter values and genotype sets will accurately describe

the data.
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Markov chain Monte Carlo (MCMC)

MCMC will start by choosing parameter values at random, even-
tually leading to more sensible options, until it has reached an
equilibrium state.
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Expected Peak Heights

Based on a set of input parameters, an expected profile can be
generated.

Step 1: Genotypes are chosen.
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Expected Peak Heights

Step 2: Template amounts per contributor are incorporated.
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Expected Peak Heights

Step 3: Degradation is taken into account.
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Expected Peak Heights

Step 4: Stutter is taken into account.
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Expected Peak Heights

Step 5: Locus specific amplification efficiencies are introduced.
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The Perfect Model

We can now compare our expected profile with the observed STR

profile.

What would a perfect model look like?
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The Perfect Model

Observations show that the relative variance of small peaks is large
and the relative variance of large peaks is small. This suggests
that the variance is inversely proportional to the expected peak
height.
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Generating Weights

The weights can now be calculated by considering the ratio of

the observed and expected peak heights, assuming the log of this

ratio has mean 0 and variance proportional to 1/E.
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Continuous Model Network

Combining all elements leads to an overall continuous model

network:

Section 4 Slide 62



Worked Example for the Continuous Model

The epg for a 3-person mixture at locus vWA is as follows:

We would like to assess the LR under the hypothesis that:

Hp : GC = 17,18 and 2U are the source of the sample.

Hd : 3U are the source of the sample.

Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Worked Example for the Continuous Model

The LR can now be assessed by writing the ratio in the form:

LR =
P (GC|GS, Hp, I)

P (GC|GS, Hd, I)

=

∑
j P (GC|Sj)P (Sj|Hp)∑
j′ P (GC|Sj′)P (Sj′|Hd)

=

∑
j wjP (Sj|Hp)∑
j′wj′P (Sj′|Hd)

.

The two propositions each define sets of genotypes S, and the

weights w describe how well these sets fit our observed data GC.

Under Hp all the genotype sets Sj usually include GS.
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Worked Example for the Continuous Model

Suppose the following weights have been established for locus

vWA:

Genotype Set Donor 1 Donor 2 Donor 3 Weight
S1 16,18 17,17 14,14 0.00045
S2 16,18 17,17 14,15 0.00017
S3 16,16 17,17 14,16 0.00008
S4 16,18 17,17 14,17 0.00002
S5 16,18 17,17 14,18 0.00054
... ... ... ... ...
S15 16,17 17,18 14,15 0.15800
S16 16,17 17,18 14,16 0.28700
S17 16,17 17,18 14,17 0.21000
S18 16,17 17,18 14,18 0.11400
S19 17,17 17,18 14,16 0.00016

The actual reference profiles of the three known contributors are:

Locus Donor 1 Donor 2 Donor 3
vWA 16,17 17,18 14,16

Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Worked Example for the Continuous Model

Under Hp only the genotype sets containing GC are relevant:

Set Donor 1 Donor 2 Donor 3 Weight P (Sj|Hp)
S1 16,18 17,17 14,14 0.00045 0
S2 16,18 17,17 14,15 0.00017 0
S3 16,16 17,17 14,16 0.00008 0
S4 16,18 17,17 14,17 0.00002 0
S5 16,18 17,17 14,18 0.00054 0
... ... ... ... ... ...
S15 16,17 17,18 14,15 0.15800 2p16p17 · 2p14p15
S16 16,17 17,18 14,16 0.28700 2p16p17 · 2p14p16
S17 16,17 17,18 14,17 0.21000 2p16p17 · 2p14p17
S18 16,17 17,18 14,18 0.11400 2p16p17 · 2p14p18
S19 17,17 17,18 14,16 0.00016 p2

16 · 2p14p16

Note that these calculations can be modified to allow for popula-
tion substructure.

Multiplication of the weights with the probabilities, and summing
over them, results in the numerator of the LR P (E|Hp).
Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Worked Example for the Continuous Model

Using allele frequencies (in this case from an Australian Caucasian
sub-population):

Allele Frequency
14 0.1146
15 0.1071
16 0.2044
17 0.2726
18 0.2090

yields: P(E|Hp) = 4.4 × 10−3. Similarly, we can calculate the
probabilities under Hd, now considering all genotype sets and
corresponding donors, we get: P (E|Hd) = 5.0× 10−4.

Combining this gives us the LR for this specific locus:

LR =
P (E|Hp)
P (E|Hd)

=
4.4× 10−3

5.0× 10−4
= 8.8

Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Worked Example for the Continuous Model

The overall LR is a combination of all loci (here compared with
a binary model):

Locus LRB LRC
D10S1248 0.97 4.69
vWA 1.24 8.21
D16S539 0.45 5.32
D2S1338 2.27 31.22
D8S1179 0.51 7.79
D21S11 0.94 9.98
D18S51 3.85 52.08
D22S1045 4.32 59.18
D19S433 0.92 7.17
TH01 0.97 13.31
FGA 1.39 21.14
D2S441 0.65 4.84
D3S1358 0.93 13.22
D1S1656 5.55 106.14
D12S391 1.42 21.34
SE33 6.23 69.53
Overall LR 356 3.13× 1019

Source: The interpretation of single source and mixed DNA profiles (Taylor et al., 2013).
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Available Software

The Scientific Working Group on DNA Analysis Methods (SWG-

DAM) defines probabilistic genotyping as

“. . . the use of biological modeling, statistical theory, computer al-
gorithms, and probability distributions to calculate likelihood ratios
(LRs) and/or infer genotypes for the DNA typing results of forensic
samples (“forensic DNA typing results”)”.

Over the years, several probabilistic genotyping programs have

been developed across the globe, ranging from commercial pack-

ages to open-source platforms, with the main goal to interpret

complex DNA mixtures for CE data.
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Available Software

Not all models as published in literature have been translated

into software.

Software Class Availability Optimization
LRmix Studio semi-continuous open-source ML
Lab Retriever semi-continuous open-source ML
DNA LiRA semi-continuous open-source Bayes
likeLTD (semi-)continuous open-source ML
STRmix continuous commercial Bayes
TrueAllele continuous commercial Bayes
DNA·VIEW continuous commercial ML
DNAmixtures continuous open-source∗ ML
EuroForMix continuous open-source ML or Bayes
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Available Software - Discussion

There are no ground truths for probabilistic genotyping calcu-

lations. Moreover, the 2016 PCAST (President’s Council of

Advisors on Science and Technology) report stated:

“[w]hile likelihood ratios are a mathematically sound concept, their
application requires making a set of assumptions about DNA profiles
that require empirical testing. Errors in the assumptions can lead to
errors in the results”.

• Under what circumstances have the methods been validated?

What are their limitations?

• Commercial software has received criticism regarding their

black-box nature. Should source code be made accessible (to

the defense)?
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Available Software - Discussion

What about the consistency between software programs when

they examine the same evidence?

Method Sample A Sample B Sample C
LRmix Studio 1.29 1.85× 1014 0.0212
Lab Retriever 1.20 1.89× 1014 0.0241
DNA·VIEW 1.09× 10−14 4.66× 1011 2.24× 108

Combined Inconclusive Support to Hp Inconclusive

Another example can be found in the People v. Hillary (NY) case:

TrueAllele reported no statistical support for a match (LR < 0),

whereas STRmix inculpated the defendant with a likelihood ratio

of 360 000. The evidence consisted of an LTDNA sample with

an extreme mixture ratio.

Source: An alternative application of the consensus method to DNA typing interpretation
for Low Template-DNA mixtures (Garofano et al., 2015).
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Human Populations: History and Structure

In the paper

Novembre J, Johnson, Bryc K, Kutalik Z, Boyko AR, Auton A, Indap
A, King KS, Bergmann A, Nelson MB, Stephens M, Bustamante CD.
2008. Genes mirror geography within Europe. Nature 456:98

there is quite dramatic evidence that our genetic profiles contain

information about where we live, suggesting that these profiles

reflect the history of our populations.

The authors collected “SNP” (single nucleotide polymorphism)

data on over people living in Europe. Either the country of origin

of the people’s grandparents or their own country of birth was

known. On the next slide, these geographic locations were used

to color the location of each of 1,387 people in “genetic space.”

Instead of latitude and longitude on a geographic map, their

first two principal components were used: these components

summarize the 500,000 SNPs typed for each person.
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Novembre et al., 2008
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Novembre et al., 2008

As a follow-up, the authors took the genetic profile of each per-

son and used it to predict their latitude and longitude, and plot-

ted these on a geographic map. These predicted positions are

colored by the country of origin of each person.
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Y SNP Data Haplogroups

Another set of SNP data, this time from around the world, is

available for the Y chromosome. These data were collected

for the 1000 Genomes project (http://www.1000genomes.org/):

there are 26 populations:

East Asia: CDX. Chinese Dai in Xishuangbanna; CHB. Han Chi-

nese in Beijing; JPT. Japanese in Tokyo; KHV. Kinh in Ho Chi

Minh City; CHS. Southern Han Chinese.

South Asian: BEB. Bengali in Bangladesh; GIH. Gujarati Indian

in Houston; ITU. India Telugi in UK; PJL. Punjabi in Lahore;

STU. Sri Lankan Tamil in UK.
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Y SNP Data Haplogroups

African: ASW. African Ancestry in Southwest US; ACB. African

Caribbean in Barbados; ESN. Esan in Nigeria; GWD. Gambian

in the Gambia; LWK. Luthya in Kenya; MSL. Mende in Sierra

Leone; YRI. Yoruba in Nigeria.

European: GBR. British in UK; FIN. Finnish in Finland; IBS.

Iberian in Spain; TSI. Toscani in Italy; CEU. Utah residents with

European ancestry.

Americas: CLM. Columbian in Medellin; MXL. Mexican in Los

Angeles; PEL. Peruvian in Lima, PUR. Puerto Rican in Puerto

Rico.
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Y SNP Data Haplogroups
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Migration History of Early Humans

An interesting video of the migration of early humans is available

at:

http://www.bradshawfoundation.com/journey/
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Migration Map of Early Humans

https://genographic.nationalgeographic.com/human-journey/

This map summarizes the migration patterns of early humans.

Section 5 Slide 9



Migration Map of Early Humans

The map on the next slide, based on mitochondrial genetic pro-

files, is taken from:

Oppenheimer S. 2012. Out-of-Africa, the peopling of continents

and islands: tracing uniparental gene trees across the map. Phil.

Trans. R. Soc. B (2012) 367, 770-784 doi:10.1098/rstb.2011.0306.

The first two pages of this paper give a good overview, and they

contain this quote: “The finding of a greater genetic diversity

within Africa, when compared with outside, is now abundantly

supported by many genetic markers; so Africa is the most likely

geographic origin for a modern human dispersal.”
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Migration Map of Early Humans
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Forensic Implications

What does the theory about the spread of modern humans tell

us about how to interpret matching profiles?

Matching probabilities should be bigger within populations, and

more similar among populations that are closer together in time.

Forensic allele frequencies are consistent with the theory of hu-

man migration patterns.
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Forensic STR PCA Map

A large collection of forensic STR allele frequencies was used

to construct the principal component map on the next page.

Also shown are some data collected by forensic agencies in the

Caribbean, and by the FBI. The Bermuda police has been using

FBI data - does this seem to be reasonable?
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Forensic STR PCA Map
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Genetic Distances

Forensic allele frequencies were collected from 21 populations.

The next slides list the populations and show allele frequencies

for the Gc marker. This has only three alleles, A, B, C.

The matching proportions within each population, and between

each pair of populations, were calculated. These allow distances

(“theta” or β) to be calculated for each pair of populations, say

1 and 2: β̂12 = ([M̃1 + M̃2]/2 − M̃12)/(1 − M̃12).

M̃1: two alleles taken randomly from population 1 are the same

type.

M̃1: two alleles taken randomly from population 1 are the same

type.

M̃12: an allele taken randomly from population 1 matches an

allele taken randomly from population 2.
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Published Gc frequencies

Symbol Description Symbol Description
AFA FBI African-American IT4 Italian
AL1 North Slope Alaskan KOR Korean
AL2 Bethel-Wade Alaskan NAV Navajo
ARB Arabic NBA North Bavarian
CAU FBI Caucasian PBL Pueblo
CBA Coimbran SEH FBI Southeastern Hispanic
DUT Dutch Caucasian SOU Sioux
GAL Galician SPN Spanish
HN1 Hungarian SWH FBI Southwestern Hispanic
HN2 Hungarian SWI Swiss Caucasian
IT2 Italian
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Gc allele frequencies

Popn. Sample size A B C Popn. Sample size A B C
AFA 145 .338 .237 .423 IT4 200 .302 .163 .535
AL1 96 .177 .489 .334 KOR 116 .310 .422 .267
AL2 112 .236 .451 .313 NAV 81 .105 .240 .654
ARB 94 .133 .441 .425 NBA 150 .133 .383 .484
CAU 148 .114 .456 .429 PBL 103 .102 .374 .524
CBA 119 .159 .533 .306 SEH 94 .165 .447 .389
DUT 155 .106 .422 .471 SOU 64 .055 .422 .524
GAL 143 .140 .448 .413 SPN 132 .118 .474 .409
HN1 345 .106 .457 .438 SWH 96 .156 .437 .407
HN2 163 .097 .448 .454 SWI 100 .135 .465 .400
IT2 374 .139 .454 .408
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Distances based on Gc

AFA AL1 AL2 ARB CAU CBA DUT GAL HN1 HN2

AL1 .201

AL2 .163 .000

ARB .224 .002 .016

CAU .303 .020 .046 .008

CBA .309 .017 .034 .022 .009

DUT .341 .039 .070 .021 .000 .017

GAL .295 .015 .037 .007 .000 .004 .002

HN1 .339 .040 .072 .025 .001 .013 .000 .002

HN2 .348 .041 .073 .024 .000 .016 .000 .003 .000

IT2 .304 .023 .048 .015 .000 .004 .002 .000 .001 .002
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Distances based on Gc

AFA AL1 AL2 ARB CAU CBA DUT GAL HN1 HN2

IT4 .088 .029 .022 .032 .085 .098 .111 .081 .120 .117

KOR .074 .051 .026 .082 .139 .122 .175 .128 .179 .179

NAV .242 .060 .080 .028 .054 .103 .063 .061 .075 .070

NBA .278 .017 .041 .002 .000 .018 .004 .001 .007 .006

PBL .178 .033 .044 .015 .051 .085 .067 .053 .077 .073

SEH .254 .001 .015 .000 .002 .005 .014 .000 .014 .015

SOU .294 .035 .062 .008 .010 .046 .012 .015 .020 .016

SPN .315 .022 .048 .012 .000 .005 .000 .000 .000 .000

SWH .269 .004 .022 .000 .000 .004 .008 .000 .009 .009

SWI .298 .013 .035 .007 .000 .002 .002 .000 .002 .003
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Distances based on Gc

IT2 IT4 KOR NAV NBA PBL SEH SOU SPN SWH

IT4 .098

KOR .145 .026

NAV .072 .048 .143

NBA .005 .067 .127 .034

PBL .066 .016 .088 .003 .032

SEH .004 .052 .089 .054 .003 .038

SOU .021 .067 .148 .011 .001 .021 .019

SPN .000 .093 .144 .066 .002 .061 .003 .016

SWH .001 .060 .102 .053 .000 .040 .000 .014 .000

SWI .000 .079 .125 .062 .001 .054 .000 .016 .000 .000
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Clustering populations

Populations can be clustered on the basis of the genetic dis-

tances between them. For short-term evolution (among human

populations) the simple UPGMA method performs satisfactorily.

The closest pair of populations are clustered, and then distances

recomputed from each other population to this cluster. Then

the process continues.

Look at four of the populations:

AFA CAU SEH NAV

AFA –
CAU 0.303 –
SEH 0.254 0.002 –
NAV 0.242 0.054 0.054 –
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Clustering populations

The closest pair is CAU/SEH. Cluster them, and compute dis-

tances from the other two to this cluster:

AFA distance = (0.303+0.254)/2 = 0.278
NAV distance = (0.054+0.054)/2 = 0.054

The new distance matrix is

AFA CAU/SEH NAV

AFA –
CAU/SEH 0.278 –
NAV 0.242 0.054 –

and the next shortest distance is between NAV and CAU/SEH.
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Gc UPGMA Dendrogram

AFA

NAV

SEH

CAU

0.0020.0540.265

Section 5 Slide 23



Worldwide Survey of STR Data

Published allele frequencies for 24 STR loci were obtained for

446 populations. For each population i, the within-population

matching proportion M̃i was calculated. Also the average M̃B of

all the between-population matching proportions. The “θ” for

each population is calculated as β̂i = (M̃i−M̃B)/(1−M̃B). These

are shown on the next slide, ranked from smallest to largest and

colored by continent.

Africa: black; America: red; South Asia: orange; East Asia:

yellow; Europe: blue; Latino: turquoise; Middle East: grey;

Oceania: green.

Buckleton JS, Curran JM, Goudet J, Taylor D, Thiery A, Weir

BS. 2016. Forensic Science International: Genetics 23:91-100.
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Worldwide Survey of STR Data
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Match Probabilities

The β estimates for population structure provide numerical val-

ues to substitute for θ into the Balding-Nichols match probabili-

ties.

For AA homozygotes:

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

and for AB heterozygotes

Pr(AB|AB) =
2[θ + (1 − θ)pA][θ + (1 − θ)pB]

(1 + θ)(1 + 2θ)

These match probabilities are greater than the profile probabili-

ties Pr(AA),Pr(AB).

Balding DJ, Nichols RA. 1994. Forensic Science International

64:125-140.
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Partial Matching

For autosomal markers, two profiles may be:

Match: AA, AA or AB, AB

Partially Match: AA, AB or AB, AC

Mismatch: AA, BB or AA,BC or AB, CD

How likely are each of these?
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Database Matching

If every profile in a database is compared to every other profile,

each pair can be characterized as matching, partially matching

or mismatching without regard to the particular alleles. We find

the probabilities of these events by adding over all allele types.

The probability P2 that two profiles match (at two alleles) is

P2 =
∑

A

Pr(AA, AA) +
∑

A 6=B

Pr(AB, AB)

=

∑

A pA[θ + (1 − θ)pA][2θ + (1 − θ)pA][3θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

+
2

∑

A 6=B[θ + (1 − θ)pA][θ + (1 − θ)pB]

(1 + θ)(1 + 2θ)
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Database Matching

This approach leads to probabilities P2, P1, P0 of matching at

2,1,0 alleles:

P2 =
1

D
[6θ3 + θ2(1 − θ)(2 + 9S2) + 2θ(1 − θ)2(2S2 + S3)

+ (1 − θ)3(2S2
2 − S4)]

P1 =
1

D
[8θ2(1 − θ)(1 − S2) + 4θ(1 − θ)2(1 − S3)

+ 4(1 − θ)3(S2 − S3 − S2
2 + S4)]

P0 =
1

D
[θ2(1 − θ)(1 − S2) + 2θ(1 − θ)2(1 − 2S2 + S3)

+ (1 − θ)3(1 − 4S2 + 4S3 + 2S2
2 − 3S4)]

where D = (1 + θ)(1 + 2θ), S2 =
∑

A p2
A, S3 =

∑

A p3
A, S4 =

∑

A p4
A. For any value of θ we can predict the matching, partially

matching and mismatching proportions in a database.
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FBI Caucasian Matching Counts

One-locus matches in FBI Caucasian data (18,721 pairs of 13-

locus profiles).

θ
Locus Observed .000 .001 .005 .010 .030

D3S1358 .077 .075 .075 .077 .079 .089
vWA .063 .062 .063 .065 .067 .077
FGA .036 .036 .036 .038 .040 .048
D8S1179 .063 .067 .068 .070 .072 .083
D21S11 .036 .038 .038 .040 .042 .051
D18S51 .027 .028 .029 .030 .032 .040
D5S818 .163 .158 .159 .161 .164 .175
D13S317 .076 .085 .085 .088 .090 .101
D7S820 .062 .065 .066 .068 .070 .080
CSF1PO .122 .118 .119 .121 .123 .134
TPOX .206 .195 .195 .198 .202 .216
THO1 .074 .081 .082 .084 .086 .096
D16S539 .086 .089 .089 .091 .094 .105
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FBI Database Matching Counts

Matching Number of Partially Matching Loci
loci θ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 Obs. 0 3 18 92 249 624 1077 1363 1116 849 379 112 25

.000 0 2 19 90 293 672 1129 1403 1290 868 415 134 26

.010 0 2 14 70 236 566 992 1289 1241 875 439 148 30

1 Obs. 0 12 48 203 574 1133 1516 1596 1206 602 193 43 3
.000 0 7 50 212 600 1192 1704 1768 1320 692 242 51 5
.010 0 5 40 178 527 1094 1637 1779 1393 767 282 62 6

2 Obs. 0 7 61 203 539 836 942 807 471 187 35 2
.000 1 9 56 210 514 871 1040 877 511 196 45 5
.010 1 8 50 193 494 875 1096 969 593 239 57 6

3 Obs. 0 6 33 124 215 320 259 196 92 16 1
.000 1 7 36 116 243 344 334 220 94 23 3
.010 0 6 35 117 256 380 387 268 120 32 4

4 Obs. 1 5 17 29 54 82 67 16 6 0
.000 0 3 15 40 70 81 61 29 8 1
.010 0 3 15 44 81 98 78 40 12 1

5 Obs. 0 1 2 6 12 14 6 5 0
.000 0 1 4 9 13 11 6 2 0
.010 0 1 4 11 16 15 9 3 0

6 Obs. 0 1 0 2 2 0 0 0
.000 0 0 1 1 1 1 0 0
.010 0 0 1 2 2 1 1 0
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Predicted Matches when n = 65,493

Matching Number of partially matching loci
loci 0 1 2 3 4 5 6 7
6 4,059 37,707 148,751 322,963 416,733 319,532 134,784 24,125
7 980 7,659 24,714 42,129 40,005 20,061 4,150
8 171 1,091 2,764 3,467 2,153 530
9 21 106 198 163 50
10 2 7 8 3
11 0 0 0
12 0 0
13 0
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Multi-locus Matches
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STR Survey: β̂ Values for Groups and Loci

Geographic Region
Locus Africa AusAb Asian Cauc Hisp IndPK NatAm Poly Aver.
CSF1PO 0.003 0.002 0.008 0.008 0.002 0.007 0.055 0.026 0.011
D1S1656 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.011
D2S441 0.000 0.000 0.002 0.003 0.021 0.000 0.000 0.000 0.020
D2S1338 0.009 0.004 0.011 0.017 0.013 0.003 0.023 0.005 0.031
D3S1358 0.004 0.010 0.009 0.006 0.012 0.040 0.079 0.001 0.025
D5S818 0.002 0.013 0.009 0.008 0.014 0.018 0.044 0.007 0.029
D6S1043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016
D7S820 0.004 0.021 0.010 0.007 0.007 0.046 0.030 0.005 0.026
D8S1179 0.003 0.007 0.012 0.006 0.002 0.031 0.020 0.008 0.019
D10S1248 0.000 0.000 0.000 0.002 0.004 0.000 0.000 0.000 0.007
D12S391 0.000 0.000 0.000 0.003 0.020 0.000 0.000 0.000 0.010
D13S317 0.015 0.016 0.013 0.008 0.014 0.025 0.050 0.014 0.038
D16S539 0.007 0.002 0.015 0.006 0.009 0.005 0.048 0.004 0.021
D18S51 0.011 0.012 0.014 0.006 0.004 0.010 0.033 0.003 0.018
D19S433 0.009 0.001 0.009 0.010 0.014 0.000 0.022 0.014 0.023
D21S11 0.014 0.012 0.013 0.007 0.006 0.023 0.067 0.018 0.021
D22S1045 0.000 0.000 0.007 0.001 0.000 0.000 0.000 0.000 0.015
FGA 0.002 0.009 0.012 0.004 0.007 0.016 0.021 0.006 0.013
PENTAD 0.008 0.000 0.012 0.012 0.002 0.017 0.000 0.000 0.022
PENTAE 0.002 0.000 0.017 0.006 0.003 0.012 0.000 0.000 0.020
SE33 0.000 0.000 0.012 0.001 0.000 0.000 0.000 0.000 0.004
TH01 0.022 0.001 0.022 0.016 0.018 0.014 0.071 0.017 0.071
TPOX 0.019 0.087 0.016 0.011 0.007 0.018 0.064 0.031 0.035
VWA 0.009 0.007 0.017 0.007 0.012 0.022 0.028 0.005 0.023
All Loci 0.006 0.014 0.010 0.007 0.008 0.018 0.043 0.011 0.022

Buckleton JS, Curran JM, Goudet J, Taylor D, Thiery A, Weir BS. 2016. Forensic Science
International: Genetics 23:91-100.
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Predicted Kinship Values

A
↙ ↘

... ...
↘ ↓ ↓ ↙

X Y
↘ ↙

I

Identify the path linking the parents X, Y of I to their common

ancestor(s).
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Path Counting

If the parents X,Y of an individual I have ancestor A in common,

and if there are n individuals (including X, Y, I) in the path linking

the parents through A, then the inbreeding coefficient of I, or

the kinship of X and Y , is

FI = θXY =

(

1

2

)n
(1 + FA)

If there are several ancestors, this expression is summed over all

the ancestors.
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Parent-Child

Y

X

@
@

@
@

@
@

@
@

@
@

@
@R

The common ancestor of parent X and child Y is X. The path

linking X, Y to their common ancestor is Y X and this has n = 2

individuals. Therefore

θXY =

(

1

2

)2

=
1

4
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Grandparent-grandchild
Y(ab)

V

X(cd)

@
@

@
@

@
@R

@
@

@
@

@
@R

�
�

�
�

�
�	

c d

The path joining X to Y is XV Y with n = 3:

θXY =

(

1

2

)3

=
1

8
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Half sibs

U V(ef) W

X Y

a b c d
@

@
@

@
@

@R

�
�

�
�

�
�	

@
@

@
@

@
@R

�
�

�
�

�
�	

There is one path joining X to Y : XV Y with n = 3:

θXY =

(

1

2

)3

=
1

8
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Full sibs
U(ef) V(gh)

X Y

?

@
@

@
@

@
@

@
@

@
@

@
@

@
@@R ?
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�
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�
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�
�

�
�
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��	

a b c d

There are two paths joining X to Y : XUY and XV Y each with

n = 3:

θXY =

(

1

2

)3

+

(

1

2

)3

=
1

4
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First cousins

G H
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a b c d

X Y
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Common Relatives

Relationship Kinship

Identical Twins 0.5
Parent Child 0.25
Full Sibs 0.25
Half Sibs 0.125
Double First Cousins 0.125
First Cousins 0.0625
Uncle Niece 0.0625
Unrelated 0
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Comparing Hypothesized Relationships

Current practise is to compare the likelihoods of two profiles

under alternative hypotheses about their degrees of relatedness.

On the verge now of being able to estimate the degree of relat-

edness, especially with very large numbers of markers..
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Estimating Kinship

The proportion M̃XY of pairs of alleles, one from individual X

and one from individual Y , that match is 0, 0.5 or 1:

Proportion=1: AA and AA

Proportion=0.5: AA and AB or AB and AB

Proportion=0: AA and BB or AA and BC or AB and CD

Averaging over all pairs of individuals, one er population, the ob-

served proportion is M̃B. The kinship of individuals X, Y , relative

to that of all individuals in different populations is

θ̂XY =
M̃XY − M̃B

1 − M̃B
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Kinship is relative, not absolute

Top row: Whole world reference. Bottom row: Continental group reference.

Beta estimates

Chromosome 22 data from 1000 Genomes.

Continents (left to right): AFR, SAS, EUR, EAS, AMR

Populations (l to r):AFR: ACB, ASW, ESN, GWD, LWK, MSL, YRI;
SAS: BEB, GIH, ITU, PJL, STU; EUR: CEU, FIN, GBR, IBS, TSI;
EAS: CDX, CHB, CHS, JPT; AMR: KHV, CLM, MXL, PEL, PUR
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k-coefficients

The coancestry coefficient is the probability of a pair of alleles

being ibd.

For joint genotypic frequencies, and for a more detailed charac-

terization of relatedness of two non-inbred individuals, we need

the probabilities that they carry 0, 1, or 2 pairs of ibd alleles.

For example: their two maternal alleles may be ibd or not ibd,

and their two paternal alleles may be ibd or not.

The probabilities of two individuals having 0, 1 or 2 pairs of ibd

alleles are written as k0, k1, k2 and θ = 1
2k2 + 1

4k1.
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Parent-Child

Y(ab)

X(cd)

@
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c d

Pr(c ≡ a) = 0.5, Pr(c ≡ b) = 0.5, k1 = 1
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Grandparent-grandchild
Y(ab)

V

X(cd)

@
@

@
@

@
@R

@
@

@
@

@
@R

�
�

�
�

�
�	

c d

Pr(c ≡ a) = 0.25, Pr(c ≡ b) = 0.25, k1 = 0.5&k0 = 0.5
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Half sibs

U V(ef) W

X Y

a b c d
@

@
@

@
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�

�
�	

0.5 0.5
c ≡ e c ≡ f

0.5 b ≡ e 0.25 0.25
0.5 b ≡ f 0.25 0.25

Therefore k1 = 0.5 so k0 = 0.5.
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Full sibs
U(ef) V(gh)

X Y
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a b c d

0.5 0.5
b ≡ d b 6 ≡d

0.5 a ≡ c 0.25 0.25
0.5 a 6 ≡c 0.25 0.25

k0 = 0.25, k1 = 0.50, k2 = 0.25
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First cousins
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Double First Cousins

What are the k’s for double first cousins?

A B E F

? ? ? ?
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X Y

(a,b) (c,d)

a c b d
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Non-inbred Relatives

Relationship k2 k1 k0 θ = 1
2k2 + 1

4k1

Identical twins 1 0 0 1
2

Full sibs 1
4

1
2

1
4

1
4

Parent-child 0 1 0 1
4

Double first cousins 1
16

3
8

9
16

1
8

Half sibs∗ 0 1
2

1
2

1
8

First cousins 0 1
4

3
4

1
16

Unrelated 0 0 1 0
∗ Also grandparent-grandchild and avuncular (e.g. uncle-niece).
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PLINK Example
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Joint genotypic probabilities

Genotypes Probability

ii, ii k2p2
i + k1p3

i + k0p4
i

ii, jj k0p2
i p2

j

ii, ij k1p2
i pj + 2k0p3

i pj

ii, jk 2k0p2
i pjpk

ij, ij 2k2pipj + k1pipj(pi + pj)
+ 4k0p2

i p2
j

ij, ik k1pipjpk + 4k0p2
i pjpk

ij, kl 4k0pipjpkpl
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Example: Non-inbred full sibs

Genotypes Probability

ii, ii p2
i (1 + pi)

2/4

ii, jj p2
i p2

j /4

ii, ij pipj(pi + pj)/2

ii, jk p2
i pjpk/2

ij, ij pipj(1 + pi + pj + 2pipj)/2

ij, ik pipjpk(1 + 2pi)/2

ij, kl pipjpkpl
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Match Probabilities with θ for Relatives

Pr(Match) = k2 + k1[
∑

i

Pr(AiAiAi) +
∑

i

∑

j 6=i

Pr(AiAjAj)]

+ k0P2

= k2 + k1[θ + (1 − θ)S2] + k0P2

Pr(Partial Match) = k1[2
∑

i

∑

j 6=i

Pr(AiAiAj) +
∑

i

∑

j 6=i

∑

k 6=i,j

Pr(AiAjAk)]

+ k0P1

= k1(1 − θ)(1 − S2) + k0P1

Pr(Mismatch) = k0P0

Quantities P0, P1, P2 are given on Slide 29.
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Match probabilities with θ = 0.03

Not First- Parent Full-
Locus related cousins -child sibs

D3S1358 .089 .124 .229 .387
vWA .077 .111 .213 .376
FGA .048 .078 .166 .345
D8S1179 .083 .119 .227 .384
D21S11 .051 .081 .172 .349
D18S51 .040 .068 .150 .335
D5S818 .175 .216 .339 .463
D13S317 .101 .139 .252 .401
D7S820 .080 .115 .219 .379
CSF1PO .134 .173 .288 .428
TPOX .216 .261 .397 .503
THO1 .096 .133 .241 .395
D16S539 .105 .143 .256 .404

Total 2 × 10−14 2 × 10−12 6 × 10−9 5 × 10−6
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Arizona Matches: Mueller Analysis

Mueller LD. 2008. Journal of Genetics 87:101-107.
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Mueller Comment

“The product rule with some minor modification is the most

common method for computing the frequency of DNA profiles

in forensic laboratories. This method relies critically on the as-

sumption that there is statistical independence between loci.

The empirical support for this method comes mainly from tests

of independence between pairs of loci (Budowle et al. 1999).

However, recent research on finite populations, with mutation

and a monogamous mating system shows that departures from

the product rule get worse as one looks at more loci (Dr Yun

Song, personal communication). Thus, rigorous testing of the

product rule predictions at many loci may yield different results

than prior work at only two loci. Perhaps the most important

qu1ality control issue in forensic DNA typing is determining the

adequacy of the methods for computing profile frequencies.”

Mueller LD. 2008. Journal of Genetics 87:101-107.
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“RELPAIR” calculations

This approach compares the probabilities of two genotypes un-

der alternative hypotheses; H0: the individuals have a specified

relationship, versus H1: the individuals are unrelated. The alter-

native is that k0 = 1, k1 = k2 = 0 so the likelihood ratios for the

two hypotheses are:

LR(MM, MM) = k0 + k1/pM + k2/p2
M

LR(mm, mm) = k0 + k1/pm + k2/p2
m

LR(Mm, Mm) = k0 + k1/(4pMpm) + k2/(2pMpm)

LR(MM, Mm) = k0 + k1/(2pM)

LR(mm, Mm) = k0 + k1/(2pm)

LR(MM, mm) = k0
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Section 6: Reporting Likelihood Ratios



Components

• Hierarchy of propositions

• Formulating propositions

• Communicating LRs
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Likelihood Ratio

The LR assigns a numerical value in favor or against one propo-

sition over another:

LR =
P (E|Hp, I)

P (E|Hd, I)
,

where Hp typically aligns with the prosecution case, Hd is a

reasonable alternative consistent with the defense case, and I is

the relevant background information.
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Setting Propositions

• The value for the LR will depend on the propositions chosen:

different sets of propositions will lead to different LRs.

• Choosing the appropriate pair of propositions can therefore

be just as important as the DNA analysis itself.
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Hierarchy of Propositions

Evett & Cook (1998) established the following hierarchy of

propositions:

Level Scale Example
III Offense Hp: The suspect raped the complainant.

Hd: Some other person raped the complainant.

II Activity Hp: The suspect had intercourse with the complainant.
Hd: Some other person had intercourse with the complainant.

I Source Hp: The semen came from the suspect.
Hd: The semen came from an unknown person.

0 Sub-source Hp: The DNA in the sample came from the suspect.
Hd: The DNA in the sample came from an unknown person.
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Hierarchy of Propositions

• The offense level deals with the ultimate issue of guilt/

innocence, which are outside the domain of the forensic

scientist.

• The activity level associates a DNA profile or evidence source

with the crime itself, and there may be occasions where a

scientist can address this level.

• The source level associates a DNA profile or evidence item

with a particular body fluid or individual source.

• The sub-source level refers to the strength of the evidence

itself. This is usually the level a DNA reporting analyst will

spend most of their time.
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Hierarchy of Propositions

0. Sub-source I. Source II. Activity III. Offense

• A forensic scientist can provide information in relation to

propositions which are intermediate to the ultimate issue.

• The higher the level of propositions, the more information is

needed on the framework of circumstances.

• Since different levels rely on different assumptions to consider,

strength of the evidence estimates will change significantly

at each level.
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Hierarchy of Propositions

0. Sub-source I. Source II. Activity III. Offense

• Probabilistic genotyping is (usually) centered around sub-

source level.

• Transition from sub-source to source or even activity level

may be possible, e.g. by considering contamination, secondary

transfer, timing, etc.
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Setting Propositions

Some useful principles for setting hypotheses:

• Propositions should address the issue of interest;

• Propositions should be based on relevant case information;

• Propositions should not include irrelevant details;

• Propositions should be (close to) MECE.
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MECE Definition

Mutually exclusive

(i.e. non-overlapping)

A B

Not exclusive

A B

Exclusive

Collectively exhaustive

(i.e. covers all outcomes)

A B

Not exhaustive

BA

Exhaustive
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Background Information

• Relevant background information can help set appropriate

propositions. E.g. the origin of clothing or intimate vs. non-

intimate swab can help determine if it is reasonable to assume

a known contributor.

• Irrelevant background information is not needed and may

contribute to bias decision making (e.g. criminal history, con-

fession, presence or lack of other evidence).
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Formulating Propositions

• The prosecution hypothesis (Hp) is usually known, or more

or less straightforward to set.

• However, the defense are usually under no requirement to

offer a proposition, and often they do not.

• If a defense stance is not available, a sensible proposition can

be chosen.
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Formulating Propositions - Example 1

An individual is discovered looking into a house one night. The

police are called and find a single cigarette butt under the window

where the incident occurred. No one in the family smokes. The

police have a person of interest captured on a neighbor’s CCTV.

A single-source profile is obtained from the cigarette butt and

the reference profile of a person of interest (POI) matches.
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Formulating Propositions - Example 1

An individual is discovered looking into a house one night. The

police are called and find a single cigarette butt under the window

where the incident occurred. No one in the family smokes. The

police have a person of interest captured on a neighbor’s CCTV.

A single-source profile is obtained from the cigarette butt and

the reference profile of a person of interest (POI) matches.

Hp : The evidence came from the POI.

Hd : The evidence came from an unknown person.

Or, for simplicity:

Hp : POI

Hd : Unknown (U)
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Formulating Propositions - Example 2

A complainant calls 911 to report a sexual assault in her home.

She is taken to a hospital where an intimate swab is collected.

A POI is identified from the investigation and the obtained profile

from the swab is fully explained by a mixture of the complainant

(K) and the POI.
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Formulating Propositions - Example 2

A complainant calls 911 to report a sexual assault in her home.

She is taken to a hospital where an intimate swab is collected.

A POI is identified from the investigation and the obtained profile

from the swab is fully explained by a mixture of the complainant

(K) and the POI.

Hp : K + POI

Hd : K + U

Section 6 Slide 16



Formulating Propositions - Example 3

A complainant is cut with a knife during an altercation. Based

upon eyewitness testimony, a POI is identified.

A stain on the clothing of the POI is tested for blood, and a

DNA profile is developed that is consisted with a mixture of the

POI and the complainant.
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Formulating Propositions - Example 3

A complainant is cut with a knife during an altercation. Based

upon eyewitness testimony, a POI is identified.

A stain on the clothing of the POI is tested for blood, and a

DNA profile is developed that is consisted with a mixture of the

POI and the complainant.

Hp : POI + K

Hd : POI + U

Note how the direction of transfer provides important information.
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Formulating Propositions - Example 4

Molotov cocktails have been thrown at random cars. An unex-

ploded container is found in the street, and a 2 person mixture

is developed from the evidence.

Two persons of interest are arrested.
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Formulating Propositions - Example 4

Molotov cocktails have been thrown at random cars. An unex-

ploded container is found in the street, and a 2 person mixture

is developed from the evidence.

Two persons of interest are arrested.

Hp : POI 1 + POI 2

Hd1 : POI 1 + U

Hd2 : POI 2 + U

Hd3 : 2U

What if circumstances indicate that they cannot both be present?
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Formulating Propositions - Example 5

A complainant walking through a city park is attacked from

behind and is sexually assaulted on a blanket. She didn’t get a

good look at the perpetrator. The police recognize the blanket

as possibly belonging to a vagrant known to live near the park.

A profile obtained from the blanket is fully explained by mixing

of K and POI’s DNA.
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Formulating Propositions - Example 5

A complainant walking through a city park is attacked from

behind and is sexually assaulted on a blanket. She didn’t get a

good look at the perpetrator. The police recognize the blanket

as possibly belonging to a vagrant known to live near the park.

A profile obtained from the blanket is fully explained by mixing

of K and POI’s DNA.

Hp : K + POI

Hd1 : POI + U

Hd2 : K + U

Hd3 : 2U
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Formulating Propositions

What if multiple alternative hypotheses are relevant?

• Report the ‘most relevant’ LR (and provide the rest in the
appendix);

• Provide all considered propositions and corresponding LRs;

• Report only the lowest LR to provide a lower bound for the
LR.

Note that if K is a true source of the profile, but not considered
under Hd, the LR will be larger than when assuming K as a
known profile under both hypotheses. This is because K will
explain many of the observed alleles (especially in case of being
a major donor).
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The Effect of Propositions on the LR

Consider a simple two-person mixture profile (e.g. contributors

are unrelated, ignoring population structure, no drop-outs/drop-

ins), where GC = ABCD. Let K denote a known contributor with

observed profile GK = CD, and S the POI with profile GS = AB.

• LR =
P (ABCD|Hp: K+S)
P (ABCD|Hd: K+U) = 1

2pApB
;

• LR =
P (ABCD|Hp: K+S)
P (ABCD|Hd: 2U) = 1

6·4pApBpCpD
= 1

24pApBpCpD
;

• LR =
P (ABCD|Hp: S+U)
P (ABCD|Hd: 2U) = 2pCpD

6·4pApBpCpD
= 1

12pApB
.

For pA = pB = pC = pD = 0.1, this yields LRs of 50, 417 and 8,

respectively.
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Formulating Propositions

What about relatives?

The LR can accommodate for this, which we will see in the next

section.

What if the DNA got there by some other means?

This indicates a different level of propositions. The discussion

will likely move to transfer and contamination.

Be prepared to change:

Propositions are formed based on information available at that

time. If this information changes, or the defense want any other

propositions considered, it may be necessary to update or add

LR calculations.
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Reporting LRs

As can be seen from the definition of the likelihood ratio

LR =
P (E|Hp)

P (E|Hd)
,

• an LR > 1 supports the prosecution hypothesis, meaning that

the evidence is more likely if Hp is true than if Hd is true;

• an LR < 1 supports the defense hypothesis;

• an LR = 1 is consistent with the observations being equally

likely under the considered hypotheses.
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Reporting LRs

The likelihood ratio is usually reported using phrases such as:

“The evidence is . . . more likely if the suspect is the donor

of the sample than if someone else is the donor of the

sample”.

It is important to note that the LR is not an absolute measure

of the weight of evidence, but is dependent on the underlying

hypotheses.

How to express the LR in terms of a verbal ‘equivalent’ ?
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Verbal Scales

A verbal scale for evidence interpretation, applied to the prosecu-

tion proposition:

Likelihood Ratio Verbal Equivalent
1 < LR ≤ 10 Limited support (for Hp)
10 < LR ≤ 100 Moderate support (for Hp)
100 < LR ≤ 1 000 Moderately strong support (for Hp)
1 000 < LR ≤ 10 000 Strong support (for Hp)
10 000 < LR ≤ 1 000 000 Very strong support (for Hp)
1 000 000 < LR Extremely strong support (for Hp)

The equivalent for Hd is given by taking the reciprocal.
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Verbal Scales

The association of words with numbers is subjective and arbitrary.

LR 1 1− 10 10− 102 102 − 103 103 − 104 104 − 106 > 106

Evett & Weir (1998) − l l m s vs vs
Evett (2000) − l m ms s vs vs
Martire (2015) − w or l m ms s vs es
Taroni (2016) n l m s vs es es

Using verbal scales of neutral (n), weak (w), limited (l), moderate

(m), moderately strong (ms), strong (s), very strong (vs) and

extremely strong (es).
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Verbal Scales

Should we report a verbal equivalent for the LR?
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Verbal Scales

Should we report a verbal equivalent for the LR?

• Yes: The verbal scale is helpful for the jury to put the LR

into perspective.

• No: The verbal scale is not the responsibility of the forensic

scientist.
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Presenting Evidence

There are a lot of difficult issues that arise in interpreting DNA

samples and presenting complex scientific evidence to non-expert

judges and juries.

A sufficiently deep understanding of the principles can help an

expert witness to make well-informed judgments and find good so-

lutions to the problem of satisfying goals such as clarity, precision

and simplicity.

“How forensic evidence is presented is at least as impor-

tant as what is presented”.

“. . . it is not only what forensic experts say but how they

say it that must be considered”.
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Heuristics and Biases

Valid probabilistic reasoning is not easy, so people often use

various tricks, rules of thumb, habits, etc., to reason in daily life.

These are called heuristics.

Heuristics may suffice for most practical situations, but can lead

to systematic errors in probabilistic reasoning (i.e. fallacies).
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Case Study 1

Quickly read/say the colors of the word:

RED

ORANGE

YELLOW

GREEN

BLUE

PURPLE
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Case Study 1

Quickly read/say the colors of the word:

RED

ORANGE

YELLOW

GREEN

BLUE

PURPLE

Automatic cognitive processes are unintentional and involuntary,

and occur outside awareness, probably controlling us more than

we want to admit.
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Case Study 2

Which option has the most paths? What is the difference?

Option A Option B
XXXXXXXX XX
XXXXXXXX XX
XXXXXXXX XX

XX
XX
XX
XX
XX
XX
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Case Study 2

Option A Option B
XXXXXXXX XX
XXXXXXXX XX
XXXXXXXX XX

XX
XX
XX
XX
XX
XX

The number of paths is the same for both options:

83 = 29 = 512

In a study (Tversky and Kahneman) 85% of respondents found

more paths in option A (median: 40) than in option B (median:

18).

This is an example of availability heuristic, i.e. the likelihood of

an event is estimated as the ease with which examples of such

events can be retrieved from memory.
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Case Study 3

An unusual disease is expected to kill 600 people. Two alternative

programs to combat the disease have been proposed:

• If program A is adopted, 200 people will be saved.

• If program B is adopted, there is a 1/3 chance that all 600

people will be saved and a 2/3 chance that nobody will be

saved.

Which program would you choose?
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Case Study 3

An unusual disease is expected to kill 600 people. Two alternative

programs to combat the disease have been proposed:

• If program C is adopted, 400 people will die.

• If program D is adopted, there is a 1/3 chance that nobody

will die and a 2/3 chance that all 600 people will die.

Which program would you choose?
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Case Study 3

All four programs have the same expected outcome: 200 people

will live, 400 will die.

When framed in terms of gains, 72% choose program A (risk-

averse). When framed in terms of losses, 78% choose program

D (risk-taking).

Certain gain is preferred over possible gain, while possible loss is

preferred over certain loss.

This is an example of the framing effect.
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Case Study 4

Four cards, each with a letter on one side and a number on

the other, are placed on a table. The following hypothesis is

proposed:

Every card that has a D on one side has a 3 on the other.

D K 3 7

Which card(s) need to be turned over to determine whether the

hypothesis is true?
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Case Study 4

Hypothesis: Every card that has a D on one side has a 3 on the

other.

D K 3 7

The correct answer is D and 7. Selecting D and 3 is indicative

of confirmation bias, i.e. the tendency to search for or interpret

information in a way that confirms one’s preexisting beliefs or

hypotheses, but P (3|D) 6= P (D|3).
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Case Study 5

Estimate the number resulting from the following expression:

8× 7× 6× 5× 4× 3× 2
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Case Study 5

Estimate the number resulting from the following expression:

2× 3× 4× 5× 6× 7× 8
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Case Study 5

Estimate the number resulting from the following expression:

8× 7× 6× 5× 4× 3× 2

2× 3× 4× 5× 6× 7× 8

Subjects gave a median estimate of 2 250 in the first case, while

the second case had a median of 512. The true answer is of

course 8! = 40 320.

This is an example of anchoring, i.e. estimates may depend too

much on an initial number.
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Case Study 5b
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Case Study 6

• Of the women complaining of painful hardening of the breast,

1% have a malignant tumor: P (C) = 0.01.

• The accuracy (+ or −) of a mammography is 90%:

P (+|C) = P (−|C′) = 0.9.

• Estimate P (C|+) to decide whether or not to order a biopsy.
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Case Study 6

Most physicians estimate P (C|+) ≈ 0.75, while the correct answer

is:

P (C|+) =
P (+|C)P (C)

P (+|C)P (C) + P (+|C′)P (C′)
= 0.0833.

Representativeness leads people to neglect the base rate, by

assessing a conditional probability by the ’degree of similarity’

(P (A|B) 6= P (B|A)). This is known as the base rate fallacy.
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Bias in Forensic Science

• Attractiveness bias: Attractive criminals get lower sentences.

• Target/suspect driven bias: Using a reference profile to re-

solve drop-outs.

• Base rate expectation: Routinely pairing of examiners and

reviewers, high verification rates.

• Anchoring: A dice throw influencing sentencing decisions1.

1 Playing Dice With Criminal Sentences (Englich, 2006).
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Bias in Forensic Science

Cognitive bias (i.e. unintentional bias) affects forensic decision-

making:

• Biases lead to differences between and within (forensic) ex-

perts;

• Bias doesn’t necessarily translate into an error in interpreta-

tion;

• But cognitive contamination should be avoided just as physical

contamination.

This, relatively new, area is often called cognitive forensics.
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Avoiding Bias

The first step in avoiding cognitive bias is awareness: appre-

ciate that it exists, and identify where it resides and affects

interpretation, through training and education.

Awareness is necessary, but is insufficient to reduce cognitive

bias and contamination: active steps must be taken as mere will

power does not control bias.

Several methods have been proposed that can help manage bias

sources, such as Linear Sequential Unmasking1.

1 Strengthening forensic DNA decision making through a better understanding of the influence
of cognitive bias (Dror, 2017).
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Bias in Forensic Science

What about probabilistic genotyping software?

• Interpretation software can reduce variation in interpretation

among examiners.

• It does not make interpretation bias free;

• Subjectivity is also involved in software development (and

underlying modeling).

• Different software can show LRs varying over 10 logs for the

same DNA profiles.
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Fallacies

Biases can lead to potential fallacies in the courtroom, and may

even lead to a miscarriage of justice.

• Prosecutor’s fallacy

• Defendant’s fallacy

• Uniqueness fallacy

• Association fallacy

Section 6 Slide 53



Prosecutor’s Fallacy

One of the most common errors is to transpose the conditional:

P (A|B) 6= P (B|A),

e.g. saying that there is a very high probability that an animal has

four legs if it is an elephant, is not the same as the probability

that an animal is an elephant if it has four legs.

P (4 legs | Elephant) 6= P (Elephant | 4 legs).
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Prosecutor’s Fallacy

This example may seem obvious, but it’s often not so easy in

court proceedings:

P (E|Hp) 6= P (Hp|E),

or, alternatively,

P (Evidence | Proposition) 6= P (Proposition | Evidence)

6= P (Proposition)
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Prosecutor’s Fallacy - Exercise

• The evidence is much more likely if the DNA profile came

from the suspect.

• The probability of this DNA profile if it came from someone

else is very low.

• The probability that this DNA profile came from someone

else is very low.

• The probability of someone else having this DNA profile is

very low.

• The probability of someone else leaving DNA of this type is

very low.

• The evidence strongly supports the hypothesis that the DNA

profile came from the suspect.
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Prosecutor’s Fallacy - Exercise

• The evidence is much more likely if the DNA profile came

from the suspect.

• The probability of this DNA profile if it came from someone

else is very low.

• The probability that this DNA profile came from someone

else is very low.

• The probability of someone else having this DNA profile is

very low.

• The probability of someone else leaving DNA of this type is

very low.

• The evidence strongly supports the hypothesis that the DNA

profile came from the suspect.
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Prosecutor’s Fallacy

• Subtle misstatements can lead (and have led) to misunder-

standings.

• Forensic scientists should be (and are trained to be) very

careful about the wording of probability statements.
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Defendant’s Fallacy

Suppose P(E|Hd) is reported as 1 in 1 000. The defendant’s

fallacy is a logical error that usually favors the defendant:

• The city where the crime occurred has population size 100 000;

• So there are 100 people with a matching profile;

• This means that P (Hp|E) is only 1 in 100 or 1%.
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Defendant’s Fallacy

Suppose P(E|Hd) is reported as 1 in 1 000. The defendant’s

fallacy is a logical error that usually favors the defendant:

• The city where the crime occurred has population size 100 000;

• So there are 100 people with a matching profile;

• This means that P (Hp|E) is only 1 in 100 or 1%.
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Defendant’s Fallacy

Suppose P(E|Hd) is reported as 1 in 1 000. The defendant’s

fallacy is a logical error that usually favors the defendant:

• The city where the crime occurred has population size 100 000;

• So we expect 100 people with a matching profile;

• P(Hp|E) is 1 in 100 or 1% only if each of these individuals

has the same prior probability.
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Uniqueness Fallacy

Suppose P(E|Hd) is reported as 1 in 100 000. The uniqueness

fallacy argues:

• The city where the crime occurred has population size 100 000;

• So there is only one individual with a matching profile;

• This means that this DNA profile is unique in this city and

must come from the suspect.
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Uniqueness Fallacy

Suppose P(E|Hd) is reported as 1 in 100 000. The uniqueness

fallacy argues:

• The city where the crime occurred has population size 100 000;

• So there is only one individual with a matching profile;

• This means that this DNA profile is unique in this city and

must come from the suspect.
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Uniqueness Fallacy

Suppose P (E|Hd) is reported as 1 in 100 000.

• The city where the crime occurred has population size 100 000;

• So we expect 1 other individual with a matching profile;

• This usually also incorporates the belief that DNA profiles

yield unique identification, which is untrue in light of LTDNA,

often leading to complex mixtures and partial profiles (and

ignores relatives, coancestry and phenomena such as drop-in).
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Association Fallacy

An association fallacy occurs when a probability statement is

transposed from one scale of the hierarchy of propositions to a

higher level.

This is usually a result from assuming that there is a dependency

between two observations or events, e.g.:

• Statements about evidence samples (sub-source) that are

interpreted as the ‘evidence being more likely if the suspect

is the source of the crime stain’;

• Or even on activity level as ‘the evidence is more likely if the

suspect left the crime stain’.
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Fallacies in Practice - Case Example

The People v. Nelson (CA) court’s decision report contains the

following statements:

“In 2002, investigators compared evidence from a 1976 murder scene
with defendant’s deoxyribonucleic acid (DNA) profile and identified
him as a possible donor of that evidence. He was then tried for and
convicted of that murder. The prosecution presented evidence that
the odds that a random person unrelated to defendant from the
population group that produced odds most favorable to him could
have fit the profile of some of the crime scene evidence are one in
930 sextillion (93 followed by 22 zeros).”

“Because the worlds total population is only about seven billion
(seven followed by nine zeros), this evidence is tantamount to saying
that defendant left the evidence at the crime scene.”

“. . . We also conclude that the jury properly heard evidence that it
was virtually impossible that anyone other than defendant could have
left the evidence found at the crime scene.”
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Fallacies in Practice - Case Example

The People v. Nelson (CA) court’s decision report contains the
following statements:

“. . . Specifically, [the defendant] contends the evidence regarding the
odds that the crime scene evidence could have come from some
other person was inadmissible because the statistical method used to
calculate those odds has not achieved general scientific acceptance
under the standard stated in [. . . ] People v. Kelly (1976) 17 Cal.3d
24 (sometimes referred to as the Kelly test).”

“. . . Defendant agrees that using the product rule to calculate the
random match probability makes sense when comparing one suspects
profile with the crime scene evidence because, as he explains, the
random match probability “estimates the chance that any single,
random person drawn from the relevant population would have the
same DNA profile as that of the unknown person whose DNA was
found at the crime scene.””

“. . . It is already settled that the product rule reliably shows the rarity
of the profile in the relevant population. [. . . ] To this extent, the
product rule has already passed the Kelly test.”
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Fallacies in Practice - Case Example

The People v. Nelson (CA) court’s decision report contains the
following statements:

“The Court of Appeal in this case and other courts that have con-
sidered this question have concluded that use of the product rule in
a cold hit case is not the application of a new scientific technique
subject to a further Kelly (or Kelly-like) test.”

“We agree. Jenkins explained its reasoning:“At the heart of this
debate is a disagreement over the competing questions to be asked,
not the methodologies used to answer those questions. [. . . ] [T]here
is no controversy in the relevant scientific community as to the
accuracy of the various formulas. In other words, the math that
underlies the calculations is not being questioned. [. . . ] [T]he debate
. . . is one of relevancy, not methodology . . . .””

“. . . The debate that exists is solely concerned with which number −
rarity, database match probability, Balding-Donnelly, or some combi-
nation of the above is most relevant in signifying the importance of
a cold hit. ”
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Fallacies in Practice - Case Example

The People v. Nelson (CA) court’s decision report contains the

following statements:

“The database match probability ascertains the probability of a match
from a given database.“But the database is not on trial. Only the
defendant is”. Thus, the question of how probable it is that the
defendant, not the database, is the source of the crime scene DNA
remains relevant. The rarity statistic addresses this question.”

“The fact that the match ultimately came about by means of a
database search does not deprive the rarity statistic of all relevance.
It remains relevant for the jury to learn how rare this particular DNA
profile is within the relevant populations and hence how likely it is
that someone other than defendant was the source of the crime
scene evidence. Accordingly, the trial court correctly admitted the
evidence, and the Court of Appeal correctly upheld that admission.”
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Miscarriage of Justice - Case Example 1

Adam Scott was arrested, accused of rape and incarcerated on

the basis of a DNA profile match, which was eventually traced

back to a contamination incident.

“It is estimated that the chance of obtaining matching DNA compo-
nents if the DNA came from someone else unrelated to Adam Scott
is approximately one in 1 billion. In my opinion the DNA matching
that of Adam Scott has most likely originated from semen. [. . . ] In
my opinion these findings are what I would expect if Adam Scott had
some form of sexual activity with [the victim]. In order to assess the
overall findings in this case I have therefore considered the following
propositions:

• Adam Scott had vaginal intercourse with [the victim]

• Adam Scott has never been to Manchester and does not know
[the victim]”

Source: Misleading DNA Evidence (Gill, 2014).
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Miscarriage of Justice - Case Example 1

• The perpetrator DNA was absent (hidden perpetrator effect

and false inclusion error).

• The DNA match was falsely associated with the presence of

sperm (association fallacy).

• The ‘presence’ of sperm was associated with sexual inter-

course (association fallacy).

• Exculpatory evidence was ignored (base rate fallacy and con-

firmation bias).

Different biases/effects resulted in a compounded error or snow-

ball effect.
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Miscarriage of Justice - Case Example 2

The association fallacy assumes a dependency between two ob-

servation or events. The opposite version may also lead to errors,

i.e. assuming independence where non exists.

Sally Clark was arrested and convicted for the murder of her two

infant sons. In this case (UK, 1999) it was assumed that two

sudden infant death syndrome (SIDS) deaths in a single family

were independent events. A consulting pediatrician estimated

the likelihood of a cot death as 1 in 8 500, and calculated the

combined probability by squaring this number (i.e. yielding a

likelihood of 1 in 73 million).
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Miscarriage of Justice - Case Example 2

It was later found that her second son might have died from

natural causes, and moreover, assuming independence of these

events is unreasonable, due to possible underlying genetic causes:

P (A,B) = P (A|B)P (B) 6= P (A)P (B).

Sally Clark was released from prison after having served more

than three years of her sentence.
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Y-chromosome Profiles

[Work of Taryn Hall, University of Washington.]

The Y-chromosome has several STR markers that are useful in

forensic science. In one respect, the profiles are easier to inter-

pret as each man has only one allele at an STR locus. Otherwise

interpretation is made more complicated by the lack of recom-

bination on the Y chromosome, meaning that alleles at different

loci are not independent. Or are they?

We expect that mutations act independently at different loci and

this may counter the lack of recombination to some extent.
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Y-STR Databases

There are three public databases of Y-STR profiles:

• Y-Chromosome Haplotype Reference Database (YHRD) FSI:

Genetics 15:43-48 (2013)

• Human Genome Diversity Project (HGDP) Science 296:262-

262 (2002)

• Data published by Xu et al. (XU) Mol Genet Genomics

290:1451-150 (2014)
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Two-locus LD for Y-STR Loci
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Multi-locus Disequilibria: Entropy

It is difficult to describe associations among alleles at several

loci. One approach is based on information theory.

For a locus with sample frequencies p̃u for alleles Au the entropy

is

HA = −
∑

u
p̃u ln(p̃u)

For independent loci, entropies are additive: if haplotypes AuBv

have sample frequencies P̃uv the two-locus entropy is

HAB = −
∑

u

∑

v
P̃uv ln(P̃uv) = −

∑

u

∑

v
p̃up̃v[ln(p̃u) + ln(p̃v)] = HA + HB

so if HAB 6= HA + HB there is evidence of dependence. This

extends to multiple loci.
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Conditional Entropy

If the entropy for a multi-locus profile A is HA then the condi-

tional probability of another locus B, given A, is HB|A = HAB −

HA.

In performing meaningful calculations for Y-STR profiles, this

suggests choosing a set of loci by an iterative procedure. First

choose locus L1 with the highest entropy. Then choose locus L2

with the largest conditional entropy H(L2|L1). Then choose L3

with the highest conditional entropy with the haplotype L1L2,

and so on.
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Conditional Entropy: YHRD Data

Added Entropy
Marker Single Multi Cond.
YS385ab 4.750 4.750 4.750
DYS481 2.962 6.972 2.222
DYS570 2.554 8.447 1.474
DYS576 2.493 9.318 0.871
DYS458 2.220 9.741 0.423
DYS389II 2.329 9.906 0.165
DYS549 1.719 9.999 0.093
DYS635 2.136 10.05 0.053
DYS19 2.112 10.08 0.028
DYS439 1.637 10.10 0.024
DYS533 1.433 10.11 0.010
DYS456 1.691 10.12 0.006
GATAH4 1.512 10.12 0.005
DYS393 1.654 10.13 0.003
DYS448 1.858 10.13 0.002
DYS643 2.456 10.13 0.002
DYS390 1.844 10.13 0.002
DYS391 1.058 10.13 0.002

This table shows that the most-discriminating loci may not con-

tribute to the most-discriminating haplotypes. Furthermore, there

is little additional discriminating power from Y-STR haplotypes

beyond 10 loci.
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Examples
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Brenner’s Method

Brenner (2010) proposed the use of the proportion κ of profiles

that occurred only once in a database that had been augmented

by the evidentiary profile. His approach did not require a ge-

netic model, although κ values can be predicted for some genetic

models. The probability of a person taken randomly from a pop-

ulation would have the same profile as the evidentiary type when

that type was not present in a sample of size (n − 1) (i.e. oc-

curred once in the sample augmented by the evidentiary profile)

was given by (1 − κ)/n.

For profiles that occur p times in the augmented sample (those

with “popularity” p), Brenner suggested a modification to p(1−

κ)/n that approaches the sample proportion p̃ when the propor-

tion of singletons in the database becomes small.

Section 7 Slide 9



Brenner’s Method

Here we compare Brenner’s estimates for every profile in the

augmented database with the proportion of profiles of that type

in the population from which the sample was drawn. Brenner’s

values appear better than the sample proportions for profiles

not seen in the sample before it was augmented, as desired by

Brenner. The quality decreases as the sample proportion of the

evidentiary profile increases.
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Brenner’s Method

Brenner’s estimate uses only the number of times a profile occurs

((popularity”) in a database. It was not intended to do well for

profiles that are seen more than a small number of times. Actual

databases do have some profiles in high frequency. In Table 1

we show PPY23 haplotype counts for the YHRD database.
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Popul. Count Popul. Count Popul. Count Popul. Count

1 9004 14 12 28 1 53 1
2 1254 15 4 29 1 54 1
3 416 16 5 30 2 57 1
4 196 17 2 33 2 58 3
5 105 18 7 35 1 61 1
6 85 19 4 36 1 62 1
7 50 20 3 37 2 68 1
8 41 21 3 38 1 91 1
9 34 22 2 41 3 118 1
10 24 24 4 42 3 126 1
11 28 25 4 43 2 170 1
12 16 26 1 45 1 242 1
13 9 27 2 48 2



Genetic Model

A genetic approach can be built on the notion of identity by de-

scent. For large numbers of loci, profiles of the same type are

likely to match because they have a common ancestral haplo-

type. If θi is the probability of identity by descent of two random

haplotypes in population i, the probability a random profile in

population i is of type A given the evidentiary profile, also from

population i, is that type is Pr(A|A)i = θi + (1 − θi)pAi.

As profile proportions pAi become small the matching probabil-

ities approach θi. These quantities, in turn, decrease as the

number of loci increases. Kimura and Ohta (1968) showed that,

for single-step mutations, STR loci have predicted θ values of

1/
√

1 + 4Nµ. For L loci undergoing independent mutation we

could replace µ by 1 − (1 − µ)L ≈ Lµ.
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Y-STR Matches

The chance of a random man having Y-STR haplotype A is

written as pA, the profile probability.

The chance that two men have haplotype A is written as PAA.

The chance that a man has haplotype A given that another man

has been seen to have that profile is PA|A, the match probability.

The three quantities are related by PA|A = PAA/pA.

A major difficulty is that we generally do not have samples from

the relevant (sub)population to give us estimates of pA or PAA.

Instead we have a database of profiles that may represent a larger

population.
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Interpreting Evidence

Two hypotheses for observed match between suspect and evi-

dence:

HP : Suspect is source of evidence.

HD: Suspect is not source of evidence.

Then

Pr(HP |Match)

Pr(HD|Match)
=

Pr(Match|HP )

Pr(Match|HD)
×

Pr(HP )

Pr(HD)
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Interpreting Evidence

Suppose matching Y-STR profile is type A. The likelihood ratio

reduces to

Pr(Match|HP )

Pr(Match|HD)
=

Pr(A|A, HP )

Pr(A|A, HD)

=
1

Pr(A|A)

A population genetic model introduces the quantity θ:

Pr(AA) = θpA + (1 − θ)p2
A

Pr(A|A) = θ + (1 − θ)pA

where θ is the probability that two profiles are identical by de-

scent.
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Within- and Between-population Matching

If the sample from population i has within-population matching

proportion of M̃i, the average over populations is:

M̃W =
1

r

r
∑

i=1

M̃i

If the sample between-population matching proportion for pop-

ulations i and i′ is M̃ii′, the average over pairs of populations

is:

M̃B =
1

r(r − 1)

r
∑

i=1

r
∑

i′=1
i 6=i′

M̃ij

We estimate theta as βW = (M̃W − M̃B)/(1 − M̃B).
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Use of Database Frequencies

If data (database) from the population of interest are available

they should be used directly.

For haplotype A, the database proportion p̃A is unbiased for the

population proportion pA. A confidence interval can be con-

structed, using properties of the binomial distribution. The

100(1 − α)% upper confidence limit pU when a database of size

n has x copies of the target haplotype satisfies

x
∑

k=0

(

n

k

)

pk
U(1 − pU)n−k ≥ α

If x = 0, then (1 − pU)n ≥ α or pU ≤ 1 − α1/n and this is 0.0295

if n = 100, α = 0.05. More generally pU ≈ 3/n when x = 0 is the

upper 95% confidence limit.
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Use of θ-based Match Probabilities

If data are not available from the population of interest, but

are available from a larger population (e.g. ethnic group), then

the match-probability can be used with θ assigned or estimated

from a set of subpopulations from the database population. The

match probabilities use the database fequencies and βW (for θ)

and apply on average for any subpopulation.

θ for any subpopulation, or for the average over subpopulations,

cannot be estimated from a single database. For example, a

value for Native Amricans cannot be estimated from a Native

American database.
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One-locus NIST Y-STR Estimates

Locus M̃W M̃B β̂W

DYS19 0.32571062 0.24309148 0.10915340
DYS385a/b 0.07982377 0.04427420 0.03719640
DYS389I 0.41279418 0.38319082 0.04799436
DYS389II 0.26072434 0.23741323 0.03056847
DYS390 0.28981997 0.18813203 0.12525182
DYS391 0.52191425 0.48517426 0.07136392
DYS392 0.39961865 0.35168087 0.07394164
DYS393 0.50285122 0.48769253 0.02958906
DYS437 0.46400112 0.38595032 0.12710828
DYS438 0.36817530 0.23212655 0.17717601
DYS439 0.35507469 0.34990863 0.00794667
DYS448 0.30091326 0.22640195 0.09631787
DYS456 0.33444029 0.32578009 0.01284478
DYS458 0.21642167 0.19701369 0.02416976
DYS481 0.18867019 0.14121936 0.05525373
DYS533 0.39365769 0.37177174 0.03483757
DYS549 0.33976578 0.30691346 0.04740003
DYS570 0.21298105 0.20775666 0.00659442
DYS576 0.20955290 0.18125443 0.03456321
DYS635 0.27720127 0.20653182 0.08906400
DYS643 0.28394262 0.20058158 0.10427710
Y-GATA-H4 0.40667782 0.39899963 0.01277568
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Multiple-locus US-YSTR Estimates

No. Loci Added Locus M̃W M̃B β̂W

1 DYS 438 0.37903281 0.27283973 0.14603806
2 DYS 392 0.22353526 0.10233258 0.13501958
3 DYS 19 0.11294942 0.05471374 0.06160639
4 DYS 390 0.05923470 0.02393636 0.03616398
5 DYS 643 0.04798422 0.02456341 0.02401059
6 YGATA C4 0.03119210 0.01541060 0.01602851
7 DYS 533 0.01979150 0.00777794 0.01210774
8 DYS 393 0.01482393 0.00650531 0.00837309
9 DYS 456 0.01073170 0.00396487 0.00679377
10 DYS 438 0.00889934 0.00287761 0.00603912
11 DYS 549 0.00524369 0.00123093 0.00401770
12 DYS 481 0.00317518 0.00055413 0.00262250
13 DYS 389I 0.00240161 0.00031517 0.00208710
14 DYS 391 0.00200127 0.00017039 0.00183119
15 DYS 576 0.00106995 0.00005877 0.00101124
16 DYS 389II 0.00089896 0.00004205 0.00085695
17 DYS 385 0.00065020 0.00002729 0.00062293
18 YGATA H4 0.00063652 0.00002427 0.00061227
19 DYS 448 0.00055062 0.00000713 0.00054349
20 DYS 458 0.00051100 0.00000423 0.00050677
21 DYS 570 0.00043010 0.00000423 0.00042587
22 DYS 439 0.00038612 0.00000423 0.00038189
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Combining Y & Autosomal Match Probabilities

Although autosomal and Y STR loci are unlinked, matching at

autosomal and Y loci are not independent (matching in one sys-

tem implies some degree of kinship and therefore matching in

the other system).

N µ θ̂Y θ̂AY θ̂A θ̂A|Y θ̂A|Y − θ̂A Walsh θ̂AY /(θ̂Aθ̂Y )

104 10−2 0.00040 0.00001270 0.00123 0.03143 0.03020 0.03025 25.5580
104 10−3 0.00447 0.00007101 0.01233 0.01587 0.00355 0.00361 1.2878
104 10−4 0.04343 0.00483898 0.11110 0.11142 0.00032 0.00038 1.0029

105 10−2 0.00004 0.00000123 0.00012 0.03036 0.03024 0.03024 246.6184
105 10−3 0.00045 0.00000217 0.00125 0.00483 0.00359 0.00359 3.8785
105 10−4 0.00452 0.00005742 0.01234 0.01271 0.00036 0.00037 1.0293

106 10−2 0.00000 0.00000012 0.00001 0.03025 0.03024 0.03024 2457.2222
106 10−3 0.00004 0.00000017 0.00012 0.00372 0.00359 0.00359 29.7852
106 10−4 0.00045 0.00000073 0.00125 0.00161 0.00037 0.00037 1.2928

Y-STR matching has little effect on autosomal coancestry when

θA, θY are large but the effects can be substantial not when when

θA, θY are small.
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Section 8: Incorporating Relatives



LR Problems

• A traditional LR considers an alternative proposition with

unrelated individuals (which usually favors the prosecution).

– Where does this individual come from? From the same pop-

ulation and sub-population, from a different sub-population,

or a different population?

– What if someone who is related to the suspect is the

source of the DNA sample?

• The LR applies only to one specific defendant.
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True Donor LRs

• What if there are genotypes that will result in higher LRs?

• Only in case of a very clear DNA profile will the true donor
result in the highest LR (but such profiles are rarely observed
from crime scene samples).

• There are possibly millions of other genotypes that are con-
cordant with a mixture.

• If we would rank the LRs, the suspect is unlikely to produce
the highest LR.

• This means that there are other genotypes that fit the data
better, and provide more support for the prosecution hypoth-
esis.
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Most Genotypes Do Not Exist

All genotypes

Mixture ‘matches’

Actual people

Defendant’s profile

But since most genotypes do not exist, there is potentially no

living individual with a genotype that would produce a higher LR.

Even if there are, their corresponding priors are likely low (e.g.

for children, women, individuals living on a different continent).
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Relatives

Because DNA profiles are inherited, relatives are more likely to

share a DNA profile than unrelated individuals.

Hp: The DNA in the sample came from the suspect.

Hd: The DNA in the sample came from an unrelated individual.

Hp: The DNA in the sample came from the suspect.

Hd: The DNA in the sample came from a brother of the suspect.

The relationship type can be anything: parent, child, sibling,

uncle, cousin, etc.

The more distant the relationship, the closer the value will become

to the LR considering unrelated individuals.
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Mendel’s Laws

Mendel laid down the basic principles of heredity, even though

DNA was not yet discovered.

1. The law of segregation: An individual will pass down one

of their two alleles to each offspring.

2. The law of independent assortment: Alleles for different

traits segregate independently.

3. The law of dominance: If an individual’s two alleles are

different, one will be dominant.
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Pedigrees

Pedigrees provide a graphical representation of relationships.

Individuals are said to be related if they share a common ancestor.

Relationships can be unilateral (one-sided) or bilateral (two-sided).
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Identity By Descent

• Relatives are similar because they share alleles that are iden-

tical by descent (IBD).

• IBD alleles are copies of the same allelic type inherited through

a common ancestor (and ignores mutation).

• A pedigree or relationship determines IBD probabilities, which

determine probabilities of joint genotypes.
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IBD for Parent-Child Relationships

• Mendel’s law states that one of the two alleles from a parent

will be passed down to a child;

• Both alleles have equal probability 1
2 of being passed down.

P1P2 M1M2

PiMj
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IBD for Parent-Child Relationships

The child will always have exactly 1 allele that is IBD to an allele

from a specific parent (the other allele will be IBD to an allele

from the other parent).

P1P2 M1M2

PiMj

Parent 1
a b

Parent 2 c ac bc
d ad bd
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IBD for Sibling Relationships

What about siblings?

P1P2 M1M2

PiMj Pi′Mj′
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IBD for Sibling Relationships

They share either both, one or none of the alleles IBD.

ab cd

ac

Alleles IBD
Sib 1 Sib 2 0 1 2

ac ac X
bc X
ad X
bd X

Total 1/4 1/2 1/4
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IBD Coefficients

For non-inbred relatives, there are three IBD classes. We write

κi to denote the IBD probabilities:

κi = P (i alleles IBD)

What IBD classes are relevant for unrelated individuals?
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IBD Coefficients

For parent-child relationships we saw that:

κ1 = P (1 allele IBD) = 1, and κ0 = κ2 = 0,

while for siblings we have:

κ0 = P (IBDM)× P (IBDP ) =
1

2
×

1

2
=

1

4

κ1 = P (IBDM)× P (IBDP ) + P (IBDM)× P (IBDP )

=
1

4
+

1

4
=

1

2

κ2 = P (IBDM)× P (IBDP ) =
1

2
×

1

2
=

1

4
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IBD Coefficients for Half-sibs

What are the IBD coefficients for half-sibs?

cd efab
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IBD Coefficients

The following table shows IBD probabilities for common relation-

ships:

Relationship κ0 κ1 κ2
Unrelated 1 0 0
Parent/child 0 1 0
Identical twins 0 0 1
Siblings 1/4 1/2 1/4
Half-sibs 1/2 1/2 0
First cousins 3/4 1/4 0

These IBD probabilities give the expected relatedness between

individuals (the realized relatedness is variable).
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Match Probabilities for Relatives

If κ0 = 1, we are in the original situation and write M2 for the

appropriate match probability:

M2 =

 p2
A, for homozygous loci AA,

2pApB, for heterozygous loci AB.

If κ1 = 1, the match probability M1 changes to:

M1 =

 pA, for homozygous loci AA,
1
2(pA + pB), for heterozygous loci AB.

If κ2 = 1, both alleles are IBD and the match probability is 1.
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Match Probabilities for Relatives

Combining the terms leads to the overall single-locus match

probability for relatives:

κ2 + κ1M1 + κ0M2,

which yields a standard match probability of M2 for unrelated

individuals.
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Match Probabilities for Relatives - Exercise

Consider a simple single-source crime scene sample with genotype

GC = AA, and a suspect that matches at that locus. Calculate

the LR, using pA = 4%, and alternative hypotheses:

• The DNA in the sample came from an unrelated individual;

• The DNA in the sample came from a half-brother of the

suspect;

• The DNA in the sample came from a brother of the suspect;

• The DNA in the sample came from an identical twin of the

suspect.
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Match Probabilities for Relatives - Exercise

Consider a simple single-source crime scene sample with genotype

GC = AA, and a suspect that matches at that locus. Calculate

the LR, using pA = 4%:

• LR =
P (AA|AA,Hp)
P (AA|AA,Hd)

= 1
p2
A

= 625;

• LR = 1
κ0M2+κ1M1+κ2

= 1
0.5p2

A+0.5pA
≈ 48;

• LR = 1
0.25p2

A+0.5pA+0.25
≈ 3.7;

• LR = 1.
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LRs for Relatives

With this approach we can incorporate specific relatives. But

what if no specific alternative is available?

Hd : The DNA in the sample came from an unrelated individual.

Hd : The DNA in the sample came from a brother of the suspect.

Hd : The DNA in the sample came from an unknown individual

from the population.
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LRs Including Relatives

• We can model a situation where relatives of the suspect make

up a small proportion of the total population.

• It is however not trivial to set the number of siblings, un-

cles/aunts, cousins, etc.

• An overall LR can be calculated by modeling these priors as

simple population proportions.

• This requires specifying an average number of children (e.g.

using fertility rates) and population size.
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The Island Problem

Suppose there is a crime committed on a remote island with a

population of size 1001. A suspect Q is found to match the crime

scene profile. What is the probability that Q is the source of the

profile, assuming that:

• All individuals are equally likely to be the source.

• The DNA profiles of all the other individuals are unknown.

• The match probability for unrelated individuals is 5× 10−6.

Source: Weight-of-Evidence for Forensic DNA Profiles (Balding, 2015)
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The Island Problem - Solution

Assuming Q has no relatives on the island, there is a 1
1.005 ≈ 99.5%

chance that Q is the source.

Individuals: 1001

Source: 1 Not source: 1000

Total: 1.005

Matching: 1 Matching: 0.005
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The Island Problem - Relatives

Now suppose that Q has one sibling and 20 cousins on the island,

and no other relatives. What is now the probability that Q is the

source, using match probabilities of:

• 1 in 1000 for a cousin;

• 1 in 100 for a sibling;

• and 5× 10−6 for unrelated individuals.

Source: Weight-of-Evidence for Forensic DNA Profiles (Balding, 2015)
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The Island Problem - Solution for Relatives

In this case the probability that Q is the source decreases to
1

1.034895 ≈ 96.6%.

Individuals: 1000

Sibs: 1 Unrelated: 979Cousins: 20

Total: 0.034895

Matching: 0.01

Matching: 0.02

Matching: 0.004895
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The Island Problem - Solution for Relatives

Note how the LR for unrelated individuals (LRU = 200 000),

the LR for cousins (LRC = 1 000), and the LR for siblings

(LRS = 100), can be combined as a weighted average of the

match probabilities:(
979

1000
× 5× 10−6 +

20

1000
×

1

1000
+

1

1000
×

1

100

)−1
≈ 28 650.

With prior odds of 1
1000, the probability that Q is not the source

decreases from 1
201 ≈ 0.5% to 1

29.65 ≈ 3.4%.

What if we were not given any information about the relatives of

Q?
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The Island Problem - Relatives

What if we were not given any information about the relatives of

Q?

In this case, background information may be used to assess

plausible values for the priors, specifying the numbers of relatives

in each category.

LRs can be calculated for each plausible set of values, and the

resulting weight-of-evidence may be averaged over the sets.

In practice, it is often satisfactory to consider only an upper

bound on the plausible number of relatives in each category.
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Other Applications

The concept of relatedness is important for, and benefits, other

applications as well:

• Familial searching

• Paternity testing

• Missing persons

• Inference of ethnicity

• Inference of phenotype
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Familial Searching

• A database may be used to compare crime scene profiles to

known offenders when investigators lack a suspect.

• A high stringency search requires a full match of the DNA

profiles, and might not always return a hit.

• Lowering the search stringency level may lead to a partial

match, and has the potential to identify close relatives.

• Familial searching refers to the process where investigators

look for close relatives in the DNA database in order to open

up new investigative leads.
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Familial Searching - Case Example

A serial killer nicknamed the Grim Sleeper (due to a 14-year

break) was responsible for the death of at least 10 young women

in Los Angeles dating back to the mid 1980s.

A search in April 2010 with DNA evidence from one of the crime

scene samples showed a potential match with a recently convicted

young man. Together with other evidence this led to the suspicion

of the father.

The L.A. police was notified by investigators and got a DNA

sample from a discarded piece of pizza. Lonnie Franklin was

found to match, leading to an arrest in July 2010 and eventual

conviction in May 2016.
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Familial Searching - Strategies

A certain strategy is required to select a potential relative of

the unknown donor from the database. Two general methods

are available, both resulting in a ranked list of candidates to

investigate further:

• IBS method: simply counts the number of shared alleles

between two DNA profiles.

• LR method: likelihood under two competing hypothesis (als

in this context also called a kinship index (KI):

KI =

∑
i=0,1,2 P (GC, GR|IBD = i)P (IBD = i|relationship)∑
i=0,1,2 P (GC, GR|IBD = i)P (IBD = i|unrelated)
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Familial Searching - Performance

Familial searching is typically focused on parent-child and sibling

relationships, as more distant relatives are usually harder to

identify and differentiate from unrelated individuals.

The following table shows the performance of the methods using

simulated 10-locus profiles in the New Zealand database:

Method Rank 1 (%) Rank 1− 100 (%)
IBS: Siblings 24 72
IBS: Parent-child 8 68
LR: Siblings 31 78
LR: Parent-child 25 99

Source: Effectiveness of familial searches (Curran, 2008).
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Familial Searching - Effectiveness

• LR methods outperform the IBS method.

• It is slightly easier to locate parent-child relationships, al-

though siblings more often obtain a number one ranking.

• More loci improve the effectiveness of familial searching,

especially in case of extra highly polymorphic loci.

• Ranked lists can be refined based on lineage markers.

• The LR method can be extended to the conditional method,

by incorporating priors.

It is important to note that the effectiveness depends on the

assumption that a true close relative of the donor is actually

present in the database.
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Familial Searching - Considerations

Familial searching has proven to be a successful tool in several
cases, but it also raises privacy and legal policy concerns:

• Disproportional attention to members of populations that are
over-represented in the database.

• False positives may lead to the investigation of innocent
people.

• Might reveal the presence of a family member in the database.

• Might reveal the presence of a previously unknown genetic
link.

• Might reveal the absence of a genetic link.

• Crimes might go unreported (in case of searches against
victim profiles).
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Familial Searching - SNPs

Instead of looking for a (partial) match in one database, it is also

possible to combine different databases, even with no overlapping

genetic markers. Provided that sufficiently strong LD exists, SNP

and STR profiles can be associated with the same individual or

distinct but closely related individuals.

Software can be used to infer STR genotypes from a SNP dataset,

making it possible to compute match scores for pairs of individuals

between databases. This means that CODIS profiles can possibly

be connected to a SNP profile, collected for e.g. biomedical or

genealogical research, and this cross-database record matching

extends to relatives.
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Familial Searching - Consumer Genomics Tools

With the emergence of consumer genomics tools, familial search-

ing has become far more powerful. The limited set of STR

markers does not allow for finding relatives beyond first and sec-

ond degree relationships. Furthermore, policies largely restrict or

even prohibit the practice completely.

These limitations, however, do not explicitly restrict the use of

crime scene samples with civilian DNA databases.

Source: Re-identification of genomic data using long range familial searches (Erlich, 2018).
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Familial Searching - Case Example

To trace the Golden State Killer, crime scene evidence was used

to obtain a profile that mimicked the format of regular DTC

providers in order to upload it to GEDmatch.

A search, based on IBD matching, identified a third degree cousin

of the perpetrator, which eventually led to the arrest of Joseph

James DeAngelo. It took five genealogists four months to trace

back the identity of the suspected perpetrator.
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Familial Searching - Case Example

Even more recently, the Snohomish County sheriff’s office an-

nounced that they arrested a suspect in the killing of a young

couple while they were vacationing in Washington State in 1987.

A GEDmatch led to two second cousins, which could be tied

together through a marriage of two descendants from their great-

grandparents. The only son from this marriage was investigated

further and found to match the crime scene evidence.
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Familial Searching - Case Example

Source: Technique Used to Find Golden State Killer Leads to a Suspect in 1987 Murders
(Murphy, 2018).
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Paternity Testing

Paternity and familial identification can provide evidence in crimi-

nal context and during civil litigation. For a paternity case, the

two propositions could be:

Hp: The alleged father (AF) is the true father.

Hd: Some other (unrelated) man is the father.

The likelihood ratio is in this case often referred to as the paternity

index (PI).
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Paternity Testing - Exercise

Suppose a child has genotype GC = AB. What are the LR values

when:

• GM = AA and GAF = BB;

• GM = AA and GAF = CD;

• GM = AA and GAF = BC;

• GM = AB and GAF = AA.
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Paternity Testing - Exercise

Suppose a child has genotype GC = AB. The LR values are:

• LR =
P (GC=AB|GM=AA,GAF=BB,Hp)

P (GC=AB|GM=AA,Hd)
= 1

pB
;

• LR =
P (GC=AB|GM=AA,GAF=CD,Hp)

P (GC=AB|GM=AA,Hd)
= 0;

• LR =
P (GC=AB|GM=AA,GAF=BC,Hp)

P (GC=AB|GM=AA,Hd)
=

1
2
pB

= 1
2pB

;

• LR =
P (GC=AB|GM=AB,GAF=AA,Hp)

P (GC=AB|GM=AA,Hd)
=

1
2

1
2pA+1

2pB
= 1

pA+pB
.
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Paternity Testing - Exercise

Calculate the weight of the evidence for the following data:

Locus GC GM GAF
TPOX (6,9) (6,12) (8,9)
vWA (17,17) (17,16) (17,17)
TH01 (7,9) (9,10) (7,9)

Locus Allele Frequency
TPOX 6 0.006

8 0.506
9 0.094

12 0.038
vWA 16 0.276

17 0.300
TH01 7 0.147

9 0.232
10 0.116

Source: Introduction to Statistics for Forensic Scientist (Lucy, 2005).
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Paternity Testing - Exercise

Calculate the weight of the evidence for the following data:

Locus GC GM GAF
TPOX (6,9) (6,12) (8,9)
vWA (17,17) (17,16) (17,17)
TH01 (7,9) (9,10) (7,9)

We calculate single-locus LRs and combine these results through
multiplication:

• TPOX: LR = 0.25
0.5p9

= 1
2×0.094 = 5.32;

• vWA: LR = 1
p17

= 1
0.3 = 3.33;

• TH01: LR = 0.25
0.5p7

= 1
2×0.147 = 3.40.

Our overall LR is in this case 60.23, yielding evidence in favor of
Hp.
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Paternity Testing

These cases can be extended to allow for more complex situations:

• Unavailability of the mother;

• Relatedness between the mother and alleged father;

• A relative of the alleged father is the true father;

• Incorporating profiles of (alleged) relatives (e.g. for half-sibs
or when alleged father is unavailable);

• Multiple children;

• Incorporating mutations, substructure, silent alleles, non-
autosomal DNA, etc.
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Missing Persons

The discussed methods for evidence evaluation are also applicable

to other situations, such as disaster victim identification and

immigration cases.

A comparison must in these cases be carried out between a profile

obtained from unidentified remains, or an applicant, and a missing

person’s profile.

It is, however, often the case that a sample from the missing

person is not available, in which case it might be possible to

make use of surrogate samples (e.g. obtained through a medical

institution).

Alternatively, relatives can be used for testing purposes.
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Missing Persons

For a missing person case, the two propositions could be:

Hp: The sample is from the missing person.

Hd: The sample is from some unknown person.

The following likelihood ratios are obtained for a sample with

alleged mother (AM) and alleged father (AF), compared to the

paternity index, for pA = pB = 0.1:

(A)M AF Sample LR Value PI Value

AA BB AB 1
2pApB

50 1
pB

10

AA BC AB 1
4pApB

25 1
2pB

5

AB AA AB 1
4pApB

25 1
pA+pB

5

Source: Interpreting DNA Evidence (Evett & Weir, 1998).
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Missing Persons

In the previous case the genetic evidence E consists of the geno-

type from a sample that has come from some person X who

may be the missing person, together with the genotypes from

the parents of the missing person.

Parent Parent

Child

If, instead, the genotypes of the spouse S and child C of the

missing person are available, the situation is similar to evidence

evaluation in case of paternity testing.
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Missing Persons

Spouse Remains

Child

The likelihood ratios are the same as in the paternity case where
X is the alleged father of child C who has mother S:

LR =
P (E|Hp)
P (E|Hd)

=
P (GC, GS, GX |Hp)
P (GC, GS, GX |Hd)

=
P (GC|GS, GX , Hp)P (GS, GX |Hp)
P (GC|GS, GX , Hd)P (GS, GX |Hd)

=
P (GC|GS, GX , Hp)
P (GC|GS, Hd)
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Missing Persons

It may be the case that people apart from the spouse and child
of the missing person are typed. The general procedure is the
same: the probabilities of the set of observed genotypes under
two explanations are compared.

Suppose the parents P and Q as well as the child C and spouse
S of the missing person are typed, and that a sample is available
that has come from some person X thought under Hp to be the
missing person.

Spouse Remains

Child

Parent Parent
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Missing Persons

Under explanation Hd, the sample from X did not come from

the missing person, and therefore the genotype of X does not

depend on the genotypes of P and Q and the genotype of C does

not depend on the genotype of X.

The likelihood ratio is arranged to involve probabilities of geno-

types conditional on previous generations. If both parents of an

individual have been typed, there is no need to condition on the

grandparents of that individual.

In the following slides, C, S,X, P and Q represent the genotypes of

the child, the remains, the spouse and the parents of the missing

person.
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Missing Persons

LR =
P (E|Hp)
P (E|Hd)

=
P (C, S,X, P,Q|Hp)
P (C, S, P,X,Q|Hd)

=
P (C|S,X, P,Q,Hp)P (S,X, P,Q|Hp)
P (C|S,X, P,Q,Hd)P (S,X, P,Q|Hd)

=
P (C|S,X,Hp)P (S,X|P,Q,Hp)P (P,Q|Hp)
P (C|S, P,Q,Hd)P (S,X|P,Q,Hd)P (P,Q|Hp)

=
P (C|S,X,Hp)P (S|Hp)P (X|P,Q,Hp)
P (C|S, P,Q,Hd)P (S|Hd)P (X|Hd)

=
P (C|S,X,Hp)P (X|P,Q,Hp)
P (C|S, P,Q,Hd)P (X|Hd)
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Missing Persons - Example

S:A2A4 X:A1A3

C:A1A2

P:A1A5 Q:A3A6

LR =
P (C|S,X,Hp)P (X|P,Q,Hp)
P (C|S, P,Q,Hd)P (X|Hd)
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Missing Persons - Example

S:A2A4 X:A1A3

C:A1A2

P:A1A5 Q:A3A6

P (C|S,X,Hp) = 1/4

P (X|P,Q,Hp) = 1/4

P (C|S, P,Q,Hd) = 1/8

P (X|Hd) = 2p1p3

LR =
1

4p1p3
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Inference of Ethnicity

Suppose that a population can be classified into K groups. The

probability of a DNA sample with profile D coming from group k,

can be written as:

P (group k|D) =
P (D|group k)P (group k)∑K
j=1 P (D|group j)P (group j)

.

STR profiles can give some information, although they pro-

vide limited discriminatory power in this context. Instead, SNP

sets (so-called ancestry informative markers) have been demon-

strated to be useful for distinguishing individuals from certain

(sub-)populations.
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Inference of Phenotype

SNPs may be linked to some visual phenotypes, including hair
color and eye color. Other facial characteristics can now also be
predicted from genotypes with some accuracy.

These SNP associations can potentially be used in forensic set-
tings, e.g. in combination with a description of an eyewitness of
a target individual.

Picture rendered by Parabon Nanolabs.

Source: Technique Used to Find Golden State Killer Leads to a Suspect in 1987 Murders
(Murphy, 2018).
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Section 9:
Profile and Match Probabilities; CPI/CPE



Balding’s Sampling Formula

if we have examined n alleles, and have seen nA of type A, what

is the probability the next allele is type A?

Pr(A|nA, n) =
nAθ + (1 − θ)pA

1 + (n − 1)θ

This implies the result for seeing a previously-unseen allele type

B:

Pr(B|nB = 0, n) =
(1 − θ)pB

1 + (n − 1)θ
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Examples of Balding’s Formula

n nA Pr(A|nA, n)

0 0 pA

1 0 (1 − θ)pA
1 θ + (1 − θ)pA

2 0 (1 − θ)pA/(1 + θ)
1 [θ + (1 − θ)pA]/(1 + θ)
2 [2θ + (1 − θ)pA]/(1 + θ)

3 0 (1 − θ)pA/(1 + 2θ)
1 [θ + (1 − θ)pA]/(1 + 2θ)
2 [2θ + (1 − θ)pA]/(1 + 2θ)
3 [3θ + (1 − θ)pA]/(1 + 2θ)
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Match Probability

Balding’s formula lets the genotype match probabilities be found

very easily from the third law of probability:

Pr(AA|AA) = Pr(A|AA)Pr(A|AAA)

=
2θ + (1 − θ)pA

1 + θ
×

3θ + (1 − θ)pA

1 + 2θ

Pr(AB|AB) = Pr(B|AB)Pr(A|ABB) + Pr(A|AB)Pr(B|AAB)

=
2[θ + (1 − θ)pA][θ + (1 − θ)pB]

(1 + θ)(1 + 2θ)
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Paternity Calculation

Balding’s formula also lets paternity calculations be done very

easily. In the case where the mother, child and alleged father are

all homozygous AA, the paternity index is

LR =
Pr(M, C,AF|AF is father)

Pr(M.C.AF|AF not father)

=
Pr(C|M, AF)Pr(M, AF)

Pr(C|M)Pr(M,AF)

=
1

Pr(A|AAAA)

=
(1 + 3θ)

4θ + (1 − θ)pA

The paternal allele is A, and four A alleles have been seen already.
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Profile Probabilities

For a single autosmal locus, the probability a random person has

genotypes AA or AB is written as Pr(AA) or Pr(BB).

If Hardy-Weinberg Equilibrium is assumed (NRC 4.1a,b):

Pr(AA) = p2
A

Pr(AB) = 2pApB

If a random individual has probability F of being inbred, then the

probabilities become (NRC 4.2a,b):

Pr(AA) = p2
A + pA(1 − pA)F

Pr(AB) = 2pApB − 2pApBF

The probability of a homozygote is greater than the HWE value,

and the probability of a heterozygote is less than the HWE value.

Here F is the pedigree-value that follows from the path-counting

method and it is greater than zero. pA, pB are the total popula-

tion allele frequencies as can be estimated from a database.
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NRC Equation

The National Research Council recommended using

Pr(AA) = p2
A + pA(1 − pA)F

Pr(AB) = 2pApB

in the interest of being conservative.
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Single-allele Profile

An STR profile may show only one allele A at a locus. The true

genotype may be homozygous AA or heterozygous AB where

allele B is not detected or not called. The HWE probability for

the profile allele is

Pr(A) = Pr(AA) +
∑

B 6=A

Pr(AB)

= p2
A +

∑

B 6=A

2pApB

= p2
A + 2pA(1 − pA)

= 2pA − p2
A

The “2p” rule approximates this by the conservative value 2pA

(NRC Page 105).
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Single-allele Profile

For inbred individuals, the value would be

Pr(A) = Pr(AA) +
∑

B 6=A

Pr(AB)

= p2
A + pA(1 − pA)F +

∑

B 6=A

2pApB(1 − F )

= p2
A + pA(1 − pA)F + 2pA(1 − pA)− 2pA(1 − pA)F

= 2pA − p2
A − pA(1 − pA)F

which also has 2pA as a (conservative) upper bound.
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Match Probability for Relatives

For unilineal relatives, k2 = 0, k1 > 0 : θ = k1/4: (NRC 4.8a,b)

Pr(AA|AA) =
Pr(AAAA)

Pr(AA)
=

k2p2
A + k1p3

A + k0p4
A

p2
A

= 4θpA + (1 − 4θ)p2
A

= p2
A + 4pA(1 − pA)θ

Pr(AB|AB) =
Pr(ABAB)

Pr(AB)
=

2k2pApB + k1pApB(pA + pB) + 4k0p2
Ap2

B

2pApB

= 2θ(pA + pB) + 2(1 − 4θ)pApB

= 2pApB + 2(pA + pB − 4pApB)θ
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Match Probability for Full Sibs

For full sibs, k2 = 1/4, k1 = 1/2, k0 = 1/4: (NRC 4.9a,b)

Pr(AA|AA) =
k2p2

A + k1p3
A + k0p4

A

p2
A

=
1

4
(1 + 2pA + p2

A)

Pr(AB|AB) =
2k2pApB + k1pApB(pA + pB) + 4k0p2

Ap2
B

2pApB

=
1

4
(1 + pA + pB + 2pApB)
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Probability of Exclusion

The Principles of Evidence Interpretation, leading to the likeli-

hood ratio for the probabilities of the evidence under alternative

hypotheses, allow all situations to be addressed. The prosecution

and defense perspectives are explicitly taken into account.

The probability of exclusion considers only the evidence profile

and ignores prosecution and defense perspective. It does not

inform the court.

For a single-contributor stain with genotype AA, anyone not of

that type is excluded. The probability of exclusion is (1 − p2
A).

For type AB the probability is (1 − 2pApB). If many loci are

typed, the combined probability of exclusion is the probability a

person is excluded for at least one locus - i.e. one minus the

probability of no exclusions:

CPI = 1 −
∏

locil

[1 − Pr(Excluded at locus l)]
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Exclusion for Mixtures

The Probability of Exclusion understates the strength of mix-

ture evidence. If a crime stain is observed to have four alleles

A, B, C, D at a locus the probability of exclusion is Pr(AA) +

Pr(BB) + Pr(CC) + Pr(DD) + Pr(AB) + Pr(AC) + Pr(AD) +

Pr(BS) + Pr(BD) + Pr(CD). This is (pA + pB + pC + pD)2.

If the prosecution says the evidence represents the victim of type

AB and the defendant of type CD then the evidence has proba-

bility of 1.

If the defense says the evidence (e.g. bedding) is not asso-

ciated with either the victim or the defendant then the evi-

dence has probability Pr(AB, CD)+Pr(AC,BD)+Pr(AD, BC) =

24pApBpCpD.

If all allele frequencies are 0.1, the PE is 0.42 = 0.16 (“1 in 6”)

and the LR is 1/0.0024 = 416.
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Will match probabilities keep decreasing?

Ge et al, Investigative Genetics 3:1-14, 2012.
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Will match probabilities keep decreasing?

How do these match probabilities address the observation of

Donnelly:

“after the observation of matches at some loci, it is rel-

atively much more likely that the individuals involved are

related (precisely because matches between unrelated in-

dividuals are unusual) in which case matches observed at

subsequent loci will be less surprising. That is, knowl-

edge of matches at some loci will increase the chances

of matches at subsequent loci, in contrast to the inde-

pendence assumption.”

Donnelly P. 1995. Heredity 75:26-64.
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Are match probabilities independent over loci?

Is the problem that we keep on multiplying match probabilities

over loci under the assumption they are independent? Can we

even test that assumption for 10 or more loci?

Or is our standard “random match probability” not the appro-

priate statistic to be reporting in casework? Is it actually appro-

priate to report statements such as

The approximate incidence of this profile is 1 in 810 quin-

tillion Caucasians, 1 in 4.9 sextillion African Americans

and 1 in 410 quadrillion Hispanics.
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Putting “match” back in “match probability”

Let’s reserve “match” for a statement we make about two pro-

files and take “match probability” to mean the probability that

two profiles match. This requires calculations about pairs of

profiles.

If the source of an evidence profile is unknown (e.g. is not the

person of interest), then the match probability is the probability

this unknown person has the profile already seen in the POI. No

two profiles are truly independent, and their dependence affects

match probabilities across loci.
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Likelihood ratios use match probabilities

As with many other issues on forensic genetics, the issue of multi-

locus match probability dependencies is best addressed by com-

paring the probabilities of the evidence under alternative propo-

sitions:

Hp: the person of interest is the source of the evidence

DNA profile.

Hd: an unknown person is the source of the evidence

DNA profile.

Write the profiles of the POI and the source of the evidence as

Gs and Gc. The evidence is the pair of profiles Gc, Gc.
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Likelihood ratios use match probabilities

The likelihood ratio is

LR =
Pr(E|Hp)

Pr(E|Hd)

=
Pr(Gc, Gs|Hp)

Pr(Gc, Gs|Hd)

=
1

Pr(Gc|Gs, Hd)

=
1

Match probability

providing Gc = Gs under Hp. The match probability is the chance

an unknown person has the evidence profile given that the POI

has the profile: this is not the profile probability.
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Special Cases: Use of Sample Allele Frequencies

The match probability is usually estimated using allele frequen-

cies from a database representing some broad class of people,

such as “Caucasian” or “African American” or “Hispanic.”

The population relevant for a particular crime may be a narrower

class of people. There is population structure. If p are the

allele frequencies in the database, the match probabilities are

estimated as

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

Pr(AB|AB) =
2[θ + (1 − θ)pA][θ + (1 − θ)pB]

(1 + θ)(1 + 2θ)

Can these be multiplied over loci?
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Empirical dependencies: 2849 20-locus profiles
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Empirical dependencies: Y-STR profiles

Plot of negative log of match probabilities for YHRD database.
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Theoretical dependencies: No mutation

The probability an individual is homozygous AABB at loci A,B

is

Pr(AABB) = Pr(AA)Pr(BB) + pA(1 − pA)pB(1 − pB)η

≥ Pr(AA)Pr(BB)

where η is the identity disequilibrium. It can non-zero even for

pairs of loci that are unlinked and/or in linkage equilibrium.

Sampling among parents or gametes and/or the inclusion

of random elements in the uniting gametes leads to a

correlation in identity by descent even between unlinked

loci because genes at both loci are of necessity included

in each gamete.

Weir & Cockerham, Genetics 63:711-742, 1969.
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Theoretical dependencies: Mutation

Laurie CA, Weir BS. 2003. Theoretical Population Biology

63:207-219.
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Theoretical dependencies: Mutation

“Between-locus dependencies in finite populations can lead to

under-estimates of genotypic match probabilities when using the

product rule, even for unlinked loci.

The three-locus ratio is greater than one and is greater than the

corresponding two-locus ratio for large mutation rates. These

results provide evidence that between-locus dependency effects

are magnified when considering more loci.

High mutation rates mean that specific mutants are likely to

be recent and rare. Hence, if two individuals share alleles at one

locus, they are more likely to be related through recent pedigree,

and hence more likely to share alleles at a second locus.”

Laurie CA, Weir BS. 2003. Theoretical Population Biology

63:207-219, 2003.

Section 9 Slide 25



One population simulated data: θ = 0
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One population simulated data: θ = 0.001
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One population simulated data: θ = 0.01
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2849 US profiles

θ = 0 θ = 0.001 θ = 0.01
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15,000 Australian Profiles
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Numbers of five-locus matches among nine-locus profiles.

Weir BS. 2004. Journal of Forensic Sciences 49:1009-1014,

2004.
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Conclusions

• Profile probabilities decrease at the same rate as number of

loci increases.

• Match probabilities are not profile probabilities.

• Match probabilities decrease more slowly as number of loci

increases.

• “Theta correction” may accommodate multi-locus depen-

dencies.

• Empirical studies need much larger databases.
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Section 10: Other Techniques



Next Generation Sequencing

The introduction of Next Generation Sequencing (NGS) added a

new dimension to the field of forensic genetics, providing distinct

advantages over traditional CE systems in terms of captured

information.

Locus Allele number Allele sequence
D3S1358 15 [TCTA][TCTG]3[TCTA]11
D3S1358 15 [TCTA][TCTG]2[TCTA]12
D18S51 20 [AGAA]20
D18S51 20 [AGAA]16GGAA[AGAA]3

NGS is also referred to as Massively Parallel Sequencing (MPS),

Second Generation Sequencing (SGS) or High-Throughput (HTP)

sequencing.
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NGS Workflow

By far the biggest player in the field of sequencing instruments is
Illumina, which workflow includes four basic steps:

Source: An Introduction to NGS Technology (Illumina, 2015).
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NGS Workflow

The first three steps of the workflow consist of:

• Library preparation: A DNA sample gets fragmented and

adapters are added to both fragment ends, after which a

library is obtained through PCR amplification.

• Cluster generation: Each fragment bounds to the surface

of a flow cell and is amplified through bridge amplification,

resulting in a cluster that will produce a single sequencing

read.

• Sequencing: Base calls are made per cluster using fluores-

cently labeled and reversible terminator-bound nucleotides.
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NGS Data Output

The most common format for storing the output of NGS instru-

ments is a text-based FASTQ file. In addition to the observed

sequence string, the file also lists its corresponding quality score,

representing an estimate by the base calling software of the

potential error at each sequence position.

Section 10 Slide 5



NGS Data

Results from sequencing platforms usually entail raw data, and
need to be translated into information suitable for further (statis-
tical) analysis.

• Software tools are available that align the reads to a reference
sequence (alignment);

• Detect variations in the individual’s genome (variant calling);

• And annotate the data using external information, resulting
in a summarized data structure (annotation).

Instead of aligning to a reference sequence, sequence-searching
techniques can be used that will use flanking sequences to detect
STRs.
Section 10 Slide 6



NGS Data Output

STRait Razor is an example of a sequence-searching technique,

and produces output that looks as follows:
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NGS Data Output

NGS output can be annotated further based on method response
categories:

Source: A technique for setting analytical thresholds in MPS-based forensic DNA analysis
(Young et al., 2017).

NGS data makes it easier to classify products, when compared
with CE data.
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NGS Data Output

A DNA profile can be visualized similar to an epg:

Section 10 Slide 9



NGS Data Output

A DNA profile can be visualized similar to an epg:
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NGS Considerations

• Reads vs. peaks (discrete vs. continuous data)

• Discovery of previously unknown alleles and more variability

• New system of nomenclature needed

• Direction of strand reporting

Source: https://www.khanacademy.org/science/biology/dna-as-the-genetic-material/
dna-replication/a/molecular-mechanism-of-dna-replication.
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Length-based Allele Callings

NGS data mainly leads to a gain in discrimination for compound

and complex STRs, although this will be minimal for already

highly polymorphic loci.
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LB vs. SB Allele Callings

Locus Penta E is already quite polymorphic, so NGS data does not

lead to significant improvements. For locus D8S1179, sequencing

leads to a substantial increase in variability.
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Sequence-based Allele Callings
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Flanking Region SNPs

Additional variation has been found in the flanking regions adja-

cent to repeat motifs.

Source: Forensic DNA Evidence Interpretation (Buckleton et al., 2016).

For STR loci in which repeat regions do not display sequence dif-

ferences, flanking region SNPs may still add substantial variability.

Knowledge of these variants can be utilized in primer design to

ensure optimal positioning during the PCR process.

Locus LB Allele SB Allele SB Allele with SNPs
D16S539 11 [GATA]11 [GATA]11rs11642858[A]
D16S539 11 [GATA]11 [GATA]11rs11642858[C]
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Observed Sequence Variation

STR sequence variation divided in length variation, additional

sequence variation, and SNP variation:

Source: Massively parallel sequencing of short tandem repeats (van der Gaag et al., 2016).
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NGS Modeling

New models need to be developed and implemented to accommo-

date NGS data, with the ultimate goal of developing a probabilistic

approach for NGS mixture interpretation.

CE-based models can be used as a basis for NGS modeling. Both

methods make use of the PCR process, so it is expected that

artifacts such as stutter are similar.

However, peak heights need to be substituted with read counts

and the remaining biological processes differ. This will materially

affect the modeling parameters.
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NGS Stutter Modeling

NGS data generally show higher stutter percentages than CE data.

Illumina’s ForenSeq uses the following thresholds (compared with

Thermo Fisher’s NGM Select Kit for CE data):

Stutter Filter (%)
Locus CE NGS
TH01 5 10
D2S441 9 7.5
vWA 11 22
FGA 11.5 25
D12S391 15 33
D22S1045 17 20
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Multi-sequence Stutter Model

A multi-sequence model takes into account all uninterrupted

stretches (AUS) as potentially contributing to stuttering.

Allele Repeat motif
21.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]11G AAGG[AAAG]2AG
21.2 [AAAG]2AG[AAAG]3AG[AAAG]11AA AAAG[AAAG]9G AAGG[AAAG]2AG
22 [AAAG]2AG[AAAG]3AG[AAAG]22G[AAAG]3AG

22.2 [AAAG]2AG[AAAG]3AG[AAAG]7AA AAAG[AAAG]14GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]8[AG]5[AAAG]12GAAGG[AAAG]2AG
22.2 [AAAG]2AG[AAAG]3AG[AAAG]9AA AAAG[AAAG]12GAAGG[AAAG]2AG

Examples of locus SE33 sequences.

SR ∼ AUS ⇒ SR = m
∑
i

max (li − x,0) + c,

where li is the length of sequence i, and m, c and x are constants.

The term x is called the lag, and can be interpreted as the number

of repeats before stuttering begins.

Section 10 Slide 19



Multi-sequence Stutter Model for SE33

SR = m
∑
i

max (li − 6.11,0) + c
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Stutter Modeling and Sequence Variation

What about variation that is suggested to be attributable to

sequence motif?

Stutter ratios for locus D2S1338.

Models fitted based on AUS still left some variability unexplained

for some loci.
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NGS Stutter Modeling - Sequence Variation

A slightly different model can allow for the sequence variations:

SR ∼ AUS + motif ⇒ SR = m
∑
i

max (li − x,0) + (c+ bj),

with bj a constant for sequence variation (or motif) j. This

effectively scales the regression line somewhat up or down.
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NGS Stutter Modeling - Sequence Variation

Stutter ratio model for locus D2S1338.

A better fit is now obtained, from R2 = 0.20 for the AUS model

to values of 0.74 and 0.55 when including motif.
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NGS Stutter Modeling - Sequence Variation

Alternatively, an interaction term can be introduced to allow for

different slopes per motif:

SR ∼ AUS×motif

SR = (m+ fj)
∑
i

max (li − x,0) + (c+ bj),

with bj and fj constants depending on the motif.
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NGS Stutter Modeling - Sequence Variation

Stutter ratio model for locus D2S1338.

The added value seems only marginal at the expense of a more

complicated model.
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NGS Stutter Modeling

With the sequence variations now in hand, it is possible to decom-

pose certain stutter affected heterozygotes, composite stutter

and regular stutter products.

For locus TH01, for example, there are two possible (back) stutter

products:

Product LB Allele SB Allele
A 8.3 [AATG]6ATG[AATG]2
B 8.3 [AATG]5ATG[AATG]3
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NGS Stutter Modeling

The total expected stutter count is now the sum of the two

stutter products:

Product LB Allele SB Allele
A 8.3 [AATG]6ATG[AATG]2
B 8.3 [AATG]5ATG[AATG]3

E(a−1) = φAEA + φBEB,

with φA and φB the proportion of stutter product A and B,

respectively.

These proportions will likely reflect previous observations (e.g.

longer sequences stutter more, but not all stutter come from the

LUS).
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NGS Stutter Modeling - Discussion

• How to determine motif?

• What about micro-variants?

• What about the possible influence from flanking variation?

• What about the effect of A-T content?
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Duplex Sequencing

Most NGS approaches have a relatively high error rate and are

therefore not suitable for detecting in vivo mutations. To over-

come this limitation, a highly sensitive sequencing methodology

termed Duplex Sequencing (DS) has been developed.

• DNA fragments get labeled with their own unique tag;

• After PCR amplification, each group yields one consensus

sequence;

• Two complementary consensus sequences, derived from the

same fragment, are then compared to yield a ‘duplex consen-

sus sequence’.

Source: Detecting ultralow-frequency mutations by Duplex Sequencing (Kennedy et al.,
2014).
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Duplex Sequencing

Only true mutations will appear in both duplex sequences, while

PCR-related artifacts will be eliminated when establishing the

final consensus sequence.

Source: Detecting ultralow-frequency mutations by Duplex Sequencing (Kennedy et al.,
2014).
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Microhaplotypes

Instead of looking at individual SNPs, it has been suggested that

combining multiple SNPs into a microhap that renders highly

informative for forensic purposes.

Although microhaps are more sensitive, the absence of stutter

yields an increase in potential for mixture deconvolution. SNPs

are also shown to be correlated with physical phenotypic traits,

information the STRs cannot provide.

To make the use of microhaps feasible for forensic purposes,

however, backward compatibility is required with CE data. This

might be established through record linkage, based on STR

inference from SNP data.

Source: Criteria for selecting microhaplotypes: mixture detection and deconvolution (Kidd
& Speed, 2015).
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Protein-based HID

Whereas DNA is prone to degradation, protein is chemically more

robust and can persist for longer periods. Protein contains genetic

variation in the form of single amino acid polymorphisms (SAPs),

which can be used to infer non-synonymous SNPs (nsSNPs).

Hair is often a forensically relevant component of crime scenes

and archaeological sites, where it persists under a wide range of

environmental conditions. It is a poor source of nuclear DNA

template, but retains a high protein content.

Genetically variant peptides (GVPs) containing SAPs can be

identified and may thus be used to infer (SNP) profiles, regard-

less of the presence of DNA template in the sample, providing

the potential for a complementary and, if necessary, alternative

method for use in forensic practice.

Source: Demonstration of Protein-Based Human Identification Using the Hair Shaft Pro-
teome (Parker et al., 2016).
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