Population Structure Exercises

Balding Sampling Formula

For a case, suppose n alleles have been seen among the known and typed contributors, and n_A of these are of type A.

If allele A in the evidence profile must be contributed by an unknown contributor under some hypothesis, the probability of that allele is

$$Pr(A|n_A \text{ of } n) = \frac{n_A\theta + (1-\theta)p_A}{1 + (n-1)\theta}$$

The A allele is then added to the n known alleles, and the probability of the next required allele, say B, is then calculated (if there were n_B among the original n alleles):

$$\Pr(B|n_B \text{ of } n+1) = \frac{n_B \theta + (1-\theta)p_B}{1 + (n+1-1)\theta}$$

etc.

Effect of θ

Use the Balding sampling formula to find a formula for:

		$\theta \neq 0$	$\theta = 0$
$n=0, n_A=0$	Pr(A)	p_A	p_A
$n=1, n_A=1$	$\Pr(A A)$	$\theta + (1 - \theta)p_A$	p_A
	Pr(B A)		
$n = 2, n_A = 2$	Pr(A AA)		
	Pr(B AA)		
$n=2, n_A=n_B=1$	Pr(A AB)		
	Pr(B AB)		
	Pr(C AB)		

Effect of θ

Use the Balding sampling formula to evaluate:

		p = 0.10		p = 0.01	
		$\theta = 0$	$\theta = 0.01$	$\theta = 0$	$\theta = 0.01$
$n=0, n_A=0$	Pr(A)	0.10	0.10	0.01	0.01
$n=1, n_A=1$	$\Pr(A A)$	0.10	0.109	0.01	0.0199
	$\Pr(B A)$				
$n = 2, n_A = 2$	Pr(A AA)				
	Pr(B AA)				
$n=2, n_A=n_B=1$	Pr(A AB)				
	Pr(B AB)				
	Pr(C AB)				