
Chapter 1

Introduction to MCMC

Charles J. Geyer

1.1 History

Despite a few notable uses of simulation of random processes in the pre-computer era (Ham-

mersley and Handscomb, 1964, Section 1.2; Stigler, 2002, Chapter 7), practical widespread

use of simulation had to await the invention of computers. Almost as soon as computers were

invented, they were used for simulation (Hammersley and Handscomb, 1964, Section 1.2).

The name “Monte Carlo” started as cuteness — gambling was then (around 1950) illegal in

most places, and the casino at Monte Carlo was the most famous in the world — but it soon

became a colorless technical term for simulation of random processes.

Markov chain Monte Carlo (MCMC) was invented soon after ordinary Monte Carlo at

Los Alamos, one of the few places where computers were available at the time. Metropolis

et al. (1953, the fifth author was Edward Teller, “father of the hydrogen bomb”) simulated

a liquid in equilibrium with its gas phase. The obvious way to find out about the thermody-

namic equilibrium is to simulate the dynamics of the system, and let it run until it reaches

equilibrium. The tour de force was their realization that they did not need to simulate the

1

2 CHAPTER 1. INTRODUCTION TO MCMC

exact dynamics; they only needed to simulate some Markov chain having the same equilib-

rium distribution. Simulations following the scheme of Metropolis et al. (1953) are said to

use the Metropolis algorithm. As computers became more widely available, the Metropolis

algorithm was widely used by chemists and physicists, but it did not become widely known

among statisticians until after 1990. Hastings (1970) generalized the Metropolis algorithm,

and simulations following his scheme are said to use the Metropolis-Hastings algorithm. A

special case of the Metropolis-Hastings algorithm was introduced by Geman and Geman

(1984), apparently without knowledge of earlier work. Simulations following their scheme

are said to use the Gibbs sampler. Much of Geman and Geman (1984) discusses optimization

to find the posterior mode rather than simulation, and it took some time for it to be un-

derstood in the spatial statistics community that the Gibbs sampler simulated the posterior

distribution, thus enabling full Bayesian inference of all kinds. A methodology that was later

seen to be very similar to the Gibbs sampler, was introduced by Tanner and Wong (1987),

again apparently without knowledge of earlier work. To this day, some refer to the Gibbs

sampler as “data augmentation” following these authors. Gelfand and Smith (1990) made

the wider Bayesian community aware of the Gibbs sampler, which up to this time was only

known in the spatial statistics community. Then it took off; as of this writing Google Scholar

says Gelfand and Smith (1990) is cited by 3964. It was rapidly realized that most Bayesian

inference could be done by MCMC, whereas very little could be done without MCMC. It

took a while for the theory of MCMC to be properly understood (Geyer, 1992; Tierney,

1994) and that all of the aforementioned work was a special case of the notion of MCMC.

Green (1995) generalized the Metropolis-Hastings algorithm, perhaps as much as it can be

generalized. Although this terminology is not widely used, we say simulations following his

scheme use the Metropolis-Hastings-Green algorithm. MCMC is not used only for Bayesian

inference. Likelihood inference in cases where the likelihood cannot be calculated explicitly

due to missing data or complex dependence can also use MCMC (Geyer, 1994, 1999; Geyer

and Thompson, 1992, 1995, and references cited therein).

1.2. MARKOV CHAINS 3

1.2 Markov Chains

A sequence X1, X2, . . . of random elements of some set is a Markov chain if the conditional

distribution of Xn+1 given X1, . . . , Xn depends on Xn only. The set in which the Xi take

values is called the state space of the Markov chain.

A Markov chain has stationary transition probabilities if the conditional distribution of

Xn+1 given Xn does not depend on n. This is the main kind of Markov chain of interest in

MCMC. Some kinds of adaptive MCMC (Rosenthal, 2010) have non-stationary transition

probabilities. In this chapter, we always assume stationary transition probabilities.

The joint distribution of a Markov chain is determined by

• the marginal distribution of X1, called the initial distribution and

• the conditional distribution of Xn+1 given Xn, called the transition probability distri-

bution (because of the assumption of stationary transition probabilities, this does not

depend on n).

People introduced to Markov chains through a typical course on stochastic processes have

usually only seen examples where the state space is finite or countable. If the state space

is finite, written {x1, . . . , xn}, then the initial distribution can be associated with a vector

λ = (λ1, . . . , λn) defined by

Pr(X1 = xi) = λi, i = 1, . . . , n,

and the transition probabilities can be associated with a matrix P having elements pij defined

by

Pr(Xn+1 = xj | Xn = xi) = pij, i = 1, . . . , n and j = 1, . . . , n.

When the state space is countably infinite, we can think of an infinite vector and matrix.

But most Markov chains of interest in MCMC have uncountable state space, and then we

cannot think of the initial distribution as a vector or the transition probability distribution

as a matrix. We must think of them as an unconditional probability distribution and a

4 CHAPTER 1. INTRODUCTION TO MCMC

conditional probability distribution.

1.3 Computer Programs and Markov Chains

Suppose you have a computer program

Initialize x

repeat {
Generate pseudorandom change to x

Output x

}

If x is the entire state of the computer program exclusive of random number generator seeds

(which we ignore, pretending pseudorandom is random), this is MCMC. It is important that

x must be the entire state of the program. Otherwise the resulting stochastic process need

not be Markov.

There’s not much structure here. Most simulations can be fit into this format. Thus

most simulations can be thought of as MCMC if the entire state of the computer program

is considered the state of the Markov chain. Hence MCMC is a very general simulation

methodology.

1.4 Stationarity

A sequence X1, X2, . . . of random elements of some set is called a stochastic process (Markov

chains are a special case). A stochastic process is stationary if for every positive integer k

the distribution of the k-tuple

(Xn+1, . . . , Xn+k)

1.5. REVERSIBILITY 5

does not depend on n. A Markov chain is stationary if it is a stationary stochastic process. In

a Markov chain, the conditional distribution of (Xn+2, . . . , Xn+k) given Xn+1 does not depend

on n. It follows that a Markov chain is stationary if and only if the marginal distribution of

Xn does not depend on n.

An initial distribution is said to be stationary or invariant or equilibrium for some tran-

sition probability distribution if the Markov chain specified by this initial distribution and

transition probability distribution is stationary. We also indicate this by saying the transition

probability distribution preserves the initial distribution.

Stationarity implies stationary transition probabilities, but not vice versa. Consider an

initial distribution concentrated at one point. The Markov chain can be stationary if and

only if all iterates are concentrated at the same point, that is X1 = X2 = · · · , so the chain

goes nowhere and does nothing. Conversely, any transition probability distribution can be

combined with any initial distribution, including those concentrated at one point. Such a

chain is usually not stationary (even though the transition probabilities are stationary).

Having an equilibrium distribution is an important property of a Markov chain transi-

tion probability. In Section 1.8 below, we shall see that MCMC samples the equilibrium

distribution, whether the chain is stationary or not. Not all Markov chains have equilibrium

distributions, but all Markov chains used in MCMC do. The Metropolis-Hastings-Green

(MHG) algorithm (Sections 1.12.2, 1.17.3, and 1.17.4 below) constructs transition probabil-

ity mechanisms that preserve a specified equilibrium distribution.

1.5 Reversibility

A transition probability distribution is reversible with respect to an initial distribution if, for

the Markov chainX1, X2, . . . they specify, the distribution of pairs (Xi, Xi+1) is exchangeable.

A Markov chain is reversible if its transition probability is reversible with respect to

its initial distribution. Reversibility implies stationarity, but not vice versa. A reversible

Markov chain has the same laws running forward or backward in time, that is for any i and

6 CHAPTER 1. INTRODUCTION TO MCMC

k the distributions of (Xi+1, . . . , Xi+k) and (Xi+k, . . . , Xi+1) are the same. Hence the name.

Reversibility plays two roles in Markov chain theory. All known methods for construct-

ing transition probability mechanisms that preserve a specified equilibrium distribution in

non-toy problems are special cases of the MHG algorithm, and all of the elementary updates

constructed by the MHG algorithm are reversible (which accounts for its other name, the

“reversible jump” algorithm). Combining elementary updates by composition (Section 1.12.7

below) may produce a combined update mechanism that is not reversible, but this does not

diminish the key role played by reversibility in constructing transition probability mecha-

nisms for MCMC. The other role of reversibility is to simplify the Markov chain central

limit theorem (CLT) and asymptotic variance estimation. In the presence of reversibility

the Markov chain CLT (Kipnis and Varadhan, 1986; Roberts and Rosenthal, 1997) is much

sharper and the conditions are much simpler than without reversibility. Some methods of

asymptotic variance estimation (Section 1.10.2 below) only work for reversible Markov chains

but are much simpler and more reliable than analogous methods for nonreversible chains.

1.6 Functionals

If X1, X2, . . . is a stochastic process and g is a real-valued function on its state space, then

the stochastic process g(X1), g(X2), . . . having state space R is said to be a functional of

X1, X2,

If X1, X2, . . . is a Markov chain, then a functional g(X1), g(X2), . . . is usually not a

Markov chain. The conditional distribution of Xn+1 given X1, . . . , Xn depends only on

Xn, but this does not, in general, imply that the conditional distribution of g(Xn+1) given

g(X1), . . . , g(Xn) depends only on g(Xn). Nevertheless, functionals of Markov chains have

important properties not shared by other stochastic processes.

1.7. THE THEORY OF ORDINARY MONTE CARLO 7

1.7 The Theory of Ordinary Monte Carlo

Ordinary Monte Carlo (OMC), also called independent and identically distributed (IID)

Monte Carlo (IIDMC) or good old-fashioned Monte Carlo (GOFMC) is the special case of

MCMC in which X1, X2, . . . are independent and identically distributed, in which case the

Markov chain is stationary and reversible.

Suppose you wish to calculate an expectation

µ = E{g(X)}, (1.7.1)

where g is a real-valued function on the state space, but you cannot do it by exact methods

(integration or summation using pencil and paper, a computer algebra system, or exact

numerical methods). Suppose you can simulate X1, X2, . . . IID having the same distribution

as X. Define

µ̂n =
1

n

n∑
i=1

g(Xi). (1.7.2)

If we introduce the notation Yi = g(Xi), then the Yi are IID with mean µ and variance

σ2 = var{g(X)}, (1.7.3)

µ̂n is the sample mean of the Yi, and the central limit theorem (CLT) says

µ̂n ≈ Normal

(
µ,
σ2

n

)
. (1.7.4)

The variance in the CLT can be estimated by

σ̂2
n =

1

n

n∑
i=1

(
g(Xi)− µ̂n

)2
, (1.7.5)

which is the empirical variance of the Yi. Using the terminology of Section 1.6, we can also

say µ̂n is the sample mean of the functional g(X1), g(X2), . . . of X1, X2,

The theory of OMC is just elementary statistics. For example, µ̂n ± 1.96 · σ̂n/
√
n is an

8 CHAPTER 1. INTRODUCTION TO MCMC

asymptotic 95% confidence interval for µ. Note that OMC obeys what an elementary statis-

tics text (Freedman et al., 2007) calls the square root law: statistical accuracy is inversely

proportional to the square root of the sample size. Consequently, the accuracy of Monte

Carlo methods is limited. Each additional significant figure, a ten-fold increase in accuracy,

requires a hundred-fold increase in the sample size.

The only tricky issue is that the randomness involved is the pseudo randomness of com-

puter simulation, rather than randomness of real world phenomena. Thus it is a good idea to

use terminology that emphasizes the difference. We call (1.7.2) the Monte Carlo approxima-

tion or Monte Carlo calculation of µ, rather than the “point estimate” or “point estimator”

of µ, as we would if not doing Monte Carlo. We call n the Monte Carlo sample size, rather

than just “sample size.” We call σ̂n/
√
n the Monte Carlo standard error (MCSE), rather

than just “standard error.” We also do not refer to (1.7.1) as an unknown parameter, even

though we don’t know its value. It is simply the expectation we are trying to calculate,

known in principle, although unknown in practice, since we don’t know how to calculate it

other than by Monte Carlo approximation.

It is especially important to use this terminology when applying Monte Carlo to statistics.

When the expectation (1.7.1) arises in a statistical application, there may already be a sample

size in this application, which is unrelated to the Monte Carlo sample size, and there may

already be standard errors unrelated to Monte Carlo standard errors. It can be hopelessly

confusing if these are not carefully distinguished.

1.8 The Theory of MCMC

The theory of MCMC is just like the theory of OMC, except that stochastic dependence

in the Markov chain changes the standard error. We start as in OMC with an expectation

(1.7.1) that we cannot do other than by Monte Carlo. To begin the discussion suppose X1,

X2, . . . is a stationary Markov chain having initial distribution the same as the distribution

1.8. THE THEORY OF MCMC 9

of X. We assume the Markov chain CLT (1.7.4) holds, where now

σ2 = var{g(Xi)}+ 2
∞∑
k=1

cov{g(Xi), g(Xi+k)} (1.8.1)

(this formula is correct only for stationary Markov chains, see below for nonstationary

chains). Since the asymptotic variance (1.8.1) is more complicated than the IID case (1.7.3),

it cannot be estimated by (1.7.5). It can, however, be estimated in several ways discussed

below (Section 1.10). Conditions for the Markov chain CLT to hold (Chan and Geyer, 1994;

Jones, 2004; Roberts and Rosenthal, 1997, 2004; Tierney, 1994) are beyond the scope of this

chapter.

Now we come to a somewhat confusing issue. We never use stationary Markov chains in

MCMC, because if we could simulate X1 so that it has the invariant distribution, then we

could also simulate X2, X3, . . . in the same way and do OMC. It is a theorem, however,

that, under a condition (Harris recurrence) that is easier to verify than the CLT (Chan

and Geyer, 1994; Tierney, 1994), if the CLT holds for one initial distribution and transition

probability, then it holds for all initial distributions and that same transition probability

(Meyn and Tweedie, 1993, Proposition 17.1.6), and the asymptotic variance is the same for all

initial distributions. Although the theoretical asymptotic variance formula (1.8.1) contains

variances and covariances for the stationary Markov chain, it also gives the asymptotic

variance for nonstationary Markov chains having the same transition probability distribution

(but different initial distributions). In practice, this doesn’t matter, because we can never

calculate (1.8.1) exactly except in toy problems and must estimate it from our simulations.

1.8.1 Multivariate Theory

Suppose we wish to approximate by Monte Carlo (1.7.1) where we change notation so that

µ is a vector with components µr and g(x) is a vector with components gr(x). Our Monte

Carlo estimator is still given by (1.7.2), which is now also a vector equation because each

10 CHAPTER 1. INTRODUCTION TO MCMC

g(Xi) is a vector. Then the multivariate Markov chain CLT says

µ̂n ≈ Normal(µ, n−1Σ),

where

Σ = var{g(Xi)}+ 2
∞∑
k=1

cov{g(Xi), g(Xi+k)}, (1.8.2)

and where, although the right-hand sides of (1.8.1) and (1.8.2) are the same, they mean dif-

ferent things: in (1.8.2) var{g(Xi)} denotes the matrix with components cov{gr(Xi), gs(Xi)}
and cov{g(Xi), g(Xi+k)} denotes the matrix with components cov{gr(Xi), gs(Xi+k)}.

Conditions for the multivariate CLT to hold are essentially the same as for the univariate

CLT. By the Cramér-Wold theorem, the multivariate convergence in distribution Zn
D−→ Z

holds if and only if the univariate convergence in distribution t′Zn
D−→ t′Z holds for every

nonrandom vector t. Thus the multivariate CLT essentially follows from the univariate

CLT, and is often not discussed. It is important, however, for users to understand that the

multivariate CLT does hold and can be used when needed.

1.8.2 The Autocovariance Function

We introduce terminology for the covariances that appear in (1.8.1);

γk = cov{g(Xi), g(Xi+k)} (1.8.3)

is called the lag k autocovariance of the functional g(X1), g(X2), Recall that in (1.8.3)

as in (1.8.1) the covariances refer to the stationary chain with the same transition probability

distribution as the chain being used. The variance that appears in (1.8.1) is then γ0. Hence

(1.8.1) can be rewritten

σ2 = γ0 + 2
∞∑
k=1

γk. (1.8.4)

The function k 7→ γk is called the autocovariance function of the functional g(X1), g(X2),

. . . , and the function k 7→ γk/γ0 is called the autocorrelation function of this functional.

1.9. AR(1) EXAMPLE 11

The natural estimator of the autocovariance function is

γ̂k =
1

n

n−k∑
i=1

[g(Xi)− µ̂n][g(Xi+k)− µ̂n] (1.8.5)

It might be thought that one should divide by n − k instead of n, but the large k terms

are already very noisy so dividing by n− k only makes a bad situation worse. The function

k 7→ γ̂k is called the empirical autocovariance function of the functional g(X1), g(X2), . . . ,

and the function k 7→ γ̂k/γ̂0 is called the empirical autocorrelation function of this functional.

1.9 AR(1) Example

We now look at a toy problem for which exact calculation is possible. An AR(1) process

(AR stands for autoregressive) is defined recursively by

Xn+1 = ρXn + Yn (1.9.1)

where Yn are IID Normal(0, τ 2) and X1 may have any distribution with finite variance. From

(1.9.1) we get

cov(Xn+k, Xn) = ρ cov(Xn+k−1, Xn) = · · · = ρk−1 cov(Xn−1, Xn) = ρk var(Xn). (1.9.2)

If the process is stationary, then

var(Xn) = var(Xn+1) = ρ2 var(Xn) + var(Yn)

so

var(Xn) =
τ 2

1− ρ2
(1.9.3)

and since variances are nonnegative, we must have ρ2 < 1. Since a linear combination of

independent normal random variables is normal, we see that the normal distribution with

mean zero and variance (1.9.3) is invariant. Define υ2 to be another notation for the right-

12 CHAPTER 1. INTRODUCTION TO MCMC

hand side of (1.9.3) so the invariant distribution is Normal(0, υ2).

It can be shown that this is the unique invariant distribution and this Markov chain obeys

the CLT. The variance in the CLT is

σ2 = var(Xi) + 2
∞∑
k=1

cov(Xi, Xi+k)

=
τ 2

1− ρ2

(
1 + 2

∞∑
k=1

ρk

)

=
τ 2

1− ρ2

(
1 +

2ρ

1− ρ

)
=

τ 2

1− ρ2
· 1 + ρ

1− ρ

= υ2 · 1 + ρ

1− ρ

(1.9.4)

1.9.1 A Digression on Toy Problems

It is hard to know what lessons to learn from a toy problem. Unless great care is taken

to point out which features of the toy problem are like real applications and which unlike,

readers may draw conclusions that do not apply to real world problems.

Here we are supposed to pretend that we do not know the invariant distribution, and

hence we do not know the expectation we are trying to estimate µ = E(X), where X has

the invariant distribution, is zero.

We cannot be interested in any functional of the Markov chain other than the one induced

by the identity function, because we cannot do the analog of (1.9.4) for any function g other

than the identity function, and thus would not have a closed form expression for the variance

in the Markov chain CLT, which is the whole point of this toy problem.

Observe that (1.9.4) goes to infinity as ρ→ 1. Thus in order to obtain a specified accuracy

for µ̂n as an approximation to µ, say σ/
√
n = ε, we may need very large Monte Carlo sample

size n. How large n must be depends on how close ρ is to one. When we pretend that we

do not know the asymptotic variance (1.9.4), which we should do because the asymptotic

1.9. AR(1) EXAMPLE 13

variance is never known in real applications, all we can conclude is that we may need the

Monte Carlo sample size to be very large and have no idea how large.

We reach the same conclusion if we are only interested in approximation error relative to

the standard deviation υ of the invariant distribution, because

σ2

υ2
=

1 + ρ

1− ρ
(1.9.5)

also goes to infinity as ρ→ 1.

1.9.2 Supporting Technical Report

In order to avoid including laborious details of examples while still making all examples

fully reproducible, those details are relegated to a technical report (Geyer, 2010a) or the

vignettes for the R package mcmc (Geyer, 2010c). All calculations in this technical report

or those package vignettes are done using the R function Sweave so all results in them are

actually produced by the code shown therein and hence are fully reproducible by anyone

who has R. Moreover, anyone can download the Sweave source for the technical report from

the URL given in the bibliography or find the Sweave source for the package vignettes in the

doc directory of any installation of the mcmc package, separate the R from the LATEX using

the Stangle function, and play with it to see how the examples work.

1.9.3 The Example

For our example, we choose ρ = 0.99 and Monte Carlo sample size n = 104. This makes the

MCSE about 14% of the standard deviation of the invariant distribution, which is pretty

sloppy approximation. To get the relative MCSE down to 10%, we would need n = 2× 104.

To get the relative MCSE down to 1%, we would need n = 2× 106.

Figure 1.1 shows a time series plot of one MCMC run for this AR(1) process. From this

plot we can see that the series seems stationary — there is no obvious trend or change in

14 CHAPTER 1. INTRODUCTION TO MCMC

spread. We can also get a rough idea of how much dependence there is in the chain by

counting large wiggles. The ratio of the variance in the CLT to the variance of the invariant

distribution (1.9.5) is 199 for this example. Hence this MCMC sample is about as useful as

an IID sample with the same marginal distribution of sample size 104/199 ≈ 50.

Figure 1.2 shows a running averages plot for the same run shown in Figure 1.1. For

some reason, these running averages plots seem popular among MCMC users although they

provide no useful information. We know that MCMC, like OMC, obeys the square root law.

A plot like Figure 1.2 does illustrate that 1/
√
n is a decreasing function of n, but not much

else. Elementary statistics texts (Freedman et al., 2007, p. 276) often include one (and only

one) figure like our Figure 1.2 to illustrate to naive students how the law of averages works.

We have included Figure 1.2 only as an example of what not to do. In particular, such

running averages plots should never be used to illustrate talks, since they tell the audience

nothing they do not already know. Show a time series plot, like Figure 1.1 instead.

Figure 1.3 shows an autocorrelation plot for the same run shown in Figure 1.1. The

black bars show the empirical autocorrelation function (ACF) defined in Section 1.8.2. We

could let the domain of the ACF be zero to n − 1, but the R function acf cuts the plot at

the argument lag.max. The acf function automatically adds the horizontal dashed lines,

which the documentation for plot.acf says are 95% confidence intervals assuming white

noise input. The dotted curve is the simulation truth autocorrelation function ρk derived

from (1.9.2). In the spirit of this toy problem, we are supposed to pretend we do not know

the dotted curve, since we would not have its analog in any real application. We can see,

however, how well (not very) the empirical ACF matches the theoretical ACF.

It should come as no surprise that the empirical ACF estimates the theoretical ACF less

well than µ̂n estimates µ. Even in IID sampling, the mean is always much better estimated

than the variance.

The ACF is well enough estimated, however, to give some idea how far significant autocor-

relation extends in our Markov chain. Of course, the theoretical autocorrelation is nonzero

for all lags, no matter how large, but we know (although we pretend we don’t) that they

decrease exponentially fast. They are not practically significantly different from zero past

1.10. VARIANCE ESTIMATION 15

lag 500.

1.10 Variance Estimation

Many methods of variance estimation have been proposed. Most come from the time series

literature and are applicable to arbitrary stationary stochastic processes, not just to Markov

chains. We will cover only a few very simple, but very effective, methods.

1.10.1 Nonoverlapping Batch Means

A batch is simply a subsequence of consecutive iterates of the Markov chain Xk+1, . . ., Xk+b.

The number b is called the batch length. If we assume the Markov chain is stationary, then

all batches of the same length have the same joint distribution, and the CLT applies to each

batch. The batch mean
1

b

b∑
j=1

g(Xk+j)

is a Monte Carlo approximation of the expectation (1.7.1) we are trying to calculate, and

its distribution is approximately Normal(µ, σ2/b), where, as before, σ2 is given by (1.8.1).

A batch of length b is just like the entire run of length n, except for length. The sample

mean of a batch of length b is just like the sample mean of the entire run of length n, except

except that the asymptotic variance is σ2/b instead of σ2/n.

Suppose b divides n evenly. Divide the whole run into m nonoverlapping batches of length

b. Average these batches

µ̂b,k =
1

b

bk∑
i=b(k−1)+1

g(Xi). (1.10.1)

Then
1

m

m∑
k=1

(µ̂b,k − µ̂n)2 (1.10.2)

estimates σ2/b.

16 CHAPTER 1. INTRODUCTION TO MCMC

It is important to understand that the stochastic process µ̂b,1, µ̂b,2, . . . is also a functional

of a Markov chain, not the original Markov chain but a different one. If S is the state space

of the original Markov chain X1, X2, . . ., then the batches

(Xb(k−1)+1, . . . , Xkb), k = 1, 2, . . .

also form a Markov chain with state space Sb, because the conditional distribution of one

batch (Xb(k−1)+1, . . . , Xkb) given the past history actually depends only on Xb(k−1), which is

a component of the immediately preceding batch. The batch means are a functional of this

Markov chain of batches.

Figure 1.4 shows a batch mean plot for the same run shown in Figure 1.1. The batch

length is 500, the run length is 104, so the number of batches is 20. Like the running averages

plot (Figure 1.2) we do not recommend this kind of plot for general use, because it does not

show anything a sophisticated MCMC user should not already know. It is useful to show

such a plot (once) in a class introducing MCMC, to illustrate the point that the stochastic

process shown is a functional of a Markov chain. It is not useful for talks about MCMC.

Figure 1.5 shows the autocorrelation plot of the batch mean stochastic process for the

same run shown in Figure 1.1, which shows the batches are not significantly correlated,

because all of the bars except the one for lag zero are inside the dashed lines. In this case, a

confidence interval for the unknown expectation (1.7.1) is easily done using the R function

t.test

> t.test(batch)

One Sample t-test

data: batch

t = -1.177, df = 19, p-value = 0.2537

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-2.5184770 0.7054673

sample estimates:

1.10. VARIANCE ESTIMATION 17

mean of x

-0.9065049

Here batch is the vector of batch means which is plotted in Figure 1.4.

If this plot had shown the batches to be significantly correlated, then the method of

batch means should not have been used because it would have a significant downward bias.

However the time series of batches can still be used, as explained in Section 1.10.2 below.

How does one choose the batch length? The method of batch means will work well only if

the batch length b is large enough so that the infinite sum in (1.8.4) is well approximated by

the partial sum of the first b terms. Hence when the method of batch means is used blindly

with no knowledge of the ACF, b should be as large as possible. The only restriction on

the length of batches is that the number of batches should be enough to get a reasonable

estimate of variance. If one uses a t test, as shown above, then the t critical value corrects for

the number of batches being small (Geyer, 1992; Schmeiser, 1982), but there is no point in

the number of batches being so small that that the variance estimate is extremely unstable:

20–30 batches is a reasonable recommendation. One sometimes sees assumptions that the

number of batches “goes to infinity” in theorems, but this is not necessary for simple MCSE

calculation (Geyer, 1992, Section 3.2). If one is using estimated variance in a sequential

stopping rule (Glynn and Whitt, 1991, 1992), then one does need the number of batches to

go to infinity.

Meketon and Schmeiser (1984) pointed out that the batch means estimator of variance

(1.10.2) is still valid if the batches are allowed to overlap, and a slight gain in efficiency

is thereby achieved. For reasons explained in the following section, we do not recommend

overlapping batch means, not because there is anything wrong with it, but because it does

not fit together well with other methods we recommend.

18 CHAPTER 1. INTRODUCTION TO MCMC

1.10.2 Initial Sequence Methods

Another approach to variance estimation is to work directly with the representation (1.8.4) of

the asymptotic variance. One cannot simply plug the empirical estimates (1.8.5) into (1.8.4)

because the variance of the high lag terms does not decrease with lag, so as n goes to infinity

an infinite amount of noise swamps the finite signal. Many solutions for this problem have

been proposed in the time series literature (Geyer, 1992, Section 3.1 and references cited

therein). But reversible Markov chains permit much simpler methods. Define

Γk = γ2k + γ2k+1. (1.10.3)

Geyer (1992, Theorem 3.1) showed that the function k 7→ Γk is strictly positive, strictly

decreasing, and strictly convex and proposed three estimators of the asymptotic variance

(1.8.4) that use these three properties, called the initial positive sequence, initial monotone

sequence, and initial convex sequence estimators. Each is a consistent overestimate of the

asymptotic variance (meaning the probability of underestimation by any fixed amount goes

to zero as the Monte Carlo sample size goes to infinity) under no regularity conditions

whatsoever (Geyer, 1992, Theorem 3.2). The initial convex sequence estimator is the best,

because the smallest and still an asymptotic overestimate, but is a bit difficult to calculate.

Fortunately, the R contributed package mcmc now has a function initseq that calculates all

three estimators. We will only discuss the last. It forms

Γ̂k = γ̂2k + γ̂2k+1,

where γ̂k is given by (1.8.5), then finds the largest index m such that

Γ̂k > 0, k = 0, . . . ,m,

then defines Γ̂m+1 = 0, and then defines k 7→ Γ̃k to be the greatest convex minorant of

k 7→ Γ̂k over the range 0, . . ., m+ 1. Finally, it estimates

σ̂2
conv = −γ̂0 + 2

m∑
k=0

Γ̃k. (1.10.4)

1.10. VARIANCE ESTIMATION 19

Figure 1.6 shows a plot of the function k 7→ Γ̃k for the same run shown in Figure 1.1 compared

to its theoretical value. When comparing this plot to Figure 1.3, remember that each index

value in Figure 1.6 corresponds to two index values in Figure 1.3 because of the way (1.10.3)

is defined. Thus Figure 1.6 indicates significant autocorrelation out to about lag 300 (not

150).

The estimator of asymptotic variance (1.10.4) is calculated very simply in R

> initseq(out)$var.con

[1] 7467.781

assuming the mcmc contributed package has already been loaded and out is the functional

of the Markov chain for which the variance estimate is desired.

1.10.3 Initial Sequence Methods and Batch Means

When the original Markov chain is reversible, so is the chain of batches. Hence initial

sequence methods can be applied to a sequence of nonoverlapping batch means derived from

a reversible Markov chain.

This means the method of nonoverlapping batch means can be used without testing

whether the batches are large enough. Simply process them with an initial sequence method,

and the result is valid regardless of the batch length.

Here’s how that works. Suppose we use a batch length of 50, which is too short.

> blen * var(batch)

[1] 2028.515

> blen * initseq(batch)$var.con

[1] 7575.506

The naive batch means estimator is terrible, less than a third of the size of the initial convex

sequence estimator applied to the batch means 7575.506, but this is about the same as the

20 CHAPTER 1. INTRODUCTION TO MCMC

initial convex sequence estimator applied to the original output 7467.781. So nothing is lost

when only nonoverlapping batch means are output, regardless of the batch length used.

Partly for this reason, and partly because nonoverlapping batch means are useful for

reducing the size of the output, whereas overlapping batch means are not, we do not rec-

ommend overlapping batch means and will henceforth always use the term batch means to

mean nonoverlapping batch means.

1.11 The Practice of MCMC

The practice of MCMC is simple. Set up a Markov chain having the required invariant

distribution, and run it on a computer. The folklore of simulation makes this seem more

complicated than it really is. None of this folklore is justified by theory and none of it

actually helps users do good simulations, but, like other kinds of folklore, it persists despite

its lack of validity.

1.11.1 Black Box MCMC

There is a great deal of theory about convergence of Markov chains. Unfortunately, none of

it can be applied to get useful convergence information for most MCMC applications. Thus

most users find themselves in following situation we call black box MCMC.

1. You have a Markov chain having the required invariant distribution.

2. You know nothing other than that. The Markov chain is a “black box” that you cannot

see inside. When run it produces output. That is all you know. You know nothing about

the transition probabilities of the Markov chain, nor anything else about its dynamics.

3. You know nothing about the invariant distribution except what you may learn from

running the Markov chain.

1.11. THE PRACTICE OF MCMC 21

Point 2 may seem extreme. You may know a lot about the particular Markov chain being

used — for example, you may know that it is a Gibbs sampler — but if whatever you know

is of no help in determining any convergence information about the Markov chain, then

whatever knowledge you have is useless. Point 3 may seem extreme. Many examples in

the MCMC literature use small problems that can be done by OMC or even by pencil and

paper and for which a lot of information about the invariant distribution is available, but in

complicated applications point 3 is often simply true.

1.11.2 Pseudo-Convergence

A Markov chain can appear to have converged to its equilibrium distribution when it has

not. This happens when parts of the state space are poorly connected by the Markov chain

dynamics: it takes many iterations to get from one part to another. When the time it takes

to transition between these parts is much longer than the length of simulated Markov chain,

then the Markov chain can appear to have converged but the distribution it appears to have

converged to is the equilibrium distribution conditioned on the part in which the chain was

started. We call this phenomenon pseudo-convergence.

This phenomenon has also been called “multimodality” since it may occur when the equi-

librium distribution is multimodal. But multimodality does not cause pseudo-convergence

when the troughs between modes are not severe. Nor does pseudo-convergence only happen

when there is multimodality. Some of the most alarming cases of pseudo-convergence occur

when the state space of the Markov chain is discrete and “modes” are not well defined (Geyer

and Thompson, 1995). Hence pseudo-convergence is a better term.

1.11.3 One Long Run versus Many Short Runs

When you are in the black box situation, you have no idea how long runs need to be to get

good mixing (convergence rather than pseudo-convergence). If you have a run that is already

long enough, then an autocovariance plot like 1.6 gives good information about mixing, and

you know that you need to run a large multiple of the time it takes the autocovariances to

22 CHAPTER 1. INTRODUCTION TO MCMC

decay to nearly zero. But if all the runs you have done so far are nowhere near long enough,

then they provide no information about how long is long enough.

The phenomenon of pseudo-convergence has led many people to the idea of comparing

multiple runs of the sampler started at different points. If the multiple runs appear to

converge to the same distribution, then — according to the multistart heuristic — you are

o. k. But this assumes you can arrange to have at least one starting point in each part of the

state space to which the sampler can pseudo-converge. If you cannot do that — and in the

black box situation you never can — then the multistart heuristic is worse than useless: it

can give you confidence everything is o. k. when in fact your results are completely erroneous.

Worse, addiction to many short runs can keep one from running the sampler long enough

to detect pseudo-convergence or other problems, such as bugs in the code. People who have

used MCMC in complicated problems can tell stories about samplers that appeared to be

converging until after weeks of running they discovered a new part of the state space and the

distribution changed radically. If those people had thought it necessary to make hundreds

of runs, none of them could have been several weeks long.

Your humble author has a dictum that the least one can do is to make an overnight run.

What better way for your computer to spend its time? In many problems that are not too

complicated, this is millions or billions of iterations. If you don’t make runs like that, you

are simply not serious about MCMC. Your humble author has another dictum (only a bit

facetious) that one should start a run when the paper is submitted and keep running until

referee’s reports arrive. This cannot delay the paper, and may detect pseudo-convergence.

1.11.4 Burn-In

Burn-in is a colloquial term that describes the practice of throwing away some iterations at

the beginning of an MCMC run. This notion says you start somewhere, say at x, then you

run the Markov chain for n steps (the burn-in period) during which you throw away all the

data (no output). After the burn-in you run normally, using each iterate in your MCMC

calculations.

1.11. THE PRACTICE OF MCMC 23

The name “burn-in” comes from electronics. Many electronics components fail quickly.

Those that don’t are a more reliable subset. So a burn-in is done at the factory to eliminate

the worst ones.

Markov chains don’t work the same way. Markov chain “failure” (nonconvergence or

pseudo-convergence) is different from electronic component failure. Running longer may

cure the first, but a dead transistor is dead forever. Thus “burn-in” is a bad term in MCMC,

but there’s more wrong than just the word, there’s something fishy about the whole concept.

Figure 1.7 illustrates the issue burn-in addresses. It shows an AR(1) time series with all

parameters except starting position the same as Figure 1.1 so the equilibrium distribution,

normal with mean zero and variance (1.9.3), is the same for both. In Figure 1.7 the starting

position is far out in the tail of the equilibrium distribution, ten standard deviations from

the mean. In Figure 1.1 the starting position is the mean (zero). It takes several hundred

iterations before the sample path in Figure 1.7 gets into the region containing the whole

sample path in Figure 1.1.

The naive idea behind burn-in is that if we throw away several hundred iterations from

Figure 1.7 it will be just as good as Figure 1.1. Overgeneralizing examples like Figure 1.7

leads to the idea that every MCMC run should have burn-in. Examples like Figure 1.1 show

that this is not so. A Markov chain started anywhere near the center of the equilibrium

distribution needs no burn-in.

Burn-in is only one method, and not a particularly good method, of finding a

good starting point.

There are several methods other than burn-in for finding a good starting point. One rule

that is unarguable is

Any point you don’t mind having in a sample is a good starting point.

In a typical application, one has no theoretical analysis of the Markov chain dynamics that

tells where the good starting points are (nor how much burn-in is required to get to a good

24 CHAPTER 1. INTRODUCTION TO MCMC

starting point). All decisions about starting points are based on the output of some prelimi-

nary runs that appear to have “converged.” Any point of the parts of these preliminary runs

one believes to be representative of the equilibrium distribution is as good a starting point

as any other.

So a good rule to follow is to start the next run where the last run ended. This is the

rule most authorities recommend for random number generator seeds and the one used by

R. It is also used by functions in the R package mcmc as discussed in Section 1.13 below.

Another method is to start at a mode of the equilibrium distribution (which can sometimes

be found by optimization before doing MCMC) if it is known to be in a region of appreciable

probability.

None of the examples in this chapter use burn-in. All use one or the other of these

alternative methods of finding starting points. Burn-in is mostly harmless, which is perhaps

why the practice persists. But everyone should understand that it is unnecessary, and those

who do not use it are not thereby making an error.

Burn-in has a pernicious interaction with the multistart heuristic. If one believes in

multistart, then one feels the need to start at many widely dispersed, and hence bad, starting

points. Thus all of these short runs need be shortened some more by burn-in. Thus an

erroneous belief in the virtues of multistart leads to an erroneous belief in the necessity of

burn-in.

Another erroneous argument for burn-in is unbiasedness. If one could start with a real-

ization from the equilibrium distribution, then the Markov chain would be stationary and

the Monte Carlo approximation (1.7.2) would be an unbiased estimator of what it estimates

(1.7.1). Burn-in does not produce a realization from the equilibrium distribution, hence does

not produce unbiasedness. At best it produces a small bias, but the alternative methods also

do that. Moreover bias is of order n−1, where n is the Monte Carlo sample size, whereas the

MCSE is of order n−1/2, so bias is negligible in sufficiently long runs.

1.11. THE PRACTICE OF MCMC 25

1.11.5 Diagnostics

Many MCMC diagnostics have been proposed in the literature. Some work with one run

of a Markov chain, but tell little that cannot be seen at a glance at a time series plot like

Figure 1.1 or an autocorrelation plot like Figure 1.3. Others with multiple runs of a Markov

chain started at different points, what we called the multistart heuristic above. Many of

these come with theorems, but the theorems never prove the property you really want a

diagnostic to have. These theorems say that if the chain converges, then the diagnostic will

probably say the chain converged, but they do not say that if the chain pseudo-converges,

then the diagnostic will probably say the chain did not converge. Theorems that claim to

reliably diagnose pseudo-convergence have unverifiable conditions that make them useless.

For example, as we said above, it is clear that a diagnostic based on the multistart heuristic

will reliably diagnose pseudo-convergence if there is at least one starting point in each part

of the state space to which the sampler can pseudo-converge, but in practical applications

one has no way of arranging that.

There is only one perfect MCMC diagnostic: perfect sampling (Crain and Meng, 2010;

Kendall and Møller, 2000; Propp and Wilson, 1996). This is best understood as not a

method of MCMC but rather a method of Markov-chain-assisted IID sampling. Since it

is guaranteed to produce an IID sample from the equilibrium distribution of the Markov

chain, a sufficiently large sample is guaranteed to not miss any parts of the state space

having appreciable probability. Perfect sampling is not effective as a sampling scheme. If

it works, then simply running the underlying Markov chain in MCMC mode will produce

more accurate results in the same amount of computer time. Thus, paradoxically, perfect

sampling is most useful when it fails to produce an IID sample of the requested size in the

time one is willing to wait. This shows the underlying Markov chain is useless for sampling,

MCMC or perfect.

Perfect sampling does not work on black box MCMC (Section 1.11.1 above), because

it requires complicated theoretical conditions on the Markov chain dynamics. No other

diagnostic ever proposed works on black box MCMC, because if you know nothing about

the Markov chain dynamics or equilibrium distribution except what you learn from output

26 CHAPTER 1. INTRODUCTION TO MCMC

of the sampler, you can always be fooled by pseudo-convergence.

There are known knowns. These are things we know that we know. There are

known unknowns. That is to say, there are things that we now know we don’t

know. But there are also unknown unknowns. These are things we do not know

we don’t know.

— United States Secretary of Defense Donald Rumsfeld

Diagnostics can find the known unknowns. They cannot find the unknown unknowns. They

cannot find out what a black box MCMC sampler will do eventually. Only sufficiently long

runs can do that.

1.12 Elementary Theory of MCMC

We say a bit of computer code that makes a pseudorandom change to its state is an update

mechanism. We are interested in update mechanisms that preserve a specified distribution,

that is, if the state has the specified distribution before the update, then it has the same

distribution after the update. From them we can construct Markov chains to sample that

distribution.

We say an update mechanism is elementary if it is not made up of parts that are themselves

update mechanisms preserving the specified distribution.

1.12.1 The Metropolis-Hastings Update

Suppose the specified distribution (the desired stationary distribution of the MCMC sampler

we are constructing) has unnormalized density h. The term unnormalized density means that

h is a positive constant times a probability density. Thus h is a nonnegative-valued function

that integrates (for continuous state) or sums (for discrete state) to a value that is finite and

not zero. The Metropolis-Hastings update does the following.

1.12. ELEMENTARY THEORY OF MCMC 27

• When the current state is x, propose a move to y, having conditional probability density

given x denoted q(x, ·).

• Calculate the Hastings ratio

r(x, y) =
h(y)q(y, x)

h(x)q(x, y)
(1.12.1)

• Accept the proposed move y with probability

a(x, y) = min
(
1, r(x, y)

)
(1.12.2)

that is, with probability a(x, y), the state after the update is y and with probability

1− a(x, y), the state after the update is x.

The last step is often called Metropolis rejection. The name is supposed to remind one

of “rejection sampling” in OMC, but this is a misleading analogy because in OMC rejection

sampling is done repeatedly until some proposal is accepted (so it always produces a new

value of the state). In contrast one Metropolis-Hastings update makes one proposal y, which

is the new state with probability a(x, y), but otherwise the new state the same as the old

state x. Any attempt to make Metropolis rejection like OMC rejection, destroys the property

that this update preserves the distribution with density h.

The Hastings ratio (1.12.1) is undefined if h(x) = 0, thus we must always arrange that

h(x) > 0 in the initial state. There is no problem if h(y) = 0. All that happens is that

r(x, y) = 0 and the proposal y is accepted with probability zero. Thus the Metropolis-

Hastings update can never move to a new state x having h(x) = 0. Note that the proposal

y must satisfy q(x, y) > 0 with probability one because q(x, ·) is the conditional density of

y given x. Hence, still assuming h(x) > 0, the denominator of the Hastings ratio is nonzero

with probability one, and the Hastings ratio is well defined. Note that either term of the

numerator of the Hastings ratio can be zero, so the proposal is almost surely rejected if

either h(y) = 0 or q(y, x) = 0, that is, if y is an impossible value of the desired equilibrium

distribution or if x is an impossible proposal when y is the current state.

We stress that nothing bad happens if the proposal y is an impossible value of the de-

sired equilibrium distribution. The Metropolis-Hastings update automatically does the right

28 CHAPTER 1. INTRODUCTION TO MCMC

thing, almost surely rejecting such proposals. Hence it is not necessary to arrange that pro-

posals are always possible values of the desired equilibrium distribution; it is only necessary

to assure that one’s implementation of the unnormalized density function h works when

given any possible proposal as an argument and gives h(y) = 0 when y is impossible.

If unifrand is a function with no arguments that produces one Uniform(0, 1) random

variate and the Hastings ratio has already been calculated and stored in a variable r, then

the following computer code does the Metropolis rejection step

if (unifrand() < r) {

x = y

}

The variable x, which is considered the state of the Markov chain, is set to y (the proposal)

when a uniform random variate is less than the Hastings ratio r and left alone otherwise.

The following computer code works with the log Hastings ratio logr to avoid overflow

if (logr >= 0 || unifrand() < exp(logr)) {

x = y

}

It uses the “short circuit” property of the || operator in R or C. Its second operand

unifrand() < exp(logr) is only evaluated when its first operand logr >= 0 evaluates

to FALSE. Thus exp(logr) can never overflow.

1.12.2 The Metropolis-Hastings Theorem

We now prove a theorem that the Metropolis-Hastings update is reversible with respect to

h, meaning the transition probability that describes the update is reversible with respect to

the distribution having unnormalized density h.

1.12. ELEMENTARY THEORY OF MCMC 29

If Xn is the current state and Yn is the proposal, we have Xn = Xn+1 whenever the

proposal is rejected. Clearly, the distribution of (Xn, Xn+1) given rejection is exchangeable.

Hence it only remains to be shown that (Xn, Yn) is exchangeable given acceptance. We

need to show

E{f(Xn, Yn)a(Xn, Yn)} = E{f(Yn, Xn)a(Xn, Yn)}

for any function f that has expectation (assuming Xn has desired stationary distribution).

That is, we must show we can interchange arguments of f in∫∫
f(x, y)h(x)a(x, y)q(x, y) dx dy (1.12.3)

(with integrals replaced by sums if the state is discrete), and that follows if we can interchange

x and y in

h(x)a(x, y)q(x, y) (1.12.4)

because we can exchange x and y in (1.12.3), x and y being dummy variables. Clearly only

the set of x and y such that h(x) > 0 and q(x, y) > 0 and a(x, y) > 0 contributes to the

integral or (in the discrete case) sum (1.12.3), and these inequalities further imply h(y) > 0

and q(y, x) > 0. Thus we may assume these inequalities, in which case we have

r(y, x) =
1

r(x, y)

for all such x and y.

Suppose r(x, y) ≤ 1, so r(x, y) = a(x, y) and a(y, x) = 1. Then

h(x)a(x, y)q(x, y) = h(x)r(x, y)q(x, y)

= h(y)q(y, x)

= h(y)q(y, x)a(y, x)

30 CHAPTER 1. INTRODUCTION TO MCMC

Conversely, suppose r(x, y) > 1, so a(x, y) = 1 and a(y, x) = r(y, x). Then

h(x)a(x, y)q(x, y) = h(x)q(x, y)

= h(y)r(y, x)q(y, x)

= h(y)a(y, x)q(y, x)

In either case we can exchange x and y in (1.12.4), and the proof is done.

1.12.3 The Metropolis Update

The special case of the Metropolis-Hastings update when q(x, y) = q(y, x) for all x and y is

called the Metropolis update. Then the Hastings ratio (1.12.1) simplifies to

r(x, y) =
h(y)

h(x)
(1.12.5)

and is called the Metropolis ratio or the odds ratio. Thus Metropolis updates save a little time

in calculating r(x, y) but otherwise have no advantages over Metropolis-Hastings updates.

One obvious way to arrange the symmetry property is to make proposals of the form

y = x + e, where e is stochastically independent of x and symmetrically distributed about

zero. Then q(x, y) = f(y − x) where f is the density of e. Widely used proposals of this

type have e normally distributed with mean zero or e uniformly distributed on a ball or a

hypercube centered at zero (see Section 1.12.10 below for more on such updates).

1.12.4 The Gibbs Update

In a Gibbs update the proposal is from a conditional distribution of the desired equilibrium

distribution. It is always accepted.

The proof of the theorem that this update is reversible with respect to the desired equilib-

rium distribution is trivial. Suppose Xn has the desired stationary distribution. Suppose the

1.12. ELEMENTARY THEORY OF MCMC 31

conditional distribution of Xn+1 given f(Xn) is same as the conditional distribution of Xn

given f(Xn). Then the pair (Xn, Xn+1) is conditionally exchangeable given f(Xn). Hence

unconditionally exchangeable.

In common parlance, a Gibbs update uses the conditional distribution of one component

of the state vector given the rest of the components, that is, the special case of the update

described above where f(Xn) is Xn with one component omitted. Conditional distributions

of this form are called “full conditionals.” There is no reason other than tradition why such

conditional distributions should be preferred.

In fact other conditionals have been considered in the literature. If f(Xn) is Xn with

several components omitted, this is called “block Gibbs.” Again, there is no reason other

than tradition why such conditional distributions should be preferred.

If one insists that “Gibbs update” only apply to full conditionals, then one could call the

updates described here “generalized Gibbs.” But the “generalized” here is not much of a

generalization. Simply do a change-of-variable so that f(Xn) is a group of components of

the new state vector and “generalized Gibbs” is “block Gibbs.” Also the argument for all

these updates is exactly the same.

Gibbs updates have one curious property not shared by other Metropolis-Hastings up-

dates: they are idempotent, meaning the effect of multiple updates is the same as the effect

of just one. This is because the update never changes f(Xn), hence the the result of many

repetitions of the same Gibbs update results in Xn+1 having the conditional distribution

given f(Xn) just like the result of a single update. In order for Gibbs elementary updates

to be useful, they must be combined somehow with other updates.

1.12.5 Variable-at-a-Time Metropolis-Hastings

Gibbs updates alter only part of the state vector, when using “full conditionals” the part is

a single component. Metropolis-Hastings updates can be modified to do the same.

Divide the state vector into two parts x = (u, v). Let the proposal alter u but not v.

32 CHAPTER 1. INTRODUCTION TO MCMC

Hence the proposal density has the form q(x, u) instead of q(x, y) we had in Section 1.12.1.

Again let h(x) = h(u, v) be the unnormalized density of the desired equilibrium distribution.

The variable-at-a-time Metropolis-Hastings update does the following

• When the current state is x = (u, v), propose a move to y = (u∗, v), where u∗ has

conditional probability density given x denoted q(x, ·) = q(u, v, ·).

• Calculate the Hastings ratio

r(x, y) =
h(u∗, v)q(u∗, v, u)

h(u, v)q(u, v, u∗)
(1.12.6)

• Accept the proposed move y with probability (1.12.2), that is, with probability a(x, y),

the state after the update is y and with probability 1−a(x, y), the state after the update

is x.

We shall not give a proof of the validity of variable-at-a-time Metropolis-Hastings, which

would look very similar to the proof in Section 1.12.2.

The name “variable-at-a-time Metropolis-Hastings” is something of a misnomer. The

sampler run in Metropolis et al. (1953) was a “variable-at-a-time” sampler. For histor-

ical accuracy, the name “Metropolis algorithm” should include the updates described in

Section 1.12.1 and in this section. Current usage, however, seems otherwise, naming the

samplers as we have done here.

1.12.6 Gibbs is a Special Case of Metropolis-Hastings

To see that Gibbs is a special case of Metropolis-Hastings, do a change-of-variable so that

the new state vector can be split x = (u, v) as we did in the preceding section, and v

is the part of the state on which the Gibbs update conditions. Thus we are doing block

Gibbs updating u from its conditional distribution given v. Factor the unnormalized density

h(u, v) = g(v)q(v, u), where g(v) is an unnormalized marginal of v and q(v, u) is the (properly

normalized) conditional of u given v. Now do a Metropolis-Hastings update with q as the

1.12. ELEMENTARY THEORY OF MCMC 33

proposal distribution. The proposal is y = (u∗, v) where u∗ has the distribution q(v, ·). The

Hastings ratio is

r(x, y) =
h(u∗, v)q(u, v)

h(u, v)q(v, u∗)
=
g(v)q(v, u∗)q(u, v)

g(v)q(v, u)q(v, u∗)
= 1

Hence the proposal is always accepted.

1.12.7 Combining Updates

Composition

Let P1, . . ., Pk be update mechanisms (computer code) and let P1P2 · · ·Pk denote the com-

posite update that consists of these updates done in that order with P1 first and Pk last. If

each Pi preserves a distribution, then obviously so does P1P2 · · ·Pk.

If P1, . . ., Pk are the Gibbs updates for the “full conditionals” of the desired equilibrium

distribution, then the composition update is often called a fixed scan Gibbs sampler.

As a simple example, suppose the desired equilibrium distribution is exchangeable and

multivariate normal. Then the conditional distribution of one component of the state vector

given the rest is univariate normal with mean that is a symmetric linear function of the

rest of the components and constant variance. In the special case where there are just two

components, the fixed scan Gibbs sampler is just consecutive pairs of an AR(1) process

(Section 1.9 above).

Palindromic Composition

Note that P1P2 · · ·Pk is not reversible with respect to the distribution it preserves unless the

transition probabilities associated with P1P2 · · ·Pk and PkPk−1 · · ·P1 are the same.

The most obvious way to arrange reversibility is to make Pi = Pk−i, for i = 1, . . ., k.

Then we call this composite update palindromic. Palindromic compositions are reversible,

non-palindromic ones need not be.

34 CHAPTER 1. INTRODUCTION TO MCMC

1.12.8 State-Independent Mixing

Let Py be update mechanisms (computer code) and let E(PY) denote the update that consists

of doing a random one of these updates: generate Y from some distribution and do PY .

If Y is independent of the current state and each Py preserves the same distribution,

then so does E(PY). If Xn has the desired equilibrium distribution, then it also has this

distribution conditional on Y , and Xn+1 also has this distribution conditional on Y . Since

the conditional distribution of Xn+1 does not depend on Y , these variables are independent,

and Xn+1 has the desired equilibrium distribution unconditionally.

Furthermore, the Markov chain with update E(PY) is reversible if each Py is reversible.

“Mixture” is used here in the sense of mixture models. The update E(PY) is the mixture

of updates Py.

The most widely used mixtures use a finite set of y values. For example, one popular way

to combine the “full conditional” Gibbs updates, one for each component of the state vector

is by state-independent mixing using the uniform distribution on the set of full conditionals

as the mixing distribution. This is often called a random scan Gibbs sampler. The choice

of the uniform distribution is arbitrary. It has no optimality properties. It does, however,

make a simple default choice.

Mixing and composition can be combined. Suppose we have elementary update mecha-

nisms P1, . . ., Pk, and let Y be a set of functions from {1, . . . ,m} to {1, . . . , k}. For y ∈ Y ,

let Qy denote the composition Py(1)Py(2) · · ·Py(m). Now consider the update E(QY), where

Y is a random element of Y independent of the state of the Markov chain.

If m = k and the Pi are the “full conditional” Gibbs updates and Y has the uniform

distribution on Y , which consists of all permutations of 1, . . ., k, then this mixture of

compositions sampler is often called a random sequence scan Gibbs sampler.

We are not fond of this “scan” terminology, because it is too limiting. It focuses attention

on a very few special cases of combination by composition and mixing, special cases that

1.12. ELEMENTARY THEORY OF MCMC 35

have no optimality properties and no reason other than tradition for their prominence.

State-independent mixing with the mixing distribution having an infinite sample space

has also been used. Bélisle et al. (1993) and Chen and Schmeiser (1993) investigate the “hit

and run algorithm” which uses elementary updates Py where the state space of the Markov

chain is Euclidean and y is a direction in the state space. Do a change of coordinates so that

y is a coordinate direction, and do a Gibbs or other variable-at-a-time Metropolis-Hastings

update of the coordinate in the y direction. The mixture update E(PY) is called a “hit and

run sampler” when Y has the uniform distribution on directions.

Again there is no particular reason to use a “hit and run” sampler. It is merely one of an

infinite variety of samplers using composition and state-independent mixing.

State-dependent mixing is possible, but the argument is very different (Section 1.17.1

below).

1.12.9 Subsampling

Another topic that is not usually discussed in terms of composition and mixing, although it

is another special case of them, is subsampling of Markov chains.

If P is an update mechanism, we write P k to denote the k-fold composition of P with

itself. If X1, X2, . . . is a Markov chain with update mechanism P , then X1, Xk+1, X2k+1,

. . . is a Markov chain with update mechanism P k.

The process that takes every k-th element of a Markov chain X1, X2, . . . forming a new

Markov chain X1, Xk+1, X2k+1, . . . is called subsampling the original Markov chain at spacing

k. As we just said, the result is another Markov chain. Hence a subsampled Markov chain

is just like any other Markov chain.

You don’t get a better answer by throwing away data.

— Elizabeth Thompson

36 CHAPTER 1. INTRODUCTION TO MCMC

This was proved as a theorem about Markov chains by Geyer (1992) for reversible Markov

chains and by MacEachern and Berliner (1994) for non-reversible Markov chains. Subsam-

pling cannot improve the accuracy of MCMC approximation; it must make things worse.

The original motivation for subsampling appears to have been to reduce autocorrelation

in the subsampled chain to a negligible level. Before 1994 the Markov chain CLT was not well

understood by statisticians so appeal was made to a non-theorem: the central limit almost-

but-not-quite theorem for almost-but-not-quite IID data. Now that the Markov chain CLT

is well understood, this is cannot be a justification for subsampling.

Subsampling may appear to be necessary just to reduce the amount of output of a Markov

chain sampler to manageable levels. Billions of iterations may be needed for convergence,

but billions of iterations of output may be too much to handle, especially when using R,

which chokes on very large objects. But nonoverlapping batch means (Section 1.10.1) can

reduce the size of the output with no loss of accuracy of estimation. Moreover, one does not

need to know the batch length necessary to make the empirical variance of the batch means

a good estimate of the asymptotic variance in the Markov chain CLT in order to use batches

to reduce the size of output. The method of Section 1.10.3 allows one to use batches that

are too short and still obtain accurate estimates of the asymptotic variance in the Markov

chain CLT. Hence, if the objective is to reduce the size of output, batching is better than

subsampling.

Hence the only reason to use subsampling is to reduce the size of output when one cannot

use batching. Good MCMC code, for example the functions metrop and temper in the R

contributed package mcmc (Geyer, 2010c), allow an arbitrary function g supplied by the user

as an R function to be used in calculation of the batch means in (1.10.1). Other MCMC

code that does not allow this may not output batch means for required functionals of the

Markov chain. In this case the only way to reduce the size of output and still calculate the

required functionals is subsampling. Another case where one cannot use the batch means is

when the required functionals are not known when the sampling is done. This occurs, for

example, in Monte Carlo likelihood approximation (Geyer and Thompson, 1992).

Geyer (1992) gave another justification of subsampling based on the cost of calculating the

1.12. ELEMENTARY THEORY OF MCMC 37

function g in a functional (Section 1.6 above). If the cost in computing time of calculating

g(Xi) is much more than the cost of sampling (producing Xi given Xi−1), then subsampling

may be justified. This is rarely the case, but it does happen.

1.12.10 Gibbs and Metropolis Revisited

Our terminology of “elementary updates” combined by “composition” or “mixing” or both

is not widespread. The usual terminology for a much more limited class of samplers is the

following.

• A Gibbs sampler is an MCMC sampler in which all of the elementary updates are Gibbs,

combined either by composition (fixed scan), by mixing (random scan), or both (random

sequence scan), the “scan” terminology being explained in Section 1.12.8 above.

• A Metropolis algorithm is an MCMC sampler in which all of the elementary updates

are Metropolis, combined either by composition, mixing, or both (and the same “scan”

terminology is used).

• A Metropolis-Hastings algorithm is an MCMC sampler in which all of the elementary

updates are Metropolis-Hastings, combined either by composition, mixing, or both (and

the same “scan” terminology is used).

• A Metropolis-within-Gibbs sampler is the same as the preceding item. This name makes

no sense at all since Gibbs is a special case of Metropolis-Hastings (Section 1.12.6 above),

but it is widely used.

• An independence Metropolis-Hastings algorithm (named by Tierney, 1994) is a special

case of the Metropolis-Hastings algorithm in which the proposal distribution does not

depend on the current state: q(x, ·) does not depend on x.

• A random-walk Metropolis-Hastings algorithm (named by Tierney, 1994) is a special

case of the Metropolis-Hastings algorithm in which the proposal has the form x + e,

where e is stochastically independent of the current state x, so q(x, y) has the form

f(y − x).

38 CHAPTER 1. INTRODUCTION TO MCMC

The Gibbs sampler became very popular after the paper of Gelfand and Smith (1990)

appeared. The term MCMC had not been coined (Geyer, 1992). It was not long, however,

before the limitations of the Gibbs sampler were recognized. Peter Clifford (1993) discussing

Smith and Roberts (1993), Besag and Green (1993), and Gilks et al. (1993) said

Currently, there are many statisticians trying to reverse out of this historical cul-

de-sac.

To use the Gibbs sampler, we have to be good at manipulating conditional distri-

butions . . . this rather brings back the mystique of the statisticians.

The American translation of “reverse out of this cul-de-sac” is “back out of this blind alley.”

Despite this, many naive users still have a preference for Gibbs updates that is entirely

unwarranted. If I had a nickel for every time someone had asked for help with slowly

converging MCMC and the answer had been to stop using Gibbs, I would be rich. Use

Gibbs updates only if the resulting sampler works well. If not, use something else.

One reason sometimes given for the use of Gibbs updates is that they are “automatic.”

If one chooses to use a Gibbs sampler, no other choices need be made, whereas if one uses

the Metropolis-Hastings algorithm, one must choose the proposal distribution, and even if

one’s choice of Metropolis-Hastings algorithm is more restricted, say to normal random-walk

Metropolis-Hastings, there is still the choice of the variance matrix of the normal proposal

distribution. This “automaticity” of the Gibbs sampler is illusory, because, even if one

only knows about “scans” one still must choose between fixed and random scan. Moreover,

one should consider “block Gibbs” or even the more general Gibbs updates described in

Section 1.12.4 above.

Nevertheless, Gibbs does seem more automatic than Metropolis-Hastings to many users.

The question is whether this lack of options is a good thing or a bad thing? It is good if it

works well and bad otherwise.

1.13. A METROPOLIS EXAMPLE 39

1.13 A Metropolis Example

We now turn to a realistic example of MCMC, taken from the package vignette of the mcmc

contributed R package (Geyer, 2010c). The function metrop in this package runs a normal

random-walk Metropolis sampler in the terminology of Section 1.12.10 having equilibrium

distribution for a continuous random vector specified by a user-written R function that

calculates its log unnormalized density. A major design goal of this package is that there be

very little opportunity for user mistakes to make the simulation incorrect. For the metrop

function, if the user codes the log unnormalized density function correctly, then the function

will run a Markov chain having the correct stationary distribution (specified by this user-

written function). There is nothing other than incorrectly writing the log unnormalized

density function that the user can do to make the Markov chain have the wrong stationary

distribution.

It may seem that this is a very weak correctness property. There is no guarantee that

the Markov chain mixes rapidly and so produces useful results in a reasonable amount of

time. But nothing currently known can guarantee that for arbitrary problems. Methods of

proving rapid mixing, although they are applicable in principle to arbitrary problems, are

so difficult that they have actually been applied only to a few simple examples. Moreover,

they are entirely pencil-and-paper proofs. There is nothing the computer can do to assure

rapid mixing of Markov chains for arbitrary user-specified equilibrium distributions. Thus

this weak correctness property (having the correct equilibrium distribution) is the most one

can expect a computer program to assure.

Thus this “weak” correctness property is the strongest property one can reasonably assert

for an MCMC program. All MCMC programs should guarantee it, but how many do? The

functions in the mcmc package have been exhaustively tested using the methodology explained

in Section 1.16 below and further described in the package vignette debug.pdf that comes

with every installation of the package. All of the tests are in the tests directory of the source

code of the package, which is available from CRAN (http://www.cran.r-project.org/).

In addition to an R function that specifies the log unnormalized density of the equilibrium

40 CHAPTER 1. INTRODUCTION TO MCMC

distribution, the user may also provide an R function that specifies an arbitrary functional of

the Markov chain to be output. If the Markov chain is X1, X2, . . . and this user-supplied R

function codes the mathematical function g, then g(X1), g(X2), . . . is output. Alternatively,

batch means of g(X1), g(X2), . . . are output.

Finally, the user must specify the variance matrix of the multivariate normal distribution

used in the “random-walk” proposal. There is nothing else the user can do to affect the

Markov chain simulated by the metrop function.

Let’s see how it works. We use the example from the package vignette demo.pdf that

comes with every installation of the package. This is a Bayesian logistic regression problem

that uses the data set logit in the package. There are five variables in this data frame, the

response y and four quantitative predictor variables x1, x2, x3, and x4.

A frequentist analysis of these data is done by the R statements

library(mcmc)

data(logit)

out <- glm(y ~ x1 + x2 + x3 + x4, data = logit,

family = binomial(), x = TRUE)

summary(out)

We wish to do a Bayesian analysis where the prior distribution for the five regression coef-

ficients (one for each predictor and an intercept) makes them IID normal with mean 0 and

standard deviation 2.

The log unnormalized posterior (log likelihood plus log prior) density for this model is

calculated by the R function lupost defined as follows

x <- out$x

y <- out$y

lupost <- function(beta, x, y, ...) {

1.13. A METROPOLIS EXAMPLE 41

eta <- as.numeric(x %*% beta)

logp <- ifelse(eta < 0, eta - log1p(exp(eta)), - log1p(exp(- eta)))

logq <- ifelse(eta < 0, - log1p(exp(eta)), - eta - log1p(exp(- eta)))

logl <- sum(logp[y == 1]) + sum(logq[y == 0])

return(logl - sum(beta^2) / 8)

}

This assumes out is the result of the call to glm shown above, so y is the response vector

and x is the model matrix for this logistic regression.

The tricky calculation of the log likelihood avoids overflow and catastrophic cancellation

in calculation of log(p) and log(q) where

p =
exp(η)

1 + exp(η)
=

1

1 + exp(−η)

q =
1

1 + exp(η)
=

exp(−η)

1 + exp(−η)

so taking logs gives

log(p) = η − log(1 + exp(η)) = − log(1 + exp(−η))

log(q) = − log(1 + exp(η)) = −η − log(1 + exp(−η))

To avoid overflow, we always chose the case where the argument of exp is negative. We have

also avoided catastrophic cancellation when |η| is large. If η is large and positive, then

p ≈ 1

q ≈ 0

log(p) ≈ − exp(−η)

log(q) ≈ −η − exp(−η)

and our use of the R function log1p, which calculates the function x 7→ log(1 + x) correctly

for small x, avoids problems with calculating log(1+exp(−η)) here. The case where η is large

and negative is similar. The above definitions having been made, the following statements

42 CHAPTER 1. INTRODUCTION TO MCMC

do an MCMC run.

beta.init <- as.numeric(coefficients(out))

out <- metrop(lupost, beta.init, 1e3, x = x, y = y)

where beta.init is the initial state of the Markov chain (it would be more natural to a

Bayesian to use the posterior mode rather than the MLE, but the starting position makes no

difference so long as it is not too out in the tails of the equilibrium distribution) and where

1e3 is the MCMC sample size. The default batch length is one, so there is no batching

here. The component out$accept of the result gives the acceptance rate (the fraction of

Metropolis updates in which the proposal is accepted) and the component out$batch gives

the output of the Markov chain an n × p matrix, where n is the number of iterations here

where there is no batching but in general n is the number of batches and where p is the

dimension of the state space here where no functional of the Markov chain is specified and

the default is the identity functional but in general p is the dimension of the result of the

user-supplied output function.

The functions in the mcmc package are designed so that if given the output of a preceding

run as their first argument, they continue the run of the Markov chain where the other run

left off. For example if we were to say

out2 <- metrop(out, x = x, y = y)

here, then rbind(out$batch, out2$batch) would be a run of the Markov chain. The second

invocation of the metrop function starts with the seed of R’s random number generator

(RNG) and the state of the Markov chain set to what they were when the first invocation

finished. Thus there is no difference between rbind(out$batch, out2$batch) and the

result of one invocation starting at the same RNG seed and initial state and running for

twice as many iterations as the two shown here did.

This “restart” property obviates any need for burn-in. If the first run “converged” in the

sense that any part of the run was in a high-probability part of the state space, then the

second run starts in a good place and needs no burn-in. Since the first run started at the

1.13. A METROPOLIS EXAMPLE 43

MLE, which is in a high-probability part of the state space, the first run needed no burn-in

either.

Using this function is not quite this simple. We need to adjust the normal proposal to

achieve a reasonable acceptance rate. It is generally accepted (Gelman et al., 1996) that an

acceptance rate of about 20% is right, although this recommendation is based on the asymp-

totic analysis of a toy problem (simulating a multivariate normal distribution) for which

one would never use MCMC and is very unrepresentative of difficult MCMC applications.

Geyer and Thompson (1995) came to a similar conclusion, that a 20% acceptance rate is

about right, in a very different situation. But they also warned that a 20% acceptance rate

could be very wrong and produced an example where a 20% acceptance rate was impossible

and attempting to reduce the acceptance rate below 70% would keep the sampler from ever

visiting part of the state space. So the 20% magic number must be considered like other

rules of thumb we teach in intro courses (like n > 30 means means normal approximation is

valid). We know these rules of thumb can fail. There are examples in the literature where

they do fail. We keep repeating them because we want something simple to tell beginners,

and they are all right for some problems.

The scale argument to the metrop function specifies the variance matrix for the proposal.

The default is the identity matrix. This results in too low an acceptance rate in this problem

(0.008). A little bit of trial and error (shown in the vignette) shows that

out <- metrop(out, scale = 0.4, x = x, y = y)

gives about 20% acceptance rate, so this scaling, which specifies proposal variance matrix

0.4 times the identity matrix, is what we use. More complicated specification of the proposal

variance is possible; see the help for the metrop function for details.

Now we do a longer run

out <- metrop(out, nbatch = 1e4, x = x, y = y)

and look at time series plots and autocorrelation plots (shown in the vignette), which show

44 CHAPTER 1. INTRODUCTION TO MCMC

that the Markov chain seems to mix well and that autocorrelations are negligible after lag

25. We use batch length 100 to be safe. We are interested here in calculating both posterior

means and posterior variances. Variances are not functionals of the Markov chain, but

squares are, and we can use the identity var(Z) = E(Z2) − E(Z)2 to calculate variances

from means and means of squares. Thus the following

out <- metrop(out, nbatch = 1e2, blen = 100,

outfun = function(z, ...) c(z, z^2), x = x, y = y)

Here the user-specified output function (argument outfun of the metrop function) maps the

state z, a vector of length 5 to c(z, z^2), a vector of length 10. So now out$batch is

a 100 × 10 matrix, 100 being the number of batches (argument nbatch) and 10 being the

length of the result of outfun).

Now

foo <- apply(out$batch, 2, mean)

foo.mcse <- apply(out$batch, 2, sd) / sqrt(out$nbatch)

are estimates of the posterior means of the components of the vector returned by outfun

(the regression coefficients and their squares) and the MCSE of these estimates, respectively.

The first five components are useful directly

mu <- foo[1:5]

mu.mcse <- foo.mcse[1:5]

These are estimates of the posterior means of the regression coefficients and their MCSE

(see the vignette for actual numbers).

Monte Carlo estimates of the posterior variances are found using var(Z) = E(Z2)−E(Z)2

sigmasq <- foo[6:10] - foo[1:5]^2

1.13. A METROPOLIS EXAMPLE 45

but to calculate the MCSE we need the delta method. Let ui denote the sequence of batch

means for one parameter and ū the grand mean of this sequence (the estimate of the posterior

mean of that parameter), let vi denote the sequence of batch means for the squares of the

same parameter and v̄ the grand mean of that sequence (the estimate of the posterior second

absolute moment of that parameter), and let µ = E(ū) and ν = E(v̄). Then the delta method

linearizes the nonlinear function

g(µ, ν) = ν − µ2

as

∆g(µ, ν) = ∆ν − 2µ∆µ

saying that

g(ū, v̄)− g(µ, ν)

has the same asymptotic normal distribution as

(v̄ − ν)− 2µ(ū− µ)

which, of course, has variance 1 / out$nbatch times that of

(vi − ν)− 2µ(ui − µ)

and this variance is estimated by

1

nbatch

nbatch∑
i=1

[
(vi − v̄)− 2ū(ui − ū)

]2
So

u <- out$batch[, 1:5]

v <- out$batch[, 6:10]

ubar <- apply(u, 2, mean)

vbar <- apply(v, 2, mean)

deltau <- sweep(u, 2, ubar)

deltav <- sweep(v, 2, vbar)

46 CHAPTER 1. INTRODUCTION TO MCMC

foo <- sweep(deltau, 2, ubar, "*")

sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)^2, 2, mean) / out$nbatch)

does the MCSE for the posterior variance (see the vignette for actual numbers).

Another application of the delta method gives MCSE for posterior standard deviations

(see the vignette for details).

1.14 Checkpointing

The “restart” property of the metrop and temper functions is also useful for checkpointing. If

one wants to do very long runs, they need not be done with one function invocation. Suppose

out is the result of an invocation of metrop and the log unnormalized density function and

output function (if present) do not take additional arguments, getting any additional data

from the R global environment, and suppose any such additional data has been set up. Let

ncheck be the number of repetitions of out we want to make. Then

for (icheck in 1:ncheck) {

out <- metrop(out)

save(out, file = sprintf("check%03d.rda", icheck))

}

does them and saves them on disk, unless the computer crashes for some reason. After a

crash, only the work not done and saved is left to do. Set up any required global variables

and ncheck as before, and restart with

files <- system("ls check*.rda", intern = TRUE)

kcheck <- length(files)

load(file = files[kcheck])

if (kcheck < ncheck) {

for (icheck in (kcheck + 1):ncheck) {

1.15. DESIGNING MCMC CODE 47

out <- metrop(out)

save(out, file = sprintf("check%03d.rda", icheck))

}

}

(this is for UNIX, e. g., Linux or MAC OS X, and would have to be modified for Microsoft

Windows). When finished collect the results with

files <- system("ls check*.rda", intern = TRUE)

ncheck <- length(files)

batch <- NULL

for (icheck in 1:ncheck) {

load(file = files[icheck])

batch <- rbind(batch, out$batch, deparse.level = 0)

}

and batch is the same as out$batch from one long run. This idiom allows very long runs

even with unreliable computers.

1.15 Designing MCMC Code

Nothing is easier than designing MCMC algorithms. Hundreds have been introduced into

the literature under various names. All that are useful in non-toy problems are special cases

of the Metropolis-Hastings-Green algorithm.

When one invents a new sampler, how does one argue that it is correct? One proves

a theorem: your new sampler is a special case of the Metropolis-Hastings-Green (MHG)

algorithm. The proof is usually not difficult but does require tight reasoning like all proofs.

One common error is sloppiness about what is the state of the Markov chain. Many have

made the mistake of having proposals depend on some variables in the computer program

that are not considered part of the state in calculating the Hastings ratio, that is, the state

48 CHAPTER 1. INTRODUCTION TO MCMC

space is considered one thing in one part of the argument and another thing in another part

— a clear error if one thinks of it.

One does not have to call this theorem a theorem, but one does need the care in proving

it that any theorem requires. A few hours of careful thought about what is and what is not

a special case of the MHG algorithm can save weeks or months of wasted work on a mistake.

This notion that you have to prove a theorem every time you invent an MCMC algorithm

came to your humble author from the experience of humbling mistakes committed by your

author and others. If you think you have to prove a theorem, you will (hopefully) exercise

appropriately careful argument. If you think you can use your intuition, many sad stories

could be told about failure of intuition. The MHG algorithm is not difficult but is also not

very intuitive.

Before one can prove a theorem, one must state the theorem, and here too care is required.

The theorem must state precisely how one’s MCMC algorithm works with no vagueness. This

is very important. One cannot correctly implement an MCMC algorithm in computer code

when one has to guess what the algorithm actually is. Most erroneous MCMC algorithms

(just like most erroneous attempts at theorems) result from vagueness.

These general remarks having been made, we now turn to some desirable features of

MCMC code that few computer packages have but the mcmc package has shown to be very

useful.

The first is the “restart” property discussed in Sections 1.13 and 1.14 above and possessed

by both the metrop and temper functions. This is the property that the R object output

by a function doing MCMC (or the equivalent object for computer languages other than

R) should contain the RNG seeds and the final state of the Markov chain, so the next

run can simply continue this run. A sampler with the “restart” property needs no burn-in

(Section 1.11.4 above) and is easily checkpointed (Section 1.14).

The second is the property of outputting batch means for batches of a possibly subsampled

chain, also possessed by both the metrop and temper functions, specified by the arguments

blen, and nspac. This property allows very long runs without overly voluminous output.

1.16. VALIDATING AND DEBUGGING MCMC CODE 49

If nspac = 1 (the default, meaning no subsampling) is used, then no information is lost by

the batching. The batches can be used for valid inference — regardless of whether the batch

length is long enough for the ordinary method of batch means to work — as described in

Section 1.10.3 above.

The third is the property of outputting batch means (for batches of a possibly subsampled

chain) for an arbitrary functional of the Markov chain. The mcmc and temper functions do

this via a user-specified function supplied as their outfun argument. This allows users to

make the inferences they want without rewriting the R package. This makes statistical com-

puter languages in which functions are not first-class objects (like they are in R) unsuitable

for MCMC.

1.16 Validating and Debugging MCMC Code

Along with “black box” MCMC (Section 1.11.1) above we introduce the notion of “black

box” testing of MCMC code. Black box testing is widely used terminology in software

testing. It refers to tests that do not look inside the code, using only its ordinary input

and output. Not looking at the code means it cannot use knowledge of the structure of the

program or the values any of its internal variables. For MCMC code black box testing means

you run the sampler and test that the output has the expected probability distribution.

Since goodness of fit testing for complicated multivariate probability distributions is very

difficult, black box testing of MCMC code is highly problematic. It is even more so when the

sampler is itself black box, so nothing is known about the expected equilibrium distribution

except what we may learn from the sampler itself. Thus your humble author has been driven

to the conclusion that black box testing of MCMC code is pointless.

Instead testing of the functions metrop and temper in the mcmc package uses a “white

box” approach that exposes all important internal variables of the program when the optional

argument debug = TRUE is specified. In particular, all uniform or normal random variates

obtained from R’s RNG system are output. This means that, assuming we can trust R’s

50 CHAPTER 1. INTRODUCTION TO MCMC

normal and uniform RNG, we can test whether metrop and temper behave properly as

deterministic functions of those pseudorandom numbers obtained from R.

Testing whether a program correctly implements a deterministic function is much easier

than testing whether it correctly simulates a specified probability distribution. In addition

when debug = TRUE these programs also output proposals, log Hastings ratios, and decisions

in the Metropolis rejection step, making it easy to check whether these are correct and hence

whether the Metropolis-Hastings algorithm is implemented correctly.

It must be admitted that, although this “white box” testing methodology it much superior

to anything your humble author has previously used, it is not guaranteed to find conceptual

problems. That is why a clearly written specification (what we called the “theorem” in the

preceding section) is so important. During the writing of this chapter just such a conceptual

bug was discovered in the temper function in versions of the mcmc package before 0.8. The

terms q(i, j) and q(j, i) in the Hastings ratio for serial tempering, equation (2.2.7) in Geyer

(2010b, hereinafter referred to as the “Tempering chapter”) were omitted from the code, and

the tests of whether the Hastings ratio was calculated correctly were implemented by looking

at the code rather than the design document (the file temper.pdf in the doc directory of

every installation of the mcmc package), which was correct.

Ideally, the tests should be implemented by someone other than the programmer of the

code, a well-recognized principle in software testing. We know of no statistics code that

conforms to this practice, perhaps because there is no tradition of refereeing computer code

as opposed to papers. The most we can claim is that the “white box” testing methodology

used for the mcmc would at least make such referring possible.

1.17 The Metropolis-Hastings-Green Algorithm

There are so many ideas in Green (1995) it is hard to know where to start. They include

the following:

1.17. THE METROPOLIS-HASTINGS-GREEN ALGORITHM 51

• state-dependent mixing of updates,

• measure-theoretic Metropolis-Hastings using Radon-Nikodym derivatives,

• per-update augmentation of the state space, and

• Metropolis-Hastings with Jacobians,

any one of which would have been a major contribution by itself.

We have deferred discussion of the Metropolis-Hastings-Green (MHG) algorithm till now

because we wanted to avoid measure theory as long as we could. The MHG algorithm cannot

easily be discussed without using measure theoretic terminology and notation.

A kernel K(x,A) is a generalization of regular conditional probability. For a fixed point

x in the state space K(x, ·) is a countably-additive real signed measure on the state space.

For a fixed measurable set A in the state space K(· , A) is a measurable real-valued function

on the state space. If

K(x,A) ≥ 0, for all x and A,

then we say that K is nonnegative. If K is nonnegative and

K(x,A) ≤ 1, for all x and A,

then we say that K is sub-Markov. If K is sub-Markov and

K(x, S) = 1, for all x,

where S is the state space, then we say that K is Markov. A Markov kernel is a regular

conditional probability and can be used to describe an elementary update mechanism for a

Markov chain or a combined update. In widely used sloppy notation, we write

K(x,A) = Pr(Xt+1 ∈ A | Xt = x)

to describe the combined update (the sloppiness is the conditioning on an event of measure

zero).

52 CHAPTER 1. INTRODUCTION TO MCMC

A kernel K is reversible with respect to a signed measure m if∫∫
g(x)h(y)m(dx)K(x, dy) =

∫∫
h(x)g(y)m(dx)K(x, dy)

for all measurable functions g and h such that the expectations exist. A Markov kernel P

preserves a probability measure π if∫∫
g(y)π(dx)P (x, dy) =

∫
g(x)π(dx)

for every bounded function g. Reversibility with respect to π implies preservation of π.

1.17.1 State-Dependent Mixing

Suppose we have a family of updates represented by Markov kernels Pi, i ∈ I. Choose one

at random with probability ci(x) that depends on the current state x, and use it to update

the state. The kernel that describes this combined update is

P (x,A) =
∑
i∈I

ci(x)Pi(x,A).

It is not a theorem that if each Pi preserves π, then P preserves π. The argument in

Section 1.12.8 above does not work.

Define

Ki(x,A) = ci(x)Pi(x,A).

If each Ki is reversible with respect to π, then the mixture kernel

P (x,A) =
∑
i∈I

ci(x)Pi(x,A) =
∑
i∈I

Ki(x,A)

is reversible with respect to π and hence preserves π. This is how state-dependent mixing

works.

1.17. THE METROPOLIS-HASTINGS-GREEN ALGORITHM 53

It is often convenient to allow the identity kernel defined by

I(x,A) =

1, x ∈ A

0, x /∈ A

to be among the Pi. The identity kernel is a Markov kernel that describes a do-nothing

update (the state is the same before and after).

Sometimes state-dependent mixing involving the identity kernel is described differently.

We insist that

ci(x) ≥ 0, for all i and x

and ∑
i∈I

ci(x) ≤ 1, for all x.

Then when x is the current state the mixture update chooses the i-th update with probability

ci(x) and performs the update described by Pi. With the remaining probability

1−
∑
i∈I

ci(x)

the mixture update does nothing (which is the same as doing the update described by the

identity kernel).

1.17.2 Radon-Nikodym derivatives

Suppose m is a finite signed measure and n a sigma-finite positive measure defined on the

same space. We say that m is dominated by n or that m is absolutely continuous with respect

to n if

n(A) = 0 implies m(A) = 0, for all events A. (1.17.1)

We say that m is concentrated on a set C if

m(A) = m(A ∩ C), for all events A. (1.17.2)

54 CHAPTER 1. INTRODUCTION TO MCMC

We say measures m1 and m2 are mutually singular if they are concentrated on disjoint sets.

The Lebesgue-Radon-Nikodym theorem (Rudin, 1987, Theorem 6.10) says the following

about m and n as defined above. Firstly, there exist unique finite signed measures ma and

ms such that ms and n are mutually singular, ma is dominated by n, and m = ma + ms

(this is called the Lebesgue decomposition). Secondly, there exists a real-valued function f ,

which is unique up to redefinition on a set of n measure zero, such that

ma(A) =

∫
A

f(x)n(dx), for all events A. (1.17.3)

We say f is the density or Radon-Nikodym derivative of m with respect to n and write

f =
dm

dn
.

If n is Lebesgue measure and m is dominated by n, then f is an ordinary probability density

function. If n is counting measure and m is dominated by n, then f is an ordinary probability

mass function. Hence the Radon-Nikodym derivative generalizes these concepts. When m

is not dominated by n, we have
dm

dn
=
dma

n

so the Radon-Nikodym derivative only determines the part of m that is absolutely continuous

with respect to n and says nothing about the part of m that is singular with respect to n,

but that is enough for many applications.

That the Radon-Nikodym derivative f is unique only up to redefinition on a set of n

measure zero would cause a problem if we made a different choice of f every time we used it,

but it causes no problem if we fix one choice of f and use it always. (The same issue arises

with ordinary probability density functions.)

Radon-Nikodym derivatives are often calculated using ratios. Suppose m and n are as

above and λ is a measure that dominates both, for example, λ = m+ n. Then we have

dm

dn
=
dm/dλ

dn/dλ
(1.17.4)

1.17. THE METROPOLIS-HASTINGS-GREEN ALGORITHM 55

where the right hand side is interpreted as ordinary division when the denominator is nonzero

and an arbitrary choice when the denominator is zero.

To see this, let fm = dm/dλ and fn = dn/dλ, let C = {x : fn(x) = 0 }, let h be an

arbitrary measurable real-valued function, and define

f(x) =

fm(x)/fn(x), x ∈ C

h(x), x /∈ C

By the Lebesgue-Radon-Nikodym theorem, n is concentrated on C. Define a measure ms by

ms(A) = m(A \ C), for all events A,

and let ma = m−ms. It remains to be shown that ma is dominated by n and f = dma/dn.

Both are shown by verifying (1.17.3) as follows. For any event A

ma(A) = m(A ∩ C) =

∫
C

fm dλ =

∫
C

f · fn dλ =

∫
C

f dn =

∫
f dn

(the last equality being that n is concentrated on C).

1.17.3 Measure-Theoretic Metropolis-Hastings

Metropolis-Hastings-Green Elementary Update

We now describe the MHG elementary update with state-dependent mixing. For i ∈ I

we have proposal mechanisms described by kernels Qi. When the current state is x, we

choose the i-th proposal mechanism with probability ci(x), generating a proposal y having

distribution Qi(x, ·).

The unnormalized measure to preserve is η (the analog of the unnormalized density h in

56 CHAPTER 1. INTRODUCTION TO MCMC

the ordinary Metropolis-Hastings algorithm). Define measures m and mrev by

m(B) =

∫∫
1B(x, y)η(dx)ci(x)Qi(x, dy) (1.17.5a)

mrev(B) =

∫∫
1B(y, x)η(dx)ci(x)Qi(x, dy) (1.17.5b)

where 1B(x, y) is equal to one if (x, y) ∈ B and zero otherwise, so m and mrev are measures

on the Cartesian product of the sample space with itself and each B is a measurable subset

of that Cartesian product. Define

r =
dmrev

dm
. (1.17.5c)

Then accept the proposal with probability min
(
1, r(x, y)

)
.

Note the similarity of the this MHG update to the Metropolis-Hastings update (Sec-

tion 1.12.1 above). It differs in the incorporation of state-dependent mixing so ci(x) appears.

It also differs in that the Green ratio (1.17.5c) is actually a Radon-Nikodym derivative rather

than a simple ratio like the Hastings ratio (1.12.1). The “Metropolis rejection” step — accept

the proposal with probability min(1, r) — is the same as in the Metropolis and Metropolis-

Hastings algorithms.

As we saw in (1.17.4), a Radon-Nikodym derivative is often calculated as a ratio, so the

terminology “Green ratio” for (1.17.5c) is not so strange. But our main reason for introducing

this terminology is the analogy between the Metropolis ratio (1.12.5), the Hastings ratio

(1.12.1), and the Green ratio (1.17.5c). People often write things like

r(x, y) =
ci(y)η(dy)Qi(y, dx)

ci(x)η(dx)Qi(x, dy)
(1.17.6)

as a sloppy shorthand for actual definition via (1.17.5a), (1.17.5b), and (1.17.5c), but (1.17.6)

has no mathematical content other than as a mnemonic for the actual definition.

Green (1995) described a specific recipe for calculating the Green ratio (1.17.5c) using

the ratio method (1.17.4) in the particular case where λ is symmetric in the sense that∫∫
1B(x, y)λ(dx, dy) =

∫∫
1B(y, x)λ(dx, dy) (1.17.7)

1.17. THE METROPOLIS-HASTINGS-GREEN ALGORITHM 57

for any measurable set B in the Cartesian product of the state space with itself. Such λ

always exist. For example, λ = m+mrev works. Then if f = dm/dλ and

C = { (x, y) : f(x, y) 6= 0 } (1.17.8)

we have

r(x, y) =

f(y, x)/f(x, y), x ∈ C

0, x /∈ C
(1.17.9)

It does not matter whether or not we use Green’s recipe for calculating (1.17.5c). Radon-

Nikodym derivatives are unique up to redefinition on sets of measure zero, hence are the

same no matter how we calculate them.

Note that the proposal distributions can be anything, described by arbitrary kernels Qi.

Thus the MHG algorithm generalizes the Metropolis-Hastings algorithm about as far as it

can go. The only way your humble author can think to generalize this would be to allow

state-dependent mixing over continuum rather than countable set of Qi (the way state-

independent mixing works; Section 1.12.8 above).

Ordinary Metropolis-Hastings samplers avoid forever the set of x such that h(x) = 0,

where h is the unnormalized density of the equilibrium distribution (Section 1.12.1 above).

Now thinking measure-theoretically, we are reminded that we may redefine h arbitrarily on

sets of measure zero under the equilibrium distribution, so the set avoided depends on our

choice of h. The MHG algorithm has a similar property. Suppose there is a set N that must

be avoided, and η(N) = 0. Then mrev(A × N) = 0 for any set A, and we may choose a

version of the Green ratio such that r(x, y) = 0 for y ∈ N . Then no proposal in N can be

accepted, and the chain forever avoids N .

All MCMC ideas discussed above are special cases of the MHG algorithm. Variable-

at-a-time Metropolis-Hastings updates are special cases where proposals only change one

coordinate. Gibbs updates are special cases where the MHG ratio is always one and the

proposal is always accepted.

58 CHAPTER 1. INTRODUCTION TO MCMC

The MHG Theorem

Define

a(x, y) = min
(
1, r(x, y)

)
b(x) = 1−

∫
a(x, y)Qi(x, dy)

The kernel describing the MHG elementary update is

Pi(x,A) = b(x)I(x,A) +

∫
A

a(x, y)Qi(x, dy),

and the kernel we must verify is reversible with respect to η is

Ki(x,A) = ci(x)Pi(x,A),

that is, we must verify ∫∫
g(x)h(y)η(dx)ci(x)Pi(x, dy)

is unchanged when g and h are swapped. Since

∫∫
g(x)h(y)ci(x)η(dx)Pi(x, dy)

=

∫
g(x)h(x)b(x)ci(x)η(dx)

+

∫∫
g(x)h(y)a(x, y)ci(x)η(dx)Qi(x, dy),

it clearly is enough to show last term is unchanged when g and h are swapped.

Suppose we have calculated the Green ratio (1.17.5c) using the Green’s recipe (1.17.9)

1.17. THE METROPOLIS-HASTINGS-GREEN ALGORITHM 59

with f = dm/dλ and λ satisfying (1.17.7). Then

∫∫
g(x)h(y)a(x, y)ci(x)η(dx)Qi(x, dy)

=

∫∫
g(y)h(x)a(y, x)ci(y)η(dy)Qi(y, dx)

=

∫∫
g(y)h(x)a(y, x)mrev(dx, dy)

=

∫∫
C

g(y)h(x)a(y, x)mrev(dx, dy)

=

∫∫
C

g(y)h(x)a(y, x)r(x, y)m(dx, dy)

=

∫∫
g(y)h(x)a(y, x)r(x, y)m(dx, dy)

=

∫∫
g(y)h(x)a(y, x)r(x, y)ci(x)η(dx)Qi(x, dy)

where C is defined by (1.17.8), the first equality being interchange of the dummy variables x

and y, the second and sixth equalities being the definitions of m and mrev, the third and fifth

equalities being a(y, x) = 0 when (x, y) ∈ C, and the fourth equality being r = dmrev/dm

and the fact that the part of mrev that is dominated by m is concentrated on C, as we saw

in our discussion of (1.17.4).

Comparing the expressions at the ends of this chain of equalities, we see that it is enough

to show

a(y, x)r(x, y) = a(x, y), whenever (x, y) ∈ C, (1.17.10)

because the integrals are the same whether or not they are restricted to C. If (x, y) ∈ C

and r(x, y) ≤ 1, then a(x, y) = r(x, y) and a(y, x) = 1, in which case (1.17.10) holds. If

(x, y) ∈ C and 1 < r(x, y), then a(x, y) = 1 and

a(y, x) = r(y, x) =
1

r(x, y)

by (1.17.9) in which case (1.17.10) holds again.

60 CHAPTER 1. INTRODUCTION TO MCMC

Example: Spatial Point Processes

All of this is very abstract. That’s the point! But Radon-Nikodym derivatives are nothing

to be frightened of. We look at some simple examples to show how the MHG algorithm

works in practice.

One only needs the MHG algorithm when proposals are singular with respect to the

equilibrium distribution of the Markov chain (otherwise Metropolis-Hastings would do). This

often happens when the state space is the union of sets of different dimension. One example of

this is spatial point processes. Geyer and Møller (1994) proposed the sampler described here

independently of Green (1995), but in hindsight it is a special case of the MHG algorithm.

A spatial point process is random pattern of points in region A having finite measure

(length, area, volume, . . .), both the number of points and the positions of the points being

random. A homogeneous Poisson process has a Poisson distributed number of points and the

locations of the points are independent and identically and uniformly distributed conditional

on the number. We consider processes having unnormalized densities hθ with respect to the

Poisson processes.

The state space of the Poisson process is

A =
∞⋃
n=0

An,

where A0 denotes a set consisting of one point, representing the spatial pattern with no

points. The probability measure of the Poisson process is defined by

P (B) =
∞∑
n=0

µne−µ

n!
· λ

n(B ∩ An)

λ(A)n
, for measurable B ⊂ A,

where λ is Lebesgue measure on A and µ is an adjustable parameter (the mean number of

points). To say that hθ is an unnormalized density with respect to P means the probability

1.17. THE METROPOLIS-HASTINGS-GREEN ALGORITHM 61

measure of the non-Poisson process is defined by

Qθ(B) =
1

c(θ)

∫
B

hθ(x)P (dx)

=
1

c(θ)

∞∑
n=0

µne−µ

n!
· 1

λ(A)n

∫
B∩An

hθ(x)λn(dx)

for measurable B ⊂ A, where

c(θ) =
∞∑
n=0

µne−µ

n!
· 1

λ(A)n

∫
hθ(x)λn(dx).

Note that the dimension of x, which is n, is different in different terms of these sums.

Let n(x) denote the number of points in x. We use state-dependent mixing over a set of

updates, one for each nonnegative integer i. The i-th update is only valid when n(x) = i, in

which case we propose to add one point uniformly distributed in A to the pattern, or when

n(x) = i+ 1, in which case we propose to delete a point from the pattern. (For definiteness,

suppose we add or delete the last point.) The state-dependent mixing probabilities are

ci(x) =

1/2, n(x) = i

1/2, n(x) = i+ 1

0, otherwise

For fixed x have
∑

i ci(x) = 1 except when n(x) = 0. In that case, we do nothing (perform

the identity update) with probability 1−
∑

i ci(x) = 1/2 following the convention explained

at the end of Section 1.17.1.

In order to apply Green’s recipe for calculating Radon-Nikodym derivatives for the i-th

update, we need a symmetric measure on

(Ai × Ai+1) ∪ (Ai+1 × Ai) (1.17.11)

that dominates the joint distribution m of the current state x and the proposal y or its

reverse mrev. This symmetric measure cannot be Lebesgue measure on (1.17.11), because m

62 CHAPTER 1. INTRODUCTION TO MCMC

and mrev are degenerate, their first i coordinates being equal. Thus we choose the symmetric

measure Λ that is the image of λi+1 onto the subset of (1.17.11) where the first i coordinates

of the two parts are equal.

On the part of (1.17.11) where x ∈ Ai and y ∈ Ai+1, we have

f(x, y) =
dm

dΛ
(x, y) =

µie−µhθ(x)

i!λ(A)i
· 1

λ(A)

the first part on the right hand side being the unnormalized density of the equilibrium

distribution, unnormalized because we left out c(θ), which we do not know how to calculate,

and the second part being the proposal density. On the part of (1.17.11) where x ∈ Ai+1

and y ∈ Ai, we have

f(x, y) =
dm

dΛ
(x, y) =

µi+1e−µhθ(x)

(i+ 1)!λ(A)i+1
· 1

the first part on the right hand side being the unnormalized density of the equilibrium

distribution, and the second part being the proposal density (which is one because deleting

the last point involves no randomness). Thus the Green ratio is

r(x, y) =

µ
i+1
· hθ(y)
hθ(x)

, x ∈ Ai and y ∈ Ai+1

i+1
µ
· hθ(y)
hθ(x)

, x ∈ Ai+1 and y ∈ Ai

We hope readers feel they could have worked this out themselves.

Since point patterns are usually considered as unordered, it is traditional to use hθ(x) that

is symmetric under exchange of points in pattern. In this case, the update that re-orders the

points randomly also preserves the stationary distribution. The composition of this random

re-ordering with the update specified above (which deletes the last point) is equivalent to

picking random point to delete.

1.17. THE METROPOLIS-HASTINGS-GREEN ALGORITHM 63

Example: Bayesian Model Selection

We consider an example done by other means in Section 2.3 in the Tempering chapter.

If we use MHG, there is no need for “padding” parameter vectors. We can just use the

parameterization from the problem statement. If, like the ST/US sampler in Section 2.3

of the Tempering chapter, we only make jumps between models whose dimensions differ by

one, then a very simple MHG proposal simply deletes a component of the parameter vector

when moving down in dimension and adds a component distributed normally with mean

zero and variance τ 2 independently of the current state when moving up in dimension. If

h(θ) denotes the unnormalized posterior, then a move up in dimension from current state θ

to proposed state ψ, which adds a component z to the current state has Green ratio

r(θ, ψ) =
ci(ψ)h(ψ)

ci(θ)h(θ)φ(z/τ)/τ
, (1.17.12)

where φ is the probability density function of the standard normal distribution, and a move

down in dimension from current state ψ to proposed state θ, which deletes a component

z from the current state has Green ratio that is the reciprocal of the right hand side of

(1.17.12).

1.17.4 MHG with Jacobians and Augmented State Space

Green (1995) also proposed what is in some respects a special case of MHG and in other

respects an extension. We call it MHGJ for MHG with Jacobians. This version is so widely

used that many users think MHGJ is the general version. This form of elementary update

moves between parts of the state space that are Euclidean spaces of different dimension,

hence it is often called “dimension jumping” although that name applies to other examples,

such as the preceding one, that do not involve Jacobians.

Suppose the state space is a disjoint union

S =
⋃
m∈M

Sm

64 CHAPTER 1. INTRODUCTION TO MCMC

where Sm is a Euclidean space of dimension dm. We assume the equilibrium distribution

of the Markov chain is specified by an unnormalized density h(x) with respect to Lebesgue

measure on S. MHGJ elementary updates move from one Sm to another. Say the i-th

elementary update moves between Sm(i) and Sn(i). Thus it only makes sense to have ci(x) > 0

when x ∈ Sm(i) ∪ Sn(i).

Let Um(i) and Un(i) be Euclidean spaces such that Sm(i) × Um(i) is the same dimension

as Sn(i) × Un(i). We specify a proposal density qi(x, ·), which describes the conditional

distribution of the proposal u given the current state x such that u ∈ Um(i) when x ∈ Sm(i)

and u ∈ Un(i) when x ∈ Sn(i). We also specify a function gi that maps points in Sm(i)×Um(i)

to points in Sn(i) × Un(i) and vice versa and which is its own inverse.

The MHGJ proposal is a combination of two steps. First generate a random u from the

distribution qi(x, ·). Then propose gi(x, u) = (y, v). The MHG ratio is

r(x, u, y, v) =
ci(y)h(y)qi(y, v)

ci(x)h(x)qi(x, u)
· det

(
∇gi(x, u)

)
,

the last factor being the Jacobian of the mapping gi. This is followed by the usual Metropolis

rejection: accept the proposal with probability min(1, r).

For examples of the MHGJ algorithm see Fan and Sisson (2010).

The MHGJ Theorem

The MHGJ algorithm, because of its per-update augmentation Um(i) and Un(i), does not

exactly fit in the pattern of the MHG algorithm described above. Thus we give a separate

proof.

The proof starts just like the one in Section 1.17.3. We see that we can deal with one

arbitrary elementary update, and consequently only one pair of state augmentations. When-

ever one augments the state, there are two issues: what is the equilibrium distribution on

the augmented state space, and how does it relate to the distribution of interest on the

original state? Here the augmented state is (x, u), the equilibrium distribution on the aug-

1.17. THE METROPOLIS-HASTINGS-GREEN ALGORITHM 65

mented state space has unnormalized density with respect to Lebesgue measure h(x)qi(x, u).

The original state is x and the distribution of interest with unnormalized density h(x) is a

marginal of it. The proposal (y, v) = g(x, u) is deterministic.

We now determine the Radon-Nikodym derivative of the distribution of (y, v) with respect

to (x, u). We use the ratio method, determining first the Radon-Nikodym derivatives of each

with respect to Lebesgue measure λ on the space where (x, u) lives. We have

dm

dλ
= ci(x) · h(x)qi(x, u)

dmrev

dλ
= ci(y) · h(y)qi(y, v) · det

(
∇gi(x, u)

)
where in the latter the Jacobian arises from the multivariate change-of-variable theorem,

because we are differentiating with respect to (x, u) rather than (y, v).

Acknowledgments

This chapter benefited from detailed comments by Christina Knudson, Leif Johnson, Galin

Jones, and Brian Shea.

66 CHAPTER 1. INTRODUCTION TO MCMC

Bibliography

Bélisle, C. J. P., Romeijn, H. E., and Smith, R. L. (1993). Hit-and-run algorithms for

generating multivariate distributions. Mathematics of Operations Research, 18:255–266.

Besag, J. and Green, P. J. (1993). Spatial statistics and Bayesian computation (with discus-

sion). Journal of the Royal Statistical Society, Series B, 55:25–37.

Chan, K. S. and Geyer, C. J. (1994). Discussion of the paper by Tierney (1994). Annals of

Statistics, 22:1747–1758.

Chen, M.-H. and Schmeiser, B. (1993). Performance of the Gibbs, hit-and-run, and Metropo-

lis samplers. Journal of Computational and Graphical Statistics, 2:251–272.

Clifford, P. (1993). Discussion of Smith and Roberts (1993), Besag and Green (1993), and

Gilks et al. (1993). Journal of the Royal Statistical Society, Series B, 55:53–54.

Crain, R. V. and Meng, X.-L. (2010). Perfection with reach: Exact MCMC sampling. In

Brooks, S. P., Gelman, A. E., Jones, G. L., and Meng, X. L., editors, Handbook of Markov

Chain Monte Carlo. Chapman & Hall/CRC, Boca Raton.

Fan, Y. and Sisson, S. A. (2010). Reversible jump Markov chain Monte Carlo. In Brooks,

S. P., Gelman, A. E., Jones, G. L., and Meng, X. L., editors, Handbook of Markov Chain

Monte Carlo. Chapman & Hall/CRC, Boca Raton.

Freedman, D., Pisani, R., and Purves, R. (2007). Statistics. W. W. Norton, New York,

fourth edition.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association, 85:398–409.

67

68 BIBLIOGRAPHY

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996). Efficient Metropolis jumping rules.

In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., editors, Bayesian

Statistics 5 – Proceedings of the Fifth Valencia International Meeting, pages 599–607.

Clarendon Press [Oxford University Press].

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6:721–741.

Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion). Statistical

Science, 7:473–511.

Geyer, C. J. (1994). On the convergence of Monte Carlo maximum likelihood calculations.

Journal of the Royal Statistical Society, Series B, 56:261–274.

Geyer, C. J. (1999). Likelihood inference for spatial point processes. In Barndorff-Nielsen,

O. E., Kendall, W. S., and van Lieshout, M. N. M., editors, Stochastic Geometry: Likeli-

hood and Computation, pages 79–140. Chapman & Hall/CRC, Boca Raton.

Geyer, C. J. (2010a). Computation for the introduction to mcmc chapter of Handbook of

Markov Chain Monte Carlo. Technical Report 679, School of Statistics, University of

Minnesota. http://purl.umn.edu/92549.

Geyer, C. J. (2010b). Importance sampling, simulated tempering, and umbrella sampling. In

Brooks, S. P., Gelman, A. E., Jones, G. L., and Meng, X. L., editors, Handbook of Markov

Chain Monte Carlo. Chapman & Hall/CRC, Boca Raton.

Geyer, C. J. (2010c). mcmc: Markov Chain Monte Carlo. R package version 0.8, available

from CRAN.

Geyer, C. J. and Møller, J. (1994). Simulation and likelihood inference for spatial point

processes. Scandinavian Journal of Statistics, 21:359–373.

Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood

for dependent data (with discussion). Journal of the Royal Statistical Society, Series B,

54:657–699.

BIBLIOGRAPHY 69

Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with

applications to ancestral inference. Journal of the American Statistical Association, 90:909–

920.

Gilks, W. R., Clayton, D. G., Spiegelhalter, D. J., Best, N. G., and McNeil, A. J. (1993).

Modelling complexity: Applications of Gibbs sampling in medicine (with discussion). Jour-

nal of the Royal Statistical Society, Series B, 55:39–52.

Glynn, P. W. and Whitt, W. (1991). Estimating the asymptotic variance with batch means.

Operations Research Letters, 10:431–435.

Glynn, P. W. and Whitt, W. (1992). The asymptotic validity of sequential stopping rules

for stochastic simulations. Annals of Applied Probability, 2:180–198.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82:711–732.

Hammersley, J. M. and Handscomb, D. C. (1964). Monte Carlo Methods. Methuen, London.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57:97–109.

Jones, G. L. (2004). On the Markov chain central limit theorem. Probability Surveys, 1:299–

320.

Kendall, W. S. and Møller, J. (2000). Perfect simulation using dominating processes on

ordered spaces, with application to locally stable point processes. Advances in Applied

Probability, 32:844–865.

Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of

reversible Marko v processes and applications to simple exclusions. Communications in

Mathematical Physics, 104:1–19.

MacEachern, S. N. and Berliner, L. M. (1994). Subsampling the Gibbs sampler. American

Statistician, 48:188–190.

Meketon, M. S. and Schmeiser, B. W. (1984). Overlapping batch means: Something for

nothing? In Sheppard, S., Pooch, U., and Pegden, D., editors, Proceedings of the 1984

Winter Simulation Conference, pages 227–230.

70 BIBLIOGRAPHY

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines. Journal of Chemical Physics,

21:1087–1092.

Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer-

Verlag, London.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and

applications to statistical mechanics. Random Structures and Algorithms, 9:223–252.

Roberts, G. O. and Rosenthal, J. S. (1997). Geometric ergodicity and hybrid Markov chains.

Electronic Communications in Probability, 2:13–25.

Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC

algorithms. Probability Surveys, 1:20–71.

Rosenthal, J. S. (2010). Optimal proposal distributions and adaptive MCMC. In Brooks,

S. P., Gelman, A. E., Jones, G. L., and Meng, X. L., editors, Handbook of Markov Chain

Monte Carlo. Chapman & Hall/CRC, Boca Raton.

Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill, New York, third edition.

Schmeiser, B. (1982). Batch size effects in the analysis of simulation output. Operations

Research, 30:556–568.

Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler

and related Markov chain Monte Carlo methods (with discussion). Journal of the Royal

Statistical Society, Series B, 55:3–23.

Stigler, S. M. (2002). Statistics on the Table: The History of Statistical Concepts and Meth-

ods. Harvard University Press.

Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data

augmentation (with discussion). Journal of the American Statistical Association, 82:528–

550.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion).

Annals of Statistics, 22:1701–1762.

BIBLIOGRAPHY 71

Time

x

0 2000 4000 6000 8000 10000

−
20

−
10

0
10

20

Figure 1.1: Time Series Plot for AR(1) Example.

72 BIBLIOGRAPHY

n

µ̂ n

0 2000 4000 6000 8000 10000

−
4

−
2

0
2

4

Figure 1.2: Running Averages Plot for AR(1) Example.

BIBLIOGRAPHY 73

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 1.3: Autocorrelation Plot for AR(1) Example. Dashed lines: 95% confidence intervals
assuming white noise input. Dotted curve: simulation truth autocorrelation function.

74 BIBLIOGRAPHY

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

5 10 15 20

−
8

−
6

−
4

−
2

0
2

Index

ba
tc

h
m

ea
ns

Figure 1.4: Batch Mean Plot for AR(1) Example. Batch length 500.

BIBLIOGRAPHY 75

0 2 4 6 8 10 12

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Figure 1.5: Autocorrelation Plot of Batch Means for AR(1) Example. Batch length 500.

76 BIBLIOGRAPHY

0 50 100 150

0
20

40
60

80
10

0

Index (half lag)

Γ~

Figure 1.6: Big Gamma Plot for AR(1) Example. Solid line: initial convex sequence estima-
tor of (1.10.3). Dotted line: theoretical value.

BIBLIOGRAPHY 77

Time

x

0 2000 4000 6000 8000 10000

−
20

0
20

40
60

Figure 1.7: Time Series Plot for AR(1) Example. Differs from Figure 1.1 only in the starting
position.

