
Genetics and population analysis

Applying family analyses to electronic health

records to facilitate genetic research

Xiayuan Huang1, Robert C. Elston2, Guilherme J. Rosa3, John Mayer4,

Zhan Ye4, Terrie Kitchner5, Murray H. Brilliant5,6, David Page1,7

and Scott J. Hebbring5,6,*

1Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA,
2Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland,

OH 44106, USA, 3Department of Animal Science, University of Wisconsin-Madison, Madison, WI 53706, USA,
4Biomedical Informatics Research Center, 5Center for Human Genetics, Marshfield Clinic Research Institute,

Marshfield, WI 54449, USA, 6Department of Medical Genetics and 7Department of Computer Sciences, University

of Wisconsin-Madison, Madison, WI 53706, USA

*To whom correspondence should be addressed.

Associate Editor: Oliver Stegle

Received on February 24, 2017; revised on June 22, 2017; editorial decision on September 3, 2017; accepted on September 13, 2017

Abstract

Motivation: Pedigree analysis is a longstanding and powerful approach to gain insight into the

underlying genetic factors in human health, but identifying, recruiting and genotyping families can

be difficult, time consuming and costly. Development of high throughput methods to identify fami-

lies and foster downstream analyses are necessary.

Results: This paper describes simple methods that allowed us to identify 173 368 family pedigrees

with high probability using basic demographic data available in most electronic health records

(EHRs). We further developed and validate a novel statistical method that uses EHR data to identify

families more likely to have a major genetic component to their diseases risk. Lastly, we showed

that incorporating EHR-linked family data into genetic association testing may provide added

power for genetic mapping without additional recruitment or genotyping. The totality of these re-

sults suggests that EHR-linked families can enable classical genetic analyses in a high-throughput

manner.

Availability and implementation: Pseudocode is provided as supplementary information

Contact: HEBBRING.SCOTT@marshfieldresearch.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

An electronic health record (EHR) is a digital representation of a pa-

tient’s current and past health history that often includes diagnoses

(e.g. ICD coding), medications and laboratory test results. With exten-

sive phenotypic data accessible through an EHR, the use of DNA bio-

banks linked to an EHR has expedited population-based genomics

research, such as Genome-Wide Association Studies (GWASs) of un-

related individuals. Although GWASs with or without EHR data have

yielded substantial advances in human genomics (Welter et al., 2014),

they have inherent limitations. For example, most variants identified

by GWAS are intergenic and have associations with weak effect sizes

(McCarthy et al., 2008; Manolio et al., 2009; Visscher et al., 2012).

The substantial challenges faced by population-based study designs,

in combination with advances in whole genome/exome sequencing,

have partially led to a revitalization of family-based studies (Chong

et al., 2015). Unfortunately, identifying informative families for re-

search can result in ascertainment biases (Emilsson et al., 2015) and is

extremely difficult, time consuming and costly.
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To address the current challenges in family-based research, the

primary aim of this paper is to develop a fully automated approach

to construct family pedigrees from information readily available in a

typical EHR. The secondary aim is to evaluate the utility of EHR-

linked families for genetic research. Hence, analyses of EHR-linked

pedigrees have the potential to be more akin to GWAS in the sense

of being high-throughput and automated.

To address the aims of creating and evaluating the utility of

an automated family prediction method, we designed a hand-

constructed decision tree algorithm to predict family pedigrees from

Marshfield Clinic’s EHR system. We further developed a novel

logistic regression for familial relatedness (LRFR) model that

measures the correlative relationship between genetic relatedness

(Wright, 1922) and phenotypic concordance (Mayer et al., 2014) in

a clinical population. Lastly, we demonstrate that families linked to

an EHR may have great value in genetic mapping. Given the increas-

ing standardization of EHRs, the methods presented can be easily

applied to other EHRs to expedite and provide additional statistical

power for genomic research.

2 Materials and methods

2.1 Family pedigree prediction
Marshfield Clinic has a fully integrated EHR system that began in

1984 with ICD9 diagnostic data available since 1979. The

Marshfield Clinic EHR provides a pool of medical records for nearly

2.6 million patients. Data of relevance include basic demographic

information, such as last name, date of birth, home address, billing

account and gender. It is these demographic data, which are often

patient-reported, necessary for billing purposes, and likely available

in most EHR systems, that were used to predict familial relation-

ships. For protection of patient privacy, all identifiers, such as

names, addresses, account numbers and even diagnosis codes, were

mapped to positive integers prior to any processing, with the reverse

mapping held in a different secure location. Dates were similarly

mapped, but with care that time differences, in days, could be com-

puted between any two de-identified dates.

The first elements of the decision tree logic used to construct

families were shared home address and shared last name, to identify

potential pairs of parent–child or sibling relationships. Because last

name and home address may change over time (e.g. due to marriage

or children leaving the parental household), we considered only

those relationships that shared a common address for over three

years. To distinguish the parent–child relationship from siblings, we

considered the age difference between each pair (Fig. 1 and

Supplementary Fig. S1A). After filtering data and running the deci-

sion tree algorithm, we predicted over 500 000 parent–child rela-

tionships and over 100 000 sibling relationships from 2.6 million

individuals recorded in Marshfield Clinic’s EHR.

To further refine the familial relationships, we used parent-child

pairs as input, filtering out incorrect multiple parents using match

versus mismatch of phone number and billing account attributes.

Although we recognize family dynamics and structures can be com-

plex, patients were included only if they had two parents of opposite

sex (Fig. 1 and Supplementary Fig. S1B) consistent with our focus on

the study of genetic relationships. In the end, only the parent–child re-

lationships were used to construct the pedigrees, though in future

work sibling predictions could be used to further refine or extend some

pedigrees. After filtering and refining the parent–child relationships,

we composed these relationships into family pedigrees using the graph-

ical algorithm package NetworkX (Hagberg et al., 2008). In total,

173 368 family units with two or more generations were predicted.

For each family, an individual from the youngest generation that maxi-

mized the number of parents identified was selected as the proband.

A trained study coordinator conducted manual chart review on

40 randomly selected families (259 total patients) to validate the

family prediction algorithm. These families included 20 randomly

selected ‘standard’ and 20 randomly selected ‘half-sib’ families con-

taining half-siblings—by definition standard families contained no

half-siblings. They were assessed by determining the number and

percentage of relationships as being true or false positives, and true

or false negatives. It was assumed that families with predicted half-

siblings may be difficult to identify, prone to errors and thus repre-

sent a unique subset to evaluate the accuracy of the prediction

algorithm.

2.2 Disease specific studies
2.2.1 LRFR

Phenotypes were extracted from Marshfield Clinic’s EHR. Cases

with color blindness and muscular dystrophy (MD) were defined by

International Classification of Disease, version 9 [ICD9] codes

(ICD9 368.5 and 359.1, respectively). An additional 28 broadly

defined phenotypes were also evaluated using a ‘roll-up’ strategy to

define affected and unaffected individuals. Specifically, individuals

coded for disease specific ICD9 codes were rolled-up into more gen-

eral ICD9 codes [e.g. 750.27 (‘diverticulum of pharynx’)!750.2

(‘other specified congenital anomalies of mouth and pharynx’)!750

(‘other congenital anomalies of upper alimentary tract’)]. These 28

broadly defined diseases included 19 presumed ‘heritable’ conditions

(congenital codes: ICD9 741–759) and 9 control phenotypes (acci-

dental fall codes: ICD9 E880-E888) that may not have strong herit-

able influences. ICD9 codes are often entered directly by physicians

or administrative staff.

To evaluate the genetic contributions to a particular disease

phenotype, we attempted to measure the extent to which inferred

2.6 Million Marshfield 
Clinic pa�ents

Shares last name and 

home address

Evaluate age 

differences

Shares billing and 

contact number

Sibling rela�onships

Quality control  

Parent-child 
rela�onships

• Removed same
sex parents 

• Removed
parent(s) if
child had>2
parents   

579,561 pa�ents in 
173,368 pedigrees

Fig. 1. Flowchart of parent–child relationship decision tree algorithm
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genetic relationships can predict disease risk when it is familial.

Therefore, we developed LRFR, a procedure that is designed to

focus entirely on how well a disease is predicted in any individual by

his or her genetic relatedness to a diseased family member, with Beta

coefficients providing insights to the strength of the association. For

any disease D of interest, the LRFR approach proceeds as follows.

For every patient A with disease D, an instance is created for each

other patient B within A’s family. In this instance, the independent

predictor variable is the relatedness of A and B, and the binary de-

pendent variable indicates whether B also has the disease D (‘label’

in Fig. 2). Under this procedure, each pair of patients with disease D

in a family gives rise to two identical examples, so we remove one

redundant example in every such case.

Besides only considering relatedness of each pair of patients, to

reduce confounding we repeated the analysis accounting for four

related covariates: differences in gender, age, generation and length

of EHR data. Length of EHR data was defined by time, in years, be-

tween first and last visit. We provide these created instances as input

data for logistic regression and ran a 3-fold cross validation to esti-

mate the Beta coefficients for each disease. We also performed a per-

mutation test, permuting the labels of individuals (for having a

specific disease or not) ‘across’ and ‘within’ affected families to de-

termine the appropriate significance threshold. As shown in Results,

we compare the Beta coefficients and Wald test P-values of coeffi-

cients for congenital codes against those for a collection of non-

congenital codes (accidental falls) via a Mann–Whitney test, testing

the null hypothesis that there is no enrichment for congenital codes

to have smaller P-values or larger Beta coefficients.

2.2.2 LRFR validation

To compare the use of a large collection of high-throughput machine-

constructed families against the use of a (necessarily smaller) collection

of human-reported families, we also applied the same LRFR method-

ology to families identified in the Marshfield Clinic Personalized

Research Project (PMRP) (McCarty et al., 2005). PMRP is a cohort of

over 20 000 adult Marshfield Clinic patients recruited for research.

The mean and median age were 58-years, with most subjects having

over 30 years of EHR data. During recruitment, patients were asked to

self-report all first-degree relatives. Of the 20 000 PMRP participants,

nearly 12 000 can be linked to other family members in the Marshfield

Clinic EHR totaling 16 400 individuals and 4 515 families.

2.2.3 Disease mapping

For genetic association testing, 4 045 unrelated PMRP individuals

with pre-existing Illumina HumanExomeCore BeachChip SNP

data were used. These individuals were originally genotyped as part

of the AMD Gene Chip Consortium (Fritsche et al., 2015) and

are defined as probands for this experiment. Unrelatedness was

confirmed by calculating a genetic correlation matrix for all possible

pairs; no two pairs had a familial coefficient >0.0884. Four

SNPs (rs887829, rs964184, rs4349859 and rs3750847), that are

known to be associated with four separate disease phenotypes

(hyperbilirubinemia, pure hyperglyceridemia, ankylosing spondylitis

and AMD, respectively), were analyzed with and without family

data (Supplementary Fig. S2). In this instance, cases were defined by

those with the disease specific ICD9 code (ICD9 277.4, 272.1, 270.0

and 362.51, respectively) while controls were defined by those with-

out any related code (i.e. ICD9 277*, 272*, 720* and 362*, respect-

ively) (Ye et al., 2015). Representing a standard case-control study

of unrelated individuals, SNP-disease associations were measured in

probands only. P-values were calculated using a likelihood ratio test

based on Firth logistic regression (Firth, 1993), which included age

at last visit, length of EHR data and gender as covariates.

We then compared these association results with an analysis using

family data. For either self-reported or predicted family members,

SNP genotype dosage was imputed given the allele frequency in the

population and possible segregation patterns dictated by the geno-

typed proband. For example, if a proband has a genotype of AA (allele

dosage¼2), and A has an allele frequency 12.5% in the population,

the imputed allele dosage of the proband’s child would be 1.125

assuming Mendel’s laws and Hardy Weinberg equilibrium. In rare in-

stances, multiple unrelated probands were genotyped within the same

family (e.g. two unrelated parents). In this instance, both genotyped in-

dividuals were used to predict allele dosage for family members. Allele

dosage (range 0–2) and covariates listed above were input variables

into ASSOC under default options for a binary trait and one marker

as part of S.A.G.E: version 6.4.1 [2016] (http://darwin.cwru.edu).

ASSOC can measure genetic associations from a mixed population of

families and singletons. Singletons represent individuals with no family

data (i.e. proband only) (Supplementary Fig. S2). A likelihood ratio

test was used to calculate P-values in the family datasets, consistent

with the analysis of unrelateds.

3 Results

3.1 Family pedigree prediction
After applying the family prediction algorithms to 2.6 million pa-

tients in Marshfield Clinic’s EHR using basic demographic data, we

identified 579 561 individuals linked to 173 368 predicted families.

In other words, 22% of the total clinic population could be linked

to another family member. Of the 173 368 families, 77 519 (45%)

families had two or more children identified whereas 141 175 (81%)

and 108 859 (63%) families had the mothers and fathers identified,

respectively. The number of generations ranged from two to five

and the average family size was three (Fig. 3). The largest predicted

family contained 33 members, and 9.2% of the predicted families

1 2

3 4 5 6

7

Rela�onship
Pair

Relatedness Label

3 and 1 0.5 0

3 and 2 0.5 0

3 and 4 0.5 0

3 and 5 0.5 1

3 and 6 0 0

3 and 7 0.25 0

Rela�onship
Pair

Relatedness Label

5 and 1 0.5 0

5 and 2 0.5 0

5 and 4 0.5 0

5 and 6 0 0

5 and 7 0.5 0

Fig. 2. LRFR. Flowchart of Logistic Regression for Familial Relatedness

(LRFR). This figure shows an example family pedigree with two affected indi-

viduals (grey). At the bottom, a contingency matrix shows input data for lo-

gistic regression
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had over two generations linked to Marshfield Clinic’s EHR.

Importantly, the cohort of patients in families had on average

10.8 years of medical record data (Table 1).

During manual validation, there were 71 and 188 family mem-

bers in the randomly selected standard and half-sib families, respect-

ively. All of the predicted standard familial relationships were

validated, except that one child was identified as being adopted. In

the half-sib families, 96% of the familial relationships were vali-

dated; again, one individual was identified as adopted. In the process

of manual chart review, 11 and 68 first-degree family members were

identified that were not captured electronically in the standard and

half-sib families, respectively (Table 2).

3.2 Disease-specific studies
3.2.1 LRFR

Initial disease-specific studies were directed towards color blindness

and MD. These two phenotypes were selected because they are well

known to be highly heritable, are predominantly monogenic, and

have well-defined ICD9 codes. The predominant forms of color

blindness and MD are red-green color blindness (deuteranopia) and

Duchenne MD, respectively, with pathogenic variants mapped to

the X chromosome (X-linked). There were 441 and 194 color blind

and MD families totaling 2127 and 688 family members, including

456 and 209 affecteds, respectively. Males were primarily affected

in both conditions (Fig. 4) consistent with X-linked disease. There

was a fraction of females also affected with MD given there are

other forms of MD that map to the autosome, and women who are

carriers of pathogenic variants in the Duchenne gene (DMD) may

also have, albeit less severe, MD. Where multiple family members

were coded for either condition, transmission was primarily through

the maternal lineage. For example, there were 152 third-generation

males identified in 194 MD families; 44 individuals (29%) were

coded with MD. Of these 44 individuals, three (6%) had an affected

mother and 0% had an affected father. When looking at the second-

generation biological uncles in the maternal lineage, 33% of affected

uncles had affected mothers. This same pattern was observed for

males diagnosed with color blindness, although there were two

third-generation females diagnosed with color blindness that had an

affected father, suggesting the mother must also have been a carrier.

No family had two parents, three generations, or a grandparent and

grandchild coded for either phenotype, emphasizing the inherent

sparsity of phenotypic data in an EHR even for highly penetrant

Mendelian phenotypes.

To further assess the utility of large populations of families linked

to an EHR, we attempted to measure heritability for color blindness

and MD. Using a variety of standard methods, heritability for neither

disease could be reliably measured. To address this, we developed

LRFR to assess the ability of presumed genetic relationships to predict

disease concordance among pairs of individuals in de-identified family

data with sparse phenotypic information (Fig. 2). In the instance of

color blindness and MD, LRFR had strong association results

(P¼2.7E-6, Beta coefficient 3.1 and P¼1.2E-7, Beta coefficient 3.7,

respectively).

To evaluate LRFR’s capacity to segregate diseases expected to

have heritable influences from those without, we focused on 28 add-

itional phenotypes. The diseases included 19 ‘congenital’ phenotypes

4%

81% 63%

100%

4% 2% 2%

1%3%

45%

2 or more siblings2 or more siblings

2 or more siblings

0.2%0.6%

<0.1% <0.1% <0.1% <0.1%

Fig. 3. General pedigree structure. General composition of all families of vary-

ing structures in the extended family cohort. Provided in each symbol (h ¼
males, � ¼ females and ^ ¼ unisex) is the percent of pedigrees with this indi-

vidual predicted from the EHR. Further extensions of the general pedigree

structure are represented by arrows with percentages of families with these

extensions provided

Table 2. Manual chart review of 40 randomly selected standard and half-sib families

Type Generation Number individuals Male (FP) Female (FP) Male (FN) Female (FN)

Standard Grandparent 0

Parent 32 0 (0.0%) 0 (0.0%) 2 (6.3%) 1 (3.1%)

Child 39a 0 (0.0%) 0 (0.0%) 1 (2.6%) 7 (17.9%)

Total 71 0 (0.0%) 0 (0.0%) 3 (4.2%) 8 (11.3%)

Half-Sib Grandparent 69 0 (0.0%) 0 (0.0%) 2 (2.9%) 2 (2.9%)

Parent 100a 6 (6.0%) 1 (1.0%) 33 (33.0%) 18 (18.0%)

Child 19 1 (5.3%) 0 (0.0%) 4 (21.1%) 9 (47.4%)

Total 188 7 (3.7%) 1 (0.5%) 39 (20.7%) 29 (15.4%)

FP, false positive; FN, false negative.
aOne individual was identified as being adopted.

Table 1. Demographics of the large family cohort

Number of generations Number of families Number of patients Family size (mean) Years of EHR data (mean)

2 161 489 507 463 3.1 10.50

�3 11 879 72 098 6.1 12.86

Total 173 368 579 561 3.3 10.81
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(ICD9 741–759) with likely genetic etiologies. For example, polycys-

tic kidney disease, fragile X syndrome and Marfan’s disease are

broadly captured by these codes. Nine additional phenotypes that

consisted of accidental falls (ICD9 E880-E888) were selected as con-

trol phenotypes. For all phenotypes, disease prevalence ranged from

0.20 to 0.28 in affected families. There was little to no correlation in

disease status of affected families for any two ICD9 codes. The

mean, median and standard deviation of correlation coefficients for

all possible pairs of 28 ICD9 codes were �0.013, �0.010 and

0.032, respectively.

When applying LRFR to the 28 disease phenotypes, disease

status was statistically associated with genetic relatedness for 15

phenotypes after adjustment for multiple hypothesis testing

(P<0.0018 assuming 28 tests and a<0.05). The most significant

associations included ICD9 code 755 defining ‘Other congenital

anomalies of limb’ (Beta coefficient 2.2, P¼2.1E-57), ICD9 code

747 defining ‘Other congenital anomalies of circulatory system’

(Beta coefficient 3.2, P¼2.5E-24), and ICD9 code 752 defining

‘Congenital anomalies of genital organs’ (Beta coefficient 2.3,

P<1.2E-26) (Table 3). Importantly, there was an enrichment

for congenital phenotypes with significant associations as ranked

by LRFR P-values (Mann–Whitney P¼0.034). In addition, the

strength of associations, as defined by Beta coefficients, were also

larger in congenital phenotypes compared to accidental falls

(Mann–Whitney P¼0.023).

On adjusting for covariates that may influence disease status

(age, sex, length of longitudinal data and generational differences),

the top associations continued to be the same congenital codes. Of

the 15 that were originally statistically significant when covariates

were not included in the model, four were no longer significant,

including two E-codes (Table 3). There was also a strong association

between disease status and genetic relatedness for E-code E884 in

both analyses. This may emphasize confounding effects where envir-

onmental/social influences may be stronger for those who are more

genetically related. On applying the Mann–Whitney test to ranked

Beta coefficients and P-values when covariates were included, the as-

sociations from P-values were borderline significant (Mann–Whitney

P¼0.061) whereas there was an improvement when ranked by Beta

coefficients (Mann–Whitney P¼0.0051) (Table 3). For additional

disease specificity, full LRFR results for all non-rare (>9 cases) con-

genital sub-codes are available in Supplementary Table S1.

In permuting the labels of individuals (for having a specific disease

or not) ‘across’ affected families to determine the significance thresh-

old, congenital phenotypes remained significant, with most permuted

phenotypes having Beta coefficients approaching zero. Because the

diagnosis of some diseases may be influenced by social factors within

families, labels were permuted again, but only ‘within’ affected fami-

lies. In this case, Beta coefficients for conditions with significant

LRFR results again remained significantly higher than the permuted

results. Supplementary Table S2 presents empirical P-values from this

permutation test, where the P-value for each disease is the fraction of

Beta coefficients from 10000 permutations that are higher than the

value reported for that disease in Table 3. These results demonstrate

that LRFR is not likely biased by family structures, disease prevalence,

or familial influences pertaining to seeking healthcare.

3.2.2 LRFR validation

To illustrate the value of the automatically constructing pedigrees,

we repeated the LRFR analysis in a subset of Marshfield Clinic pa-

tients who were recruited as part of Personalized Medicine Research

Project (PMRP) with self-reported familial relationships (McCarty

et al., 2005). The number of individuals in this dataset was much

smaller and older than in the previous dataset; but these patients

often captured older generations and had more complete longitu-

dinal data, potentially improving phenotypic ascertainment. The

median disease frequency for the 28 phenotypes in PMRP-linked

families was 2.8-fold higher compared to the larger family cohort.

On analyzing the presumed heritable and control phenotypes, again

the top associations included congenital phenotypes (Supplementary

Table S3), but the associations did not segregate with disease type

when ranked by Beta coefficients or P-values regardless of the use of

covariates (Mann–Whitney P>0.73). These results provide evi-

dence for the benefit of large, automatically constructed families for

pedigree analysis in EHRs, compared to use of the smaller number

of available self-reported families.

3.2.3 Disease mapping

Under certain circumstances family studies often have higher statis-

tical power for genetic mapping (Gray-McGuire et al., 2009), but as

previously mentioned, identifying, collecting and genotyping family

members can be costly and time consuming. To evaluate the power

of automatically collected families in an EHR for disease mapping,

we compared association test results with and without family data

(Supplementary Fig. S2). Of the 4045 unrelated individuals in

PMRP with genetic data, and depending on disease, �1900 individ-

uals had predicted family data; this is compared to nearly 1400 indi-

viduals with self-reported family data. Focus was towards four SNPs

well known to be associated with four separate disease phenotypes

including rs3750847 (ARMS2), rs887829 (UGT1A1), rs964184

(ZPR1) and rs4349859 (HLA-B27) that are associated with age

367

25%

38% 3%

20 27
A

B

7%

40 4

28% 9%

27 34 416 44 38 53

620

Color Blindness (ICD9 368.5)

26% 6% 39% 9% 45% 11%

0% 0% 0% 0% 0% 0% 0% 0% 0% 19% 0% 0%

0% 1% 15% 0%

141

29%

29% 18%

7 5

20%

19 13

5% 23%

6 3 145 165 19 13

152

Muscular Dystrophy (ICD9 359.1)

50% 33% 31% 27% 53% 15%

0% 0% 0% 0% 0% 0% 0% 0% 0% 33% 0% 0%

0% 6% 0% 0%

Fig. 4. Summary of all families diagnosed with color blindness or muscular

dystrophy. A representation of all families of varying structures diagnosed

with either color blindness (A) or muscular dystrophy (B). Above each symbol

(h¼males and �¼ females) are the total number of individuals identified.

Inside each symbol is the percent affected. Below each symbol is the percent

effected that have either an affected father (red) or mother (blue). For exam-

ple, there were 620 identified third generation males across all color blind

families, 38% were affected and 1% of the affected third generation males

had an affected mother
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related macular degeneration risk, bilirubin metabolism, cholesterol

metabolism and ankylosing spondylitis risk, respectively.

In the case-control study design of unrelated individuals, all four

SNPs were associated with their respective phenotype (P�5.5E-5).

For example, there were 54 and 3863 unrelated cases and controls for

hyperbilirubinemia, respectively, that were associated with rs887829

genotype (P¼9.6E-34). Rs887829 tags for the UGT1A1*28 allele

associated with loss of UGT1A1 enzyme function (Iyer et al., 2002).

By incorporating self-reported or predicted family members, associ-

ation results became stronger as indicated by dramatically smaller

P-values (P¼1.3E-178 and P¼3.6E-143, respectively; Table 4).

In total, incorporating predicted family data improved association

results for all four SNP-disease pairs compared to the analysis of

unrelated individuals. When comparing association results between

the different family types, self-reported families had comparable but

smaller P-values than predicted families for all SNP-disease pairs.

Regardless, whereas using additional family data never materially

reduced the power, these results suggest that incorporating additional

family data readily attainable in an EHR, even if not directly geno-

typed, may improve statistical power for genetic mapping.

4 Discussion

In this study, we were able to link 22% of Marshfield Clinic’s cur-

rent and historical patient population to another family member

with high accuracy using standard but de-identified demographic

data available in an EHR, including half-sib families. Identifying

families in an EHR can provide a highly valuable resource for select-

ing subjects for enrollment into family-data-collection studies,

short-circuiting a huge amount of effort and cost in the process.

Although we provide evidence that EHR-linked families may have

great value in research, this method does have limitations that are

influenced by inherent attributes of the EHR. The ability to identify

families will greatly depend on the quality and longitudinal nature of

data within an EHR. With Marshfield Clinic’s EHR dating back to

1984, identifying generations that left the household prior 1984 may

be difficult. This will be further complicated by patients who geo-

graphically move in and out of a healthcare system. These limitations

are exemplified by predicted pedigrees representing predominantly

small nuclear families (Table 1 and Fig. 3) and high false negative rates

observed during manual assessment of predicted families (Table 2).

These temporal limitations may also influence the types of phenotypes

that can be studied. If most families represent the youngest generations,

studying age dependent diseases may be challenging. This may explain

the difference in genetic association results for age related macular

degeneration where the smaller but older self-reported families had

stronger association results compared to the younger but larger sample

of predicted families (Table 4). To improve the prediction algorithm,

future research may leverage public records such as birth records to

reduce the false negative rate and capture older generations.

Another limitation of this study is rooted in the phenotypes that

were extracted from the EHR (i.e. ICD9 codes). Although ICD9

Table 3. LRFR association results for 28 phenotypes from the large family cohort

ICD9 Description Affecteds Affected

families

Without covariates With covariates

Beta

coefficient

P-value Beta

coefficient

P-value

Congenital phenotypes

741 Spina bifida 535 510 �0.26 0.78 0.26 0.85

742 Other congenital anomalies of nervous system 2385 2276 0.40 0.32 0.082 0.88

743 Congenital anomalies of eye 9548 8347 0.72 8.8E-10 �0.19 0.24

744 Congenital anomalies of ear face and neck 1509 1481 3.0 2.0E-04 2.1 0.12

745 Bulbus cordis anomalies and anomalies of cardiac septal closure 5100 4736 2.2 4.1E-18 1.5 1.2E-4

746 Other congenital anomalies of heart 4141 3958 1.9 4.3E-10 1.9 8.0E-06

747 Other congenital anomalies of circulatory system 4251 4049 3.2 2.5E-24 2.3 6.0E-07

748 Congenital anomalies of respiratory system 1085 1064 2.8 0.0031 2.9 0.063

749 Cleft palate and cleft lip 761 733 2.1 0.0040 1.9 0.12

750 Other congenital anomalies of upper alimentary tract 3639 3431 3.8 1.4E-32 3.4 6.7E-11

751 Other congenital anomalies of digestive system 1647 1612 3.0 7.0E-06 3.8 5.0E-05

752 Congenital anomalies of genital organs 7333 6952 2.3 1.2E-26 1.8 3.1E-07

753 Congenital anomalies of urinary system 3511 3353 0.59 0.10 0.65 0.16

754 Certain congenital musculoskeletal deformities 14 360 12 827 1.1 1.1E-26 0.86 1.96E-08

755 Other congenital anomalies of limbs 11 120 10 235 2.2 2.1E-57 1.9 3.9E-18

756 Other congenital musculoskeletal anomalies 7088 6634 1.4 4.1E-13 0.93 6.5E-4

757 Congenital anomalies of the integument 13 939 12 529 1.1 1.7E-24 1.1 7.1E-12

758 Chromosomal anomalies 1773 1692 1.1 0.012 1.2 0.058

759 Other and unspecified congenital anomalies 178 176 3.5 0.24 3.7 0.31

Accidental falls

E880 Accidental fall on or from stairs or steps 5756 5396 �0.036 0.89 �0.81 0.011

E881 Accidental fall on or from ladders or scaffolding 1423 1413 0.15 0.95 �3.8 0.10

E882 Accidental fall from or out of building or other structure 583 580 1.7 0.50 1.0 0.80

E883 Accidental fall into hole or other opening in surface 414 412 �60 0.99 �34 0.99

E884 Other accidental falls from one level to another 11 111 9945 1.5 1.5E-36 0.89 5.3E-07

E885 Accidental fall on same level from slipping tripping or stumbling 15 496 13 570 0.52 3.1E-07 0.16 0.23

E886 Fall on same level from collision, pushing, or shoving, by or with other person 2738 2645 2.0 2.7E-06 �0.38 0.48

E887 Fracture, cause unspecified 574 567 1.5 0.33 2.5 0.41

E888 Other and unspecified fall 8332 7618 0.42 0.020 �0.38 0.076
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coding is frequently used to identify cases and controls for genetic

research (Ye et al., 2015; Hebbring et al., 2015; Rastegar-Mojarad

et al., 2015), it should be mentioned that ICD9 coding, and now

ICD10, is applied in the United States primarily for billing. ICD cod-

ing can change over time and can be employed differently between

physicians and across healthcare institutions (Hebbring, 2014). It

may be expected that these limitations are temporary as EHRs be-

come standardized, longitudinally mature and more portable across

healthcare systems.

In addition to the development of a family prediction algorithm,

we further provide flexible methods that leverage EHR-linked fami-

lies for genetic epidemiologic research. Even with the limitations

described above, LRFR results demonstrate that individuals coded

for congenital phenotypes were enriched in families and were corre-

lated with degree of relatedness (Tables 3 and 4). It is conceivable

that methods like LRFR may help researchers identify the most

interesting families and diseases for future genomic research. When

limited genetic data are readily available, we further demonstrate

that even sparse family data may improve genetic association testing

without the need of additional costs associated with recruitment and

genotyping of family members (Table 5). Future studies are war-

ranted to better understand how different family structures, popula-

tion sizes, genetic effect sizes, minor allele frequencies and disease

models may influence genetic association testing using predicted

families. These results may be highly relevant as EHR-linked bio-

banks continue to grow (Kho et al., 2011; McCarty et al., 2011;

Gottesman et al., 2013; Krishnamoorthy et al., 2014), including ef-

forts to recruit over 1 million United States residences linked to

EHR data through the ‘All of Us Research Program’ (formally

known as Precision Medicine Initiative) (Collins and Varmus,

2015).

The implications from this work may have broad clinical appli-

cations, including better estimation of the familial component of

risk across a wide range of diseases and more accurate predictive

models for future health trajectories and treatment responses for pa-

tients. One exciting future research direction would be to incorpor-

ate this newly constructed pedigree information into disease risk

models that use patient clinical history in the EHR, including la-

boratory results, prescriptions, diagnoses, procedures and text-

extracted signs and symptoms.

Family histories have long been a powerful tool in primary care,

with well-documented clinical validity and utility (Rich et al., 2004;

Rubinstein et al., 2011; Qureshi et al., 2012; USPSTF, 2014).

Interview- or survey-based patient family histories obtain informa-

tion on family structure, patient age, gender, ethnicity and disease

history for several conditions. Although such family histories are

highly useful, they are often limited by a patient’s memory, aware-

ness, understanding and willingness to share (Ashida and Schafer,

2015). Likewise, family histories may not be updated frequently and

are restricted to only a few diseases. Identifying clinical phenotypes

with a strong familial component may provide a foundation for fu-

ture clinical decision support tools designed to utilize, in real time,

patient and family medical records to request or manage personal-

ized disease-specific family histories. These potential clinical tools

may be further complemented by advancements in genomic medi-

cine where large patient populations may have extensive genetic

data available. Although we have established potential uses of EHR-

linked families for genetic research, it is expected that many other

phenotypes can be studied in EHR-linked families, including infec-

tious diseases that are transmitted in families independent of genetic

relatedness.

Before EHR-linked family data is widely accepted in research or

clinical care, there are ethical considerations. If applied to clinical

care, some patients may not want to share or receive family data. In

research, there should be caution when utilizing genetic and pheno-

typic data from family members who have not consented for re-

search. In the instance of this study, we took great care to ensure

that family, genetic and phenotypic data could not be directly

mapped back to identifiable information.

In conclusion, this study demonstrates that an EHR system can

efficiently and effectively produce family pedigree data that can be

used for genetic epidemiologic research. Furthermore, this study

may provide an intriguing perspective for the future of precision

medicine, specifically, the future when large patient populations in

defined families are unified with genomic data in an integrated EHR

system.
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