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Complex or quantitative traits are important in medicine, agriculture and evol-

ution, yet, until recently, few of the polymorphisms that cause variation in

these traits were known. Genome-wide association studies (GWAS), based

on the ability to assay thousands of single nucleotide polymorphisms

(SNPs), have revolutionized our understanding of the genetics of complex

traits. We advocate the analysis of GWAS data by a statistical method that

fits all SNP effects simultaneously, assuming that these effects are drawn

from a prior distribution. We illustrate how this method can be used to predict

future phenotypes, to map and identify the causal mutations, and to study the

genetic architecture of complex traits. The genetic architecture of complex

traits is even more complex than previously thought: in almost every trait

studied there are thousands of polymorphisms that explain genetic variation.

Methods of predicting future phenotypes, collectively known as genomic

selection or genomic prediction, have been widely adopted in livestock and

crop breeding, leading to increased rates of genetic improvement.
1. Introduction
Complex or quantitative traits are important in medicine (e.g. diabetes), agricul-

ture (e.g. yield of rice) and evolution (e.g. body size). These traits are called

complex because they are controlled by many genes and by environmental factors.

Although the genetics of quantitative traits has been studied for over 100 years,

very few of the polymorphisms that cause variation in these traits were known

until recently. The development of assays that could determine the genotype of

an individual at thousands of single nucleotide polymorphisms (SNPs) has revo-

lutionized the study of complex traits. The SNPs assayed might be neutral

polymorphisms with no effect on the traits studied, but linkage disequilibrium

(LD) between the SNPs and the causal polymorphisms generates an association

between the traits and some of the SNPs. Genome-wide association studies

(GWAS), which assay a genome-wide panel of SNPs, have discovered thousands

of associations between SNPs and complex traits [1]. These GWAS are intended to

map the causal polymorphisms to a region of the genome but do not identify them.

The data from GWAS can be used for three purposes. First, they can be used

to predict future phenotypes. In human medicine, this might be the probability

that a person will develop type 2 diabetes in the future. In agriculture, it is

usually the phenotype of the offspring of animals or plants that we wish to pre-

dict so that those with the best breeding value can be selected as parents of

the next generation. Although the SNPs used may have no causal relationship

with the trait, they may still be useful for prediction due to their LD with causal

variants. Second, GWAS data are used to map the causal variants to a region of

the genome and hopefully to identify them. This increases our understanding

of the biology of complex traits and may suggest methods of controlling

them such as new drug targets. Third, GWAS data provide an overview of
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the genetic architecture of complex traits that is useful in

medicine, agriculture and evolution. We would like to

know how many polymorphisms control a trait, what are

their effects and allele frequencies, the LD between them,

and how they evolve.

Usually different methods of analysis of GWAS data have

been used for each of these three purposes. For instance, map-

ping causal polymorphisms is usually done by fitting one

SNP at a time in a regression model [2]. Conversely, predict-

ing genetic value is most often done by assuming all SNPs

have an effect drawn from the same normal distribution [3].

In this paper, we will argue that a new model, where SNPs

are assumed to have an effect drawn from a mixture of

normal distributions with increasing variances, can be used

for genomic prediction, mapping of causal variants and infer-

ence on the genetic architecture of complex traits. The rest of

the paper begins by introducing the statistical model and its

use for prediction of phenotype. This is followed by describ-

ing the use of the same model for mapping of causal variants

and understanding the genetic architecture of complex traits.

We then discuss the limitations of the method, and the

implications for our understanding of complex traits and

for future research on prediction of phenotype and mapping

of causal variants.
2. Prediction of genetic value
In many datasets, the number of SNPs ( p) is greater than the

number of individuals with records (n). Consequently, if

the effects of the SNPs on the trait are treated as fixed effects

in a multiple regression analysis, there is no unique solution.

However, the total variance explained by all SNPs (a result of

their effect sizes and allele frequencies) must be less than the

total genetic variance, and this places a restriction on the

effect sizes. More accurate predictions can be obtained by

treating the effect sizes as random variables drawn from a dis-

tribution which is consistent with the total genetic variance [4].

In general, the best prediction of a random variable (g) from a

set of predictors (x) is E(gjx), that is, the expected or average

value of g conditional on the values observed for x [5]. (Here

best means minimum mean-squared errors.) We will restrict

discussion to a linear predictor of the form b0x, where b is a

vector of regression coefficients. Then the best prediction rule

implies that we estimate b by E(bj‘data’), where data might

be the genotypes (x) and phenotypes (y) of individuals from

a GWAS. In this formulation of the problem, the elements

of b (bi) are the apparent effect of the SNP on the trait and

are treated as random effects drawn from a distribution

( p(b)). As there are typically thousands of SNPs, it is possible

to imagine the distribution of SNP effects on a trait as simply

the distribution of these thousands of effects: many may have

no effect at all and some may have a large effect.

Therefore, E(bjy, x) ¼
Ð

p(bjy, x)b db, which can be re-

expressed using Bayes theorem as
Ð

p(b)p(yjb, x)b db=
Ð

p(b)

p(yjb)db: Here, p(yjb, x) is the likelihood of the phenotypes

(y) given the genotypes of the individual (x) and the effects

of the SNPs (b). This is the method invented by Meuwissen

et al. [4] and called genomic selection or genomic prediction.

The statistical analysis resulting from applying this best

prediction rule depends on the prior distribution chosen for

b. Meuwissen and colleagues considered three possible prior

distributions [4]. In one, b is assumed to be normally and
independently distributed with a mean of 0 and a variance

(s2
b) that is same for all SNPs: this method is an example

of best linear unbiased prediction (BLUP). In the other two,

Meuwissen et al. used a t distribution, and a mixture of zero

and a t distribution. The method called ‘Bayes R’ by Erbe

et al. [6] is a further development, which uses a prior distri-

bution for b which is a mixture of four normal distributions

each with zero mean but with variances of 0, 0:0001 s2
g,

0:001 s2
g and 0:01 s2

g: The mixing proportions are estimated

from the data, so this is a flexible prior that can approximate

many possible distributions for b (the SNP effects). In our

applications of this model, we have assumed that the mixing

proportions are drawn from a Dirichlet distribution with

parameters (1, 1, 1, 1). This is a deliberately vague prior so

that it has little impact on the final estimates of the mixing

proportions which are driven mainly by the data.

While BLUP is a linear method in that b is estimated by a

linear combination of the phenotypic data y, the other methods

are nonlinear in y. In this paper, we advocate the use of these

nonlinear models with particular reference to Bayes R.

The BLUP prior corresponds to a ‘pseudo-infinitesimal’

model in which all polymorphic sites in the genome have an

effect on every trait, and all effects are of similar magnitude

and very small. For instance, if there are 1 million SNPs, each

one is assumed to explain approximately 1026 of the genetic

variance (s2
g). As a consequence of this assumption, all esti-

mated SNP effects are shrunk severely towards 0 when BLUP

is used. The other models allow the distribution of SNP effects

to depart from this pseudo-infinitesimal distribution, with

some SNPs having zero effect and some SNPs having a large

effect on the trait.

Genomic prediction requires a reference or training

population in which the individuals have both phenotypes

and genotypes. Analysis of these data generates a prediction

equation which can then be used to predict genetic value

in individuals with genotypes but without phenotypes. In

accordance with convention in genetic evaluation, if not

in statistics, we will define the ‘accuracy’ of the prediction

as the correlation between the predicted genetic value and

the true genetic value among these individuals. The factors

determining the accuracy when BLUP is used have been con-

sidered in theory by Daetwyler et al. [7] and Goddard [8]. The

accuracy of predicting genetic values depends on the pro-

portion of the genetic variance explained by the markers

(referred to below as SNPs) and the accuracy with which

the effect of those SNPs is estimated. Both components of

accuracy depend on the LD within the genome. Low LD

increases the number of individuals with records and the

number of SNPs needed to achieve a given accuracy. Conse-

quently, accuracy is typically lower in humans than within a

breed of cattle, where long-distance LD exists due to small

recent effective population size. In cattle, the proportion of

genetic variance explained by SNPs is in the range 0.5–0.9,

and in humans it is 0.3–0.5 for many traits [9–12].

In practice, the accuracy of genomic prediction using the

nonlinear methods is equal to or higher than the accuracy of

BLUP [12–14]. For example Kemper et al. [14] found a 5%

increase in accuracy of genomic prediction for milk yield

traits in dairy cattle using Bayes R compared with BLUP, and

Moser et al. [12] found an increase in accuracy of genomic pre-

dictions of Bayes R over BLUP for Crohn’s disease, rheumatoid

arthritis, and type 1 diabetes, but not for bipolar disorder,

coronary artery disease, hypertension or type 2 diabetes.
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Figure 1. Genome-wide analysis of bovine milk fat percentage showing results for a region around the FASN gene. (a) Posterior probability that an SNP has a non-
zero effect from Bayes R where all SNPs are fitted in the model simultaneously. (b) 2log10 p-value from GWAS single SNP regressions. The top Bayes R variant is
annotated (with base pair position) and shown as a purple diamond, and the strength of LD (r2) between this and all other variants is colour coded. (Adapted from
data published in [20].)
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However, the small advantage of nonlinear models over

BLUP points to the high number of causal variants affecting

most traits.

Genomic selection is now widely used in livestock

(especially dairy cattle) and crops. It should double the rate

of genetic improvement in dairy cattle [15].
3. Mapping and identification of causal
polymorphisms

To map genes for a quantitative trait (QTL, or quantitative trait

loci) to a position on the genome using GWAS data, the most

common analysis is to fit one SNP at a time in a regression

model [1]. While this is straightforward and computationally

undemanding, there are several disadvantages to this approach.

Many SNPs are likely to be in LD with a single QTL generating

many SNPs associated with the trait. Common practice is to

focus on the most highly associated SNP within a genomic

region (e.g. 2 Mb). However, in livestock and many crops LD

extends for a long distance, and so SNPs more than 2 Mb

from the QTL may still show a significant association with the

trait. A further complication is that there are typically so many

QTL for each complex trait that an SNP may be in LD with

more than one QTL. Therefore, it is difficult to tell how many

QTL are indicated by the GWAS results.

A solution to this problem would be to fit all SNPs simul-

taneously. In this way, only the SNPs that are necessary to

track each QTL should be included in the final model.
Usually, there are more SNPs than subjects so there is no

unique solution if the SNP effects are treated as fixed effects.

A widely used alternative is to fit all SNP effects as random

effects using the BLUP model discussed above and then to

fit one SNP as a fixed effect [16–19]. However, this does

not eliminate the problem and seems illogical—why fit one

as fixed and all the rest as random effects? A better solution

is to fit all SNP simultaneously as random effects, which is

the same model as used for genomic prediction. However,

the BLUP model estimates small effects for all SNPs and so

does a poor job of mapping QTL. By contrast, the Bayes R

model, in which many SNPs have no effect, gives a large

effect to SNPs that best track the QTL.

Figure 1 compares partial results of a genome-wide analy-

sis of fat percentage in bovine milk in a region around the

FASN (fatty acid synthase) gene (data described in [20]),

using either Bayes R or the common GWAS method (SNP

fitted singly as a fixed effect using the linear mixed model).

In the Bayes R model (figure 1a), a single SNP just upstream

of the FASN gene has the highest posterior probability, while

in the GWAS model (figure 1b) there are several SNP extend-

ing across to the CCDC57 (coiled-coil domain containing 57)

gene region with almost equally significant effects. FASN has

previously been suggested as a candidate gene affecting fat

percentage of milk because FASN is a key enzyme in

de novo fatty acid biosynthesis (e.g. [21,22]). In an RNAseq

study, FASN was also found to be more highly expressed

in lactating bovine mammary tissue than in 17 other bovine

tissues [23]. Although there may be a second QTL effect
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due to a variant of the CCDC57 gene, there is less evidence of

this from the Bayes R analysis which fits all SNPs simul-

taneously, while the evidence from the GWAS single SNP

regression predicts almost equal significance with the

variants close to FASN.

If there are multiple SNPs in high LD, the analysis may be

unable to say which is the best one to include in the model.

Then all these SNPs may receive a low posterior probability

of a non-zero effect. However, when the results are combined

across the SNPs, it is clear that a QTL resides in this region.
One way to do this is to predict the genetic value of each indi-

vidual based only on the SNPs in the region. If this local

estimated genetic value has a high variance, it indicates a

QTL in this region. An example is given in figure 2. It can

be seen that Bayes R gives a sharper position for the QTL

than BLUP.

By applying this Bayes R analysis to genome sequence

data, rather than data from a panel of SNPs, we would

hope to identify the causal polymorphisms directly. Unfortu-

nately, if there are several variants in high LD, the analysis
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cannot tell which of them is causal. Also there is sampling

error, such that the most significant variant or the one with

the highest posterior probability may not be the causative

mutation, particularly if the reference population is small. It

is helpful in this situation to have independent information

on the likelihood that a mutation in each site would affect

the phenotype. Typically, in the analysis of GWAS, this infor-

mation is used after the statistical analysis and in a subjective

manner. We have modified Bayes R to include a priori infor-

mation about the polymorphic sites (Bayes RC [20]). The sites

are placed in categories and the mixing proportions for each

category are estimated in the analysis. For instance, non-

synonymous coding sites may be placed in one category

and all other sites in another category. This provides objective

evidence for the probability that coding sites are more likely

to alter phenotype than non-coding sites. The Bayes RC

approach can improve both the precision of QTL mapping

and accuracy of genomic prediction provided there is good

prior biological information available [20].
Figure 3 compares the results from Bayes RC, Bayes R and

GWAS analyses of bovine milk protein percentage (data

described in [20]) in the region of the LALBA gene. LALBA

is a candidate gene because it codes for alpha-lactalbumin,

a key regulator of lactose synthesis [24]. In this Bayes RC

analysis (figure 3a), prior knowledge of candidate genes for

milk production and variant annotation was used to allocate

variants to categories (details in [20]). The genotype data

included approximately 1 million genome-wide sequence

coding variants and SNP from a high-density array. When

the same data were analysed using Bayes R there were

several suggestive QTL (figure 3b), but each had a much

lower posterior probability than in the Bayes RC analysis,

due to high LD between these sites. A GWAS analysis of

the same data using single SNP regressions shows highly sig-

nificant SNP across a wide region (figure 3c). Prior to

analysis, variants in perfect LD or those far from genes

were pruned out, so further analysis is required to determine

the true causal variant.
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A polymorphism that affects one trait is also likely to affect

other traits. Thus, a multi-trait analysis may increase power

to find the causal sites. Additional traits are especially useful

if the causal polymorphism has a large effect on the trait

because this increases statistical power. Gene expression is a

trait with large effects, especially mutations acting in cis to

change the expression of the allele on the same chromosome

as the mutation. Another benefit of cis eQTL is that they

define the gene through whose expression the QTL has its

effect, thus increasing our understanding of the pathway

from gene to phenotype. Other genetically simpler traits with

large effects might include individual proteins and product

components. An example follows. Kemper et al. [25] found

that a QTL that explained 0.001 of the genetic variance for

milk yield co-segregated with a QTL that explained 0.1 of the

genetic variance for phosphorus concentration in milk. The

SNPs with a large effect on both traits mapped near a gene

for a phosphorus anti-porter that transports glucose-6-phos-

phate in one direction and phosphorus in the other direction

across cell membranes. Glucose is a substrate for lactose syn-

thesis, which is the major osmolarity regulator in milk and

hence drives milk volume. Thus, the allele that increases milk

phosphorus concentration decreases milk volume. Gene

expression data showed that the same sequence variant that

increases phosphorus content in milk also increases expression

of this gene.
4. Genetic architecture of complex traits
Traditional SNP regression analysis of GWAS reports the esti-

mated effect of SNPs that are declared significant. However,

this information does not give a good description of the gen-

etic architecture of the trait. In SNP regression analysis, very

stringent p-values ( p , 5 � 1028) are used to protect against

testing as many as 1 000 000 SNPs for an effect. This has

several consequences. The estimated effect of SNPs declared

significant is grossly overestimated. A better estimate of the

effect size can be obtained by estimating the effect of signifi-

cant SNPs in an independent dataset. When this is done it is

found that the significant SNPs explain a small proportion of

the genetic variance estimated from pedigree or family

relationships. This was called the ‘missing heritability’ para-

dox. Yang et al. [11] showed that if the combined effect of

all SNPs was estimated, the proportion of genetic variance

explained was much higher. For instance, the genetic var-

iance for height in humans explained by significant SNPs

was 5% of phenotypic variance, whereas all the SNPs

together explained 45% of the phenotypic variance [11]. The

explanation for this difference is simply that most SNP effects

on height are too small to be significant given the stringent

p-value used.

Even 45% is less than the 70% or more of the phenotypic

variance estimated to be additive genetic variance by family

studies, possibly because causal variants with low minor

allele frequency (MAF) are not in high LD with any of the

SNPs used. Yang et al. [26] found that imputed genome

sequence explained 50% of the phenotypic variance for

height. Sequence variants with MAF , 0.1 explained more var-

iance than other MAF classes despite the fact that they were not

accurately imputed. Accounting for this poor imputation of

rare variants suggests that 60% of phenotypic variance is

explained by genome sequence. It is also possible that the
family studies overestimate the heritability due to confounding

genetic effects with common family environment, or confound-

ing additive and non-additive genetic variation. Thus, the

genetic variance explained by sequence variants is almost

equal to that estimated from family studies.

Bayes R provides an estimate of the number of causal var-

iants affecting a trait and the distribution of their effects by

approximating the distribution of effect sizes with a mixture

of normal distributions. (We do not imply the SNP effects are

literally drawn from a mixture of normal distributions,

merely that this mixture can approximate almost any distri-

bution that might describe the distribution of effect sizes.)

For many traits in both humans and cattle, we find that

there are thousands of SNPs with effect sizes drawn from a

distribution with variance of 0:0001 s2
g and a handful with

variance 0:01 s2
g [12–14]. Thus, complex traits are more com-

plex than was thought, with thousands of polymorphisms,

each with very small effects, affecting each trait. Their allele

frequencies are biased towards low MAF compared with a

neutral model, but only slightly. That is, most of the variance

is due to common variants [26].

By allocating polymorphic sites into categories in our

Bayes RC analysis, we can estimate the distribution of effect

sizes for each category. Table 1 shows the results for milk

yield in dairy cattle where SNPs were allocated to one of

three categories (data described in [20]). Non-synonymous

coding sites in a set of candidate genes affecting milk

production had a higher proportion of non-zero effects than

non-coding sites outside candidate gene regions. However,

because non-coding sites are more numerous they explained

most of the variance (table 1).
5. Discussion
Although the nonlinear models that we have advocated (such

as Bayes R) give good predictions, they estimate or predict

more variables ( p) than there are subjects (n) and so there is

justified concern that many other models could fit the data

equally well. In Bayes R, we fix the variance for each com-

ponent of the mixture to minimize the number of parameters

to be estimated. There is no special reason for our choice of

four components or variances of 0, 0.0001, 0.001 and 0:01 s2
g:

However, we have found that a mixture of these four com-

ponents can approximate a wide range of distributions. A

limitation might be the absence of a normal with even smaller

variance in the mixture. Nevertheless, Moser et al. [12] found

that the four-component mixture could still perform well

when the data were simulated under a different model. The

mixing proportions themselves are assumed to be drawn

from a Dirichlet distribution with the prior being equivalent

to one SNP in each component of the mixture. The estimated

mixing proportions are very far from the prior because the

number of SNPs in the distribution with zero or small variance

is much larger than the number in the component of the mix-

ture with larger variance. As the mixture requires only four

parameters, it is not surprising that the data have some

power to estimate these parameters. Nevertheless, we caution

against too literal an interpretation of the estimates. This cau-

tion is partially due to inherent difficulties in estimating so

many variables and partially due to the use of Markov chain

Monte Carlo (MCMC) methods. It is difficult to know

when an MCMC chain has converged. We typically run five



Ta
bl

e
1.

Pr
op

or
tio

n
of

SN
P

ef
fe

cts
di

sc
ov

er
ed

in
bi

ol
og

ica
lly

de
fin

ed
SN

P
ca

te
go

rie
s

co
m

pa
re

d
w

ith
th

e
to

ta
lv

ar
ian

ce
ex

pl
ain

ed
,u

sin
g

a
Ba

ye
s

RC
an

aly
sis

of
da

iry
ca

ttl
e

m
ilk

pr
od

uc
tio

n.
Pr

ior
to

th
e

an
aly

sis
,S

NP
s

we
re

di
vid

ed
in

to
ca

te
go

rie
s

ba
se

d
on

pr
ior

kn
ow

led
ge

of
ca

nd
id

at
e

ge
ne

s
an

d
an

no
ta

tio
n

of
no

n-
sy

no
ny

m
ou

s
co

di
ng

SN
P.

(A
da

pt
ed

fro
m

da
ta

pu
bl

ish
ed

in
[2

0]
.)

SN
P

ca
te

go
ry

no
.S

NP
pe

r
ca

te
go

ry
(%

of
to

ta
l)

pr
op

or
tio

n
SN

P
ef

fe
ct

s
pe

r
di

st
rib

ut
io

na

to
ta

lv
ar

ia
nc

e
ex

pl
ai

ne
d

pe
r

SN
P

ca
te

go
ry

(%
)

ze
ro

va
ria

nc
e

(%
)

0:
00

01
s

2 g
(%

)
0:

00
1
s

2 g
(%

)
0:

01
s

2 g
(%

)

no
n-

sy
no

ny
m

ou
s

co
di

ng
SN

P
in

ca
nd

id
at

e
ge

ne
sb

37
68

(0
.4

%
)

95
.6

3.
9

0.
38

0.
10

8.
6

ot
he

rS
NP

in
or

w
ith

in
50

Kb
of

ca
nd

id
at

e
ge

ne
s

57
72

2
(6

%
)

99
.0

1.
0

0.
03

0.
00

8
15

.7

all
ot

he
rS

NP
84

7
90

5
(9

3%
)

99
.6

0.
4

0.
01

0.
00

04
75

.7
a Ba

ye
s

RC
es

tim
at

es
SN

P
ef

fe
cts

as
a

m
ixt

ur
e

of
fo

ur
no

rm
al

di
str

ib
ut

ion
s:

on
e

w
ith

ze
ro

m
ea

n
an

d
va

ria
nc

e,
an

d
th

e
ot

he
rs

as
N(

0,
0:

00
01

s
2 g),

N(
0,

0:
00

1
s

2 g),
N(

0,
0:

01
s

2 g),
w

he
re
s

2 g
is

th
e

ad
di

tiv
e

ge
ne

tic
va

ria
nc

e
fo

rt
he

tra
it.

b Th
e

ca
nd

id
at

e
ge

ne
s

we
re

a
gr

ou
p

of
79

0
ge

ne
s

se
lec

te
d

ba
se

d
on

di
ffe

re
nt

ial
ex

pr
es

sio
n

in
m

am
m

ar
y

gl
an

d,
in

ex
pe

rim
en

ts
de

sig
ne

d
to

m
an

ip
ul

at
e

m
ilk

pr
od

uc
tio

n.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160569

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 J

ul
y 

20
23

 

independent chains and compare the results from the five

chains. There are also differences between species. In

humans, there is less long-distance LD than in cattle, and con-

sequently traditional one-SNP-at-a-time regression leads to

clearer mapping of QTL than in cattle. In addition, like most

analyses, we have restricted ourselves to additive genetic

models without dominance or epistasis. Despite these caveats,

some generalizations emerge from the research that has

covered multiple species and traits.

The availability of dense SNP panels and genome sequence

on large numbers of individuals, who have also been recorded

for a complex trait, has changed our understanding of the gen-

etics of complex traits and led to great practical benefits in the

genetic improvement of livestock and crops. It now appears

that thousands of polymorphisms affect a typical complex

trait. The effect of these QTL varies from large to very small,

but most of the variance is due to QTL that individually explain

a small proportion of the variance (e.g. less than 1%). Although

a few mutations of large effect are likely to be at low MAF, most

of the variance is due to QTL that have only slightly lower MAF

on average than neutral SNPs.

This new understanding of the genetic architecture of

complex traits has implications for prediction and for identifi-

cation of causal polymorphisms. The results emphasize the

need for large sample sizes for both purposes. Even with

access to full genome sequence, most polymorphisms explain

only a tiny fraction of the variance, and therefore large

sample sizes are needed to reach the conventional significance

level (p , 5 � 1028).

The strategy for prediction depends on the Ne of the popu-

lation. For populations with small recent Ne (livestock, some

crops), a prediction equation derived by BLUP based on a mod-

erately dense SNP panel works well. However, even here this

approach has disadvantages. The prediction equation is gener-

ally not robust to minor changes in the population such as a

change in breed, place or time. For instance, a prediction

equation trained on one breed of livestock has little accuracy

in another, closely related breed [6]. An alternative strategy is

to use a nonlinear method and a multi-breed training popu-

lation (or more genetically diverse population) in the hope

that this will lead to more robust predictions.

For populations with large recent Ne, BLUP prediction of

genetic value requires enormous training population size. As

a population of sufficient size is often not available, some

attempt is usually made to reduce the amount of the genome

that is considered (e.g. by using coding variants only). How-

ever, a better alternative would be to aim for good coverage

of the genome and to use nonlinear prediction methodology

and the strategies discussed above to maximize the accuracy.

If the SNP panel does not explain all of the genetic variance,

there is a limit to the accuracy that can be achieved. To over-

come this limit, genome sequence data, which should contain

the causal variants, can be used. However, to extract extra accu-

racy from genome sequence data requires a nonlinear statistical

method [27,28].

To estimate the effect of all sequence variants simul-

taneously is a challenging task. We have illustrated above

two strategies that can be used to help with this task. First,

a QTL with a small effect on one trait may have a larger

effect on another trait. Therefore, a multi-trait analysis

increases power to find sequence variants which have an

effect on any trait. Gene expression is a particularly useful

type of trait because the effects of cis eQTL tend to be large
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and the result immediately indicates the gene through which

the polymorphism acts.

Second, external information on sites in the genome that, if

mutated, would have an effect on phenotype, such as the

ENCODE data [29], are useful in deciding which sites are

most likely to be causal. Variants that change the amino acid

sequence of proteins are more likely to affect phenotype than

random sites in the genome, and this is used in the Bayes RC

method described above. However, evidence is mounting

that the majority of mutations that give rise to variation in com-

plex traits reside in regulatory elements that alter gene

expression [30–32] (reviewed by Pai et al. [33]).

Cis-acting elements affect gene expression only on the same

DNA molecule, thus acting in an allele-specific manner. Detect-

ing allele-specific expression (ASE) is an alternative method of

finding cis eQTL [34]. ASE occurs at heterozygous variants

where one allele is more highly expressed in the mRNA than

the other. Recently, Crowley et al. [35] and Chamberlain et al.
[23] reported that 89% of mice and cattle genes, respectively,
show ASE in at least one tissue. Therefore, it seems likely that

cis eQTL are very common.

Sites in the genome that would affect gene expression if

mutated can also be identified by genomic features such as

histone marks and transcription factor binding sites, which

are indicative of enhancers [36], transcription start sites [36]

or promoters [37], any of which could be involved in gene

regulation, and which therefore might affect phenotype if

mutated. A consortium called Functional Annotation of

ANimal Genomes (FAANG [38]) is now planning to annotate

livestock genomes for such histone marks as well as other

markers of open chromatin in a similar fashion to that in

humans (the ENCODE consortium).
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