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Any trait or feature that can be measured and assigned a value can be considered a
quantitative trait, and the analysis of such traits forms the field of quantitative genetics
(QG). Historically, this included traits such as human height, agricultural production char-
acters (such as grain and milk yield), and morphological features in natural populations
of plants and animals. Binary (presence/absence) traits also fall within the quantitative
genetics framework, most notably human disease risk. It was also realized that behavioral
and physiological traits fall within this framework as well, in part as an extension from the
analysis of psychiatric diseases, but also independently driven by the work of behavioral
and evolutionary ecologists. More recently, it was appreciated that this same machinery
naturally extends to any measurable genomic feature, such as mRNA levels and splicing
patterns, methylation status, or the configuration of binding factors on chromatin.

All of the above mentioned features typically show variation, either within, or be-
tween, populations. For a simple trait, this variation is very largely due to the action of one
or two Mendelian genes, whose genotypic signals overpowers most of the environmental
(and genetic background) noise. The analysis of such simple traits is a special subset of
quantitative genetics. However, most traits are complex in the sense that their variability is
due to variation in expected trait values over a very large number of different genotypes,
overlaid with considerable noise from environmental effects. Historically, quantitative ge-
netics formed the foundation for plant and animal breeding, evolutionary and ecological
genetics, and human genetics. In the last decade, QG has also become an integral part of
the genomics and post-genomics revolutions. Further, the field is strongly tied to advances
in statistical methodology, many of which were motivated by questions arising from the
analysis of complex traits (Appendices 1–9).

For much of its early history, quantitative genetics machinery (while build upon a
Mendelian foundation; Chapters 4–6) was rather agnostic as to the genetics underlying a
focal trait, relying instead on observations of phenotypes in sets of relatives (Chapters 7,
11–13, 22–32). This aspect of QG was regarded as a strength, as no genetic details were
needed in order to proceed with a wide range of very useful analyses and predictions.
This avoidance of any fine genetic details was not a deliberate oversight, but rather an
operational decision given the information (or lack thereof) available at the time. However,
starting in the early 1980s, the field quickly embraced the additional information offered
by the emerging availability of a modest number of molecular markers, then moved on to
exploiting SNP information, and finally to using whole genome sequencing (Chapters 8,
17–21, 31, 32). More recently, as the field realized that much of trait variation was not the
result of variation in protein sequences, but rather due to subtle variation in regulation, QG
fully embraced emerging concepts from functional genomics, to the point where many QG
analyses are as focused on upstream molecular features as they are on the downstream final
trait value (Chapter 21).

As a result of this fusion of classical quantitative genetics, modern statistics, and
genomic/post-genomic data, quantitative genetics today is more relevant than at any time
in its history. QG is the ultimate Phoenix, having risen from (according to its critics) the
ashes of irrelevancy numerous times, only to become stronger, more integrated, and more
relevant. In this volume, we attempt to not just present the important machinery in the
analysis of complex traits, but also guide the reader on QG’s incredible journey, from its
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founding in 1918 by Fisher into the current field that is fully intermeshed with genetics,
genomics, evolution, statistics, and bioinformatics.

We start the first chapter in this volume with a brief overview of the history, and inter-
play, between classical, quantitative, population, and molecular genetics. We then briefly
overview the rest of the book by discussing the major problems of interest to practitioners
of quantitative genetics. The focus of this volume is on the genetics and analysis of quan-
titative traits, while their evolution and selection (for example, various breeding schemes)
is examined in great detail in our second volume (Walsh and Lynch 2018; henceforth WL).
A final (third) volume will complete our trilogy, and largely deals with multivariate issues
(such as a deep analysis of G x E and multitrait selection).

A SHORT HISTORY OF QUANTITATIVE GENETICS

From Darwin and Mendel to Fisher 1918

Modern biology rests on the twin pillars of evolution offered by Darwin in his Origin of
Species (1859) and genetics postulated by Mendel in his Experiments in Plant Hybridization
(1865). While these two ideas appeared almost contemptuously, their impact was felt over
very different timescales. Darwin’s work had an immediate impact in reshaping biology,
but Mendel’s work was ignored until independently rediscovered by multiple groups over
35 years later (DeVries, Correns, and von Tschermak, all in 1900). As a result, an unnatural
schism (in part centered around different assumed models of inheritance) developed be-
tween these pillars that lasted for almost two decades, with quantitative genetics emerging,
in part, as a resolution and union of these grand concepts.

In order to explain the approximate intermediacy of progeny phenotypes with respect
to those of parents, Darwin (1859) assumed that continuous characters exhibited blending
inheritance. This was the common model of inheritance at the time, and postulates that
parents mix some kind of biological vital fluid to generate the phenotype of their offspring.
Fleeming Jenkin (1867), in what was the first paper in population genetics, pointed out a
very serious problem with this model of inheritance. Jenkin, Regius Professor of Engineering
at the University of Edinburgh, was asked to write a book review of Darwin’s Origins. In
which he noted that, under blending inheritance, half of any variation is removed each
generation, requiring some force to generate sufficient new variation to offset this loss.

Phrased in terms of modern statistics, and recalling (Chapter 3) that the variance of a
product of a constant (a) times a random variable (x) is σ2(ax) = a2σ2(x), his argument
was that

σ2(zo) = σ2
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where zf and zm are the (assumed to be uncorrelated) paternal and maternal trait values,
zo is the offspring value, and we assume that the trait variance is the same in both sexes,
so that σ2(zf ) = σ2(zm) = σ2(z). Thus, any change achieved via natural selection would
quickly be diluted away by the assumed nature of inheritance (also see Bulmer 2004).
Mendelian genetics provides the solution to this quandary of reduced variation following
reproduction. The particulate nature of genes implies that the variation generated by the
transmission of alternative alleles in the gametes of heterozygous parents (the segregation
variance) completely restores the genetic variance in each generation (Chapter 8).

Francis Galton, a cousin of Darwin, pointed out another problem. When he plotted the
mean heights of offspring (measured at adult age) against the average height of their par-
ents (corrected for differences between the sexes), he obtained a linear relationship (Figure
1.1). However, the slope of the line (being less than one) indicated that offspring were, on
average, less exceptional than their parents. Parents whose average height was below the
mean tended to have offspring taller than themselves but still below the mean. Parents
above the mean tended to have offspring shorter than themselves. Galton (1886) called this
trend regression toward mediocrity (and hence the origin of the term regression for such an
analysis) and argued that this trend would erode away any selective progress. He concluded
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Figure 1.1 The relationship between height of adult children and the average height of their
parents (in inches). Circles denote average offspring heights for different 1-inch classes of
midparent heights. The best linear fit is given by the solid line, while the dotted line is the
expected pattern if mean offspring height were equal to midparent height. (Data from Galton
1886.)
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Figure 1.2 Response to selection. The solid line is Galton’s regression. The closed circles
represent selected parents. In the absence of selection, the mean height for both the parents
and offspring isµ.However, if the average height of selected parents isµs, the expected height
of offspring (µo), obtained by reading off the regression, is greater than µ but less than µs.

that evolution must be based upon sports (mutations of large effects) rather than on se-
lection acting upon continuous variation. Galton’s quantitative approach to the analysis of
inheritance marked the founding of the Biometrical school, from which most of modern
statistics can be traced (Stigler 1986, Crow 1993a).

Karl Pearson (1903) pointed out the fault in Galton’s logic. Imagine that selection acts in
such a way that only the largest parents reproduce, so that the mean height of reproductive
adults after selection (µs) is greater than the mean height before selection (µ) (Figure 1.2). If
µo is the average adult height of the offspring of the selected parents, then the response to
selection across generations is R = µo − µ. Since the slope of the parent-offspring relation-
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ship is less than one, the adult offspring are not expected to be as tall (on average) as their
selected parents. However, the mean offspring height will be greater than the mean height
in the parental base population. Furthermore, the new mean height is stable—if selection
on height is stopped, the new height is not expected to decay back to the original value.
Thus, the regression toward mediocrity does not pose a serious problem for the theory of
evolution by natural selection. Galton apparently failed to realize that selection starts from
a new mean each generation and that it is to this new mean that the next generation of se-
lection regresses. Although in disagreement with some of Galton’s interpretations, Pearson
was inspired greatly by Galton’s quantitative approach to analysis and went on to develop
many methods for the analysis of continuously distributed traits (such as regression and
correlations).

Thus, at the time of Mendel’s rediscovery in 1900, most of the focus on trait inheritance
had been on continuous (those not clearly separable into discrete classes) traits (e.g., Galton
1886, 1889). In contrast, Mendelian genetics centered attention on the inheritance of discrete
characters such as purple vs. white flower color, smooth vs. wrinkled seeds, and so on.
Critically, Mendelian inheritance postulated that genes are discrete particles, and hence their
heritable components can be recovered in future generations. Imagine crossing red and
white parents to create a pink offspring. Under blending inheritance, pure red or pure
white individuals could not be recovered as the blended fluid generating a pink offspring
would not naturally resolve into its two separate fluid components. In contrast, if a pink
offspring is the result of it carrying both a single red and a single white particle (the two
alleles), these segregate cleanly in future generation, allowing for the potential of pure red,
or pure white (as well as pink) offspring.

Rather than realizing the power of merging the quantitative analysis of inheritance
with the particulate nature of transmission, a series of contentious debates instead ensued
between the Mendelians (led by William Bateson) and the Biometricians (led by Pearson
and W. F. R. Weldon). The major issues were whether discrete characters have the same
hereditary and evolutionary properties as continuously varying characters. The Mendelians
held that variation in discrete characters drove evolution through the appearance of new
macromutations (mutations with large effects, akin to the appearance of sports suggested
by Galton). In contrast, the biometricians thought that evolution occurred in very small
steps by exploiting this continuously distributed variation. In essence, the Mendelians felt
that small variation in continuous traits was not heritable, while the biometricians felt that it
was. This schism between inheritance (Mendel) and evolution (Darwin) was largely driven
by antagonistic personalities, rather than by facts, in the different camps (Provine 1971, 2000;
Tabery 2004; but see Hogben 1974 for a different perspective), and significantly delayed the
modern synthesis—the fusion of evolution by natural selection with Mendelian inheritance.

That continuous trait variation could have a discrete (Mendelian) underlying basis was
suggested by the British mathematician G. Udny Yule, who gave formal proof for this idea
in 1902. Unfortunately for Yule, the only thing that the Biometricians and the Mendelians
could publicly agree on was the incompatibility of Mendelian genetics and the inheritance of
continuous characters. The death of Weldon in 1906, followed by the publication of several
key plant breeding experiments from 1908 to 1916, resulted in the rapid emergence of the
multiple-factor hypothesis—continuous variation in a trait is generated, at least in part, by
the impact of multiple underling genes.

George H. Shull, a major figure in American corn breeding, noted that self-fertilized
corn strains were remarkably uniform in many continuous traits when compared to the out-
bred populations from which they are derived. His (Shull 1908) explanation (with modern
terminology inserted and italicized) was that

The obvious conclusion to be reached is that an ordinary cornfield is a series of very complex
hybrids (genotypes) produced by the combination of numerous elementary species (alleles).
Self-fertilization soon eliminates the hybrid elements (removes the heterozygosity) and reduces
the strain to its elementary components (each locus becomes homozygous, resulting in each inbred
strain being composed of a single genotype).
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Figure 1.3 The distribution of ear size in the F1 and F2 generations formed by crossing two
inbred lines of corn differing in ear length. The observed number of ears is given below each
size class. The variation seen in the P1, P2 and F1 populations is due entirely to environ-
mental factors, as all individuals in each population have the same genotype. These three
populations show roughly similar amounts of variation. In contrast, the F2 generation shows
considerably more variation, reflecting the diversity of genotypes in this population generated
by segregation of genes in the F1 parents. (Data from East 1911.)

The major implication of Shull’s observation was that any variation for continuous charac-
ters that is lost upon inbreeding must have a Mendelian basis.

Additional support for the multiple-factor hypothesis came from H. Nilsson-Ehle
(1909), a Swedish geneticist working with various cereal crops. Many of the characters
that he examined yielded 3:1 ratios in the F2 generation following the cross of two parental
strains, consistent with expectations for a single segregating locus with one allele completely
dominant over the other. However, there were some striking exceptions. For example, when
red-seeded and white-seeded (allohexaploid) wheat strains were crossed, the F1 progeny
were identical in color and intermediate between the parents, but a diversity of colors, rang-
ing from white to red, was seen in the F2. Further, in some of the F2 crosses, a ratio of 63 red:1
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white seeds was observed. Nilsson- Ehle interpreted this to be the result of the segregation
of three independent factors, the initial parents (both allohexapolids) being AABBCC and
aabbcc, all members of the F1 being AaBbCc and hence uniform in color, and the F2 consisting
of all possible genotypes, only one of which (aabbcc) gives rise to white seed. The probability
of obtaining an aabbcc offspring from an AaBbCc × AaBbCc cross is (1/2)6 = 1/64.

From these results, Nilsson-Ehle arrived at two general conclusions. First, sexual re-
production can produce a huge diversity of genotypes. For example, because a locus with
two alleles A and a can produce three genotypes (AA, Aa, and aa), ten diallelic loci can
produce 310 ' 60, 000 genotypes. Second, given this huge potential diversity of genotypes,
apparently new types appearing within a population may be the result of rare segregants
rather than new mutations. Nilsson-Ehle, and independently East (1910), offered this as an
explanation of atavisms—rare individuals that appear to be throwbacks to some previous
population. Consider a hybrid population resulting from the cross of two pure lines differ-
ing at ten loci. The probability of obtaining a specific parental genotype in the F2 or later
generation is (1/4)10. Hence, the population size has to be greater than 410 ' 106 for there
to be much of a chance of observing a parental type. The common observation of transgres-
sive segregation (Chapter 18), wherein some F2 offspring can be more extreme than their
parents, is also a natural outgrown of segregation over multiple loci. If parents are fixed
for a mix of plus and minus alleles (increasing, and decreasing, trait values, respectively),
then segregation can generate offspring with more more plus (or minus) alleles—and hence
more extreme phenotypes—than found in either parent.

Subsequent studies quickly confirmed the ideas of Shull and Nilsson-Ehle. East (1911,
1916) and Emerson (1910; Emerson and East 1913) examined quantitative variation in a large
number of plants. Typically, strains differing widely in some character were crossed and the
variance of the resulting F1 and F2 generations recorded. In most of these crosses, especially
when the parental populations were formed by repeated self-fertilizations, an outbreak
of variation was seen in the F2 (Figure 1.3). Such outbreaks of variation, resulting from
the segregation of multiple genotypes from the F1 heterozygotes, are consistent with the
Mendelian model, but completely inconsistent with any blending hypothesis. An extensive
historical review of the experimental verification of the multiple-factor hypothesis is given
in Chapter 15 of Wright (1968).

The Danish botanist Wilhelm Johannsen (1903, 1909) was among the first to demonstrate
that some of the variation in continuous characters was due to environmental rather than
genetic causes. Starting from a common stock of beans, he produced several inbred lines.
For each line, parental seeds of different weights were planted and the mean seed weight
in the offspring measured. Johannsen observed that the variation within a pure line was
not heritable—the mean seed weights of the offspring were essentially independent of the
weights of the parental seed (Figure 1.4). In contrast to Galton’s data (Figure 1.1), parent-
offspring regressions within lines were flat (had slopes of zero). The lack of a within-line
association in Johannsen’s data arose because all parents within a line were genetically
identical, in contrast to humans where parents were genetically different. To clarify the
distinction between genetic and environmental effects, he coined the terms genotype (to
denote genetically identical members of a pure line) and phenotype (the actual observed
value for an individual—a compounding of genetic and environmental effects). From his
observations, Johannsen concluded that natural selection could never move a character
value beyond the level of variation seen in the original population. Like Galton, he felt that
macromutations were essential for evolution.

However, Payne (1918) soon demonstrated that selection on Drosophila bristle number
could result in flies with more extreme phenotypes than those seen in the base population
(essentially transgressive segregation). Such a result has been observed in many selection
programs involving economically important species of plants and animals: almost always,
the range of observed variation underestimates the range of potential variation, often dra-
matically so (WL Chapters 24–26). By increasing the frequency of favored alleles, selec-
tion increases the probability of observing extreme genotypes. Recall from above that if the
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Figure 1.4 Mean offspring seed size as a function of parental seed size for some of Johannsen’s
pure lines. The data for the different lines are denoted by different symbols. If there is a
heritable component to seed weight within a pure line, a line with positive slope is expected—
larger parents should yield larger offspring. However, within each line, mean offspring size
is essentially independent of the parental phenotype. (Data from Johannsen 1903.)

frequency of the favored allele at each of ten loci is 0.5, then the frequency of the most
extreme genotype (a homozygote at all ten loci) is approximately one in a million. However,
if selection advances the frequency of the favored allele at each locus to 0.9, the frequency
of the most extreme genotype becomes (0.92)10 ' 0.12. In other words, about one in eight
individuals would exhibit the most extreme genotype.

Shortly after the rediscovery, a new branch of quantitative biology started to be devel-
oped based on the implications of Mendelian segregation of discrete particles (alleles) in
a population. Initially, some geneticists thought that an allele showing dominance would
eventually take over a population. Hardy (1908) and Weinberg (1908) showed this was not
the case, marking the formal beginnings of population genetics, the science of the behavior
of alleles (and genotypes) under various evolutionary forces. Population genetics is highly
intertwined with, but still distinct from, quantitative genetics. The former is built around
allele and genotype frequencies, while the latter is concerned with the behavior of traits,
which depends on the effects of alleles in addition to their frequencies. WL Chapters 2–11
gives a complete review of modern population genetics, and details how the merger of
these two fields is now largely complete.

Fisher 1918: The Formal Foundation of the Quantitative Genetics

The growing consensus by 1916 in favor of the multiple-factor hypothesis set the stage
for R. A. Fisher’s (1918) brilliant paper, On the correlation between relatives on the supposi-
tion of Mendelian inheritance. This paper formed the conceptual bridge between Mendelian
inheritance with discrete genes and evolution acting on continuous traits (ideas hinted at
earlier by Yule 1902, 1906). It was also extremely important in the history of statistics. The
term variance was first introduced in this paper, along with the method of ANOVA (the
analysis of variance), that would lead to Fisher’s development of the field of experimental
design (Fisher 1935). Despite its enormous importance, Fisher wrote this paper as a high
school teacher in 1916, and it was initially rejected by the Royal Society of London. As
Crow (1972) succinctly stated, “It was apparently too mathematical for the Mendelists and
too Mendelian for the biometricians.” Norton and Pearson (1976) published the original
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reviews of Fisher’s paper by Karl Pearson and R. C. Punnett, noting that formally Fisher
withdrew the paper, rather than having it rejected. It was eventually published by the Royal
Society of Edinburgh with the help of Leonard Darwin, Charles’s son.

Fisher’s paper was build around three key ideas. First, (diploid) parents pass along
only part of their genotypic value to their offspring, as they only pass along single alleles,
not diploid genotypes (Fisher’s decomposition of the genotypic value, Chapter 4). Second,
he showed that appropriate summary statistics (the additive genetic and other variance
components) largely describe the resemblance between relatives (Chapter 7). Lastly, he
showed how to estimate these variance components given phenotypic resemblance between
known sets of relatives (Chapters 7, 22–30).

Fisher used a bit of a simplification for his work, the so-called infinitesimal model,
which assumed a large number of genes, each of very small individual effect, underlay most
trait variation. His notion of such a genetic model has been often, incorrectly, seized upon
as proof that QG is a bit out of touch with reality. As we will see, the machinery of modern
QG can easily handle any desired genetic structure.

1920–1950: The Biometrical Age of Quantitative Genetics

Fisher’s brilliant demonstration that many short-term prediction problems could be com-
plete described using only variance components lead to the rapid expansion of the age
of biometrical genetics, using only phenotypic information to extract QG information. At
nearly the same time as Fisher, Sewall Wright (1921a–1921d), using his method of path
analysis (Appendix 2), independently developed many of Fisher’s results, and further ex-
amined the implications of inbreeding. During the 1902s and 1930s, Fisher and Wright were
joined by J. B. S. Haldane to lay the foundations of modern population genetics (Chapter 1
of WL).

In 1937, Jay Lush published his famous Animal Breeding Plants, helped greatly by weekly
trips from Iowa State to the University of Chicago to attend Wright’s course on quantitative
genetics. Lush appears to be the first to formally state the breeders equation, R = h2S,
predicting selection response R as the product of heredity h2 and the selection differen-
tial S = (µs − µ). This was the formalization, in quantitative-genetic terms, of Pearson’s
idea outlined in Figure 1.2. Quantitative genetics showed that the expected slope of the
midparent-offspring regression was h2, the ratio of the additive genetic variance to the to-
tal phenotypic variance. Lush’s book ushered the power of quantitative genetics into the
breeding world. Breeders, in turn, went on to develop much of the early machinery of QG
in response to needs arising from specific applications.

The biometrical age saw the full fruition of ANOVA designs to estimate a variety of
important, and useful, variance components. For example, the various North Carolina
designs (Chapters 23 and 25) exploited special features of various plant breeding systems
to cleanly estimate dominance variance in an attempt to more fully understand the basis
of heterosis in maize. Additional line-cross methods were developed for insight into other
features, such as the effective number of segregating factors (Chapter 11), inbreeding and
heterosis (Chapters 12 and 13), and estimating the impact of G x E (Chapter 27).

Biometrical methodology was concerned with genetics only in the sense of estimating
the appropriate genetic variance components, very much treating any other genetic details
as a bit of a black box. This was not really a problem for the geneticist as the time, as the gene
itself was also a black box. This changed with the rise of molecular biology, starting with
the formal demonstration that DNA was the genetic material (Hershey and Chase 1952),
and a model for its structure (Watson and Crick 1953).

1950–1980: The Rise of Molecular Genetics and its Diverence from Quantiative Genetics

In large part, the interaction between so-called classical genetics and quantitative genetics
that played out during the rise of molecular genetics parallels much of the debate between
the early Mendelians and biometricians, but with less rancor. During the development of
molecular genetics in the 1950s (nicely reviewed by Judson 1979 and Mukherjee 2016), the
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notion of a gene grew from a fairly nebulous concept into a rather concrete, well under-
stood, object build around a DNA sequence. This resulted in any statistical description of
inheritance from quantitative genetics (variances of traits instead of following genes) be-
coming far less appealing. Indeed, to many geneticists, quantitative genetics appeared as an
anachronism, a crutch that biologists no longer needed. As massive advances were made in
the dissection of specific, individual genes with discrete, and highly reproducible, pheno-
types, the result was a diminished interest in continuous traits. Indeed, Fisher’s notion of an
infinitesimal model—a large number of loci, each with very small effects—was anathema
to this molecular way of thinking.

Thus, for three decades, the once harmonious field of genetics bifurcated into molecular
and quantitative arms. During this time, biometrical approaches continued to be developed,
cumulating with Charles Henderson’s introduction (1949, 1950, 1963) of linear mixed mod-
els (BLUP) that elegantly extended the rigid ANOVA-based designs for variance component
estimation to the completely general, and very complex, pedigrees that were common in
animal breeding. It is greatly ironic that these models would be repurposed many decades
later to play key roles in the genomic analysis of complex traits (Chapters 20 and 21).

1980–2000: Molecular Markers, QTL mapping, and the Age of Semi-major Genes

By the early 1980s, one of the byproducts of the molecular revolution was access to an
ever-growing number of molecular-based markers. Geneticists, almost from the time of
rediscovery, were well versed in using markers to map genes by exploiting the excess
of parental gametes seen under linkage (Chapter 5). While a few quantitative trait loci
(QTLs) were mapped using classical (phenotypic) markers (such as Sax’s work in 1923
showing linkage in beans between loci for spotting and seed weight), the lack of widespread
markers with trivial phenotypic effects prevented most attempts at QTL mapping. The
bottleneck was technical (lack of markers), not operational (linkage-based mapping was
well developed). In the early 1960’s, the first molecular markers (allozymes, variants in
the protein sequences produced by alternative alleles at a single gene) were developed,
resulting in a modest set of markers (a few dozen) for many species. Starting a decade
later, the development of DNA-based markers, such as RFLPs or STRs (Chapter 8), initally
offered up to a few hundred markers. Their availability sparked widespread QTL mapping,
especially in crops and laboratory species. As detailed in Chapters 17–19, linkage-based
QTL mapping involves the isolation of small chromosomal regions that influence a trait of
interest by applying linkage analysis to line-cross derivatives. Such studies routinely found
relatively small (∼ tens of megabases) chromosomal segments that appeared to account for
nontrivial fractions of the trait variation (5% or more; Chapter 18).

The detection of such semi-major genes (or, more correctly, genomic segments) of modest
to large effect was at odds with infinitesimal-like model thinking, and reinforced the view
of many molecular geneticists on the importance of single genes (a resurrection of the
Mendelian-Biometrican debate). The detection of such QTLs started to slightly open the
genetical black box of quantitative traits, suggesting a road to redemption (at least from the
molecular geneticists) whereby one would fairly rapidly be able to isolate a modest number
of alleles that generated the bulk of trait variation. Alas, the actual isolation of such candidate
genes proved extremely elusive (Chapters 17–20). Eventually, this led to the realization that
the large estimated effects of such QTLs were very often the result substantially inflated
effects for markers declared to be statistically significant (so-called Beavis effects; Chapter
18) and the presence of tightly linked clusters of trait-influencing genes within the detected
region (the QTL) that fractionate upon finer mapping (Chapter 18).

2000 - present: SNPs, GWAS, Whole Genome Sequencing, and the Rise of Quantitative
Genomics

The use of linkage-based approaches greatly limited QTL mapping resolution, which was
set by the number of recombinants between markers within the population sample of ga-
metes. One or two crossovers per chromosome was expected to be the norm under most



10 CHAPTER 1

linkage designs, resulting in blocks of nonrecombining material typically longer than tens of
megabases. With many genomes on the scale of around 3000 megabases (such as humans),
only 300 well-chosen markers could detect most of the recombination events. Increasing
marker density quickly become redundant, as they would tend to be inherited as a block in
the gamete sample due to insufficient number of recombinations.

Thus, the massively increasing number of usable DNA-based markers (such as single
nucleotide polymorphisms, SNPs), that were starting to be generated by the late 1990s
for model species (such as humans), could not be fully exploited by the limited number of
recombinants in a typical linkage mapping population. New approaches would be required,
as the mapping roadblock was no longer markers, but rather methodology, leading to the
rise of association mapping (Chapters 17, 20, and 21). Today such GWAS (genome-wide
association studies) are the standard fine-mapping approach in most settings.

The foundation for GWAS rests on the use of linkage disequilibrium (LD; Chapter 5)—
correlations between closely-linked alleles at different loci—in random samples of unrelated
individuals from a large population to fine-map genes. The reach of LD in a population is
typically on the order from less than a kilobase (kb) to a few hundred kb, depending on
the population (Chapter 5). LD thus offers much greater resolution than linkage mapping
(the latter on the megabase scale). The GWAS logic, as developed in Chapters 5, 8, and
20, is that a random population sample of individuals contains very small blocks of very
deep shared ancestry, generating the LD. Such blocks have persisted through hundreds of
potential rounds of recombination, randomizing all but the tightest of linked markers.

DNA scoring technology initially used hybridization on DNA chips of up to a few
million SNPs, and then moved onto using the scored SNPs to impute (predict) the genotypes
of unscored, but very closely linked, SNPs (Chapter 20). Finally, whole genome sequencing
(WGS) became affordable, at least on small scales. As we detail in Chapter 21, WGS provides
very little gain in power when causal sites are in LD with common SNPs (a SNP whose minor
allele frequency is greater than one to five percent). The power of WGS only shows itself
when causal alleles are very rare, which in turn requires massive sample sizes. Fortunately,
GWAS, being collections of unrelated individuals, is well suited to scale to very large sizes,
potentially in the millions of individuals scored, each with millions of SNPs either directly
scored or imputed.

As detailed in Chapter 21, GWAS “ hits” typically only account for a very tiny fraction
of trait variation. While at first blush this appears to be consistent with Fisher’s model, there
is actually a subtle difference. There is an inverse relationship between effect size and allele
frequency such that large-effect alleles also tend to be very rare. Thus, a “small” GWAS
hit could either be a common allele of very small effect or a very rare allele of very large
effect. Even more disconcerting, most hits are in noncoding regions, typically rather far from
genes (coding regions). Indeed, assigning a GWAS hit to a particular gene is far from trivial
(Chapter 21). It appears that most trait variation is generated by regulatory variation, often
acting at great distance from the target site. As a result, quantitative geneticists have started
to turn their sights to GWAS mapping of genomic features (quantitative genomics), such as
mRNA expression level, splicing isoform ratios, or methylation/chromatin configurations
(Chapter 21). The idea is to leverage this information on upstream effects to both obtain better
biological intuition of the processes generating trait variation, and also to more accurately
isolate downstream targets.

Beside its obvious implications for mapping, dense marker technology also allowed
classical approaches based on the fraction of shared ancestry to be greatly refined. For
example, relative-based methods assume that two random full sibs each share (on average)
one allele at a locus via common ancestry. However, there is considerable variation in the
expected value, and the actual realized relationships can be accurately estimated using
marker information (Chapters 8, 31, and 32).

Thus, we have come full circle, with the genomic (i.e., association) data providing
strong support for a version of infinitesimal-like model for the genetic architecture of many
traits. A quantitative-genetic framework is thus required when using association data for ge-
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nomic prediction (the framework for genomic selection and genomic-based individualized
medicine; Chapters 31 and 32). A quick glance at any of the front-line journals in genomics
highlights this growing merger with quantitative genetics, as many functional-genomic
features are now routinely examined in a quantitative-genetics framework. Perhaps there
is no better exemplar for the journey of QG than human height. Galton’s analysis sparked
the rise of modern statistics, motivated Fisher’s 1918 paper, and provided the framework
for modern breeding. At the genomic level, at the time of this writing, the largest GWAS
is a 5.4 million individual meta-analysis (Appendix 6) of human height, which found that
over 12,000 sites account for height variation, with a potentially far larger number of much
rarer sites waiting to be discovered (Example 21.15).

Quantitative Genetics, the Rise of Statistics, and the Current Statistical Revolution

As menioned, the impact of early quantitative-genetic theory extends well beyond the bi-
ological sciences. It laid the foundations for modern theoretical and applied statistics. Out
of a need for quantitative methods to describe the distributions of continuously distributed
characters, Galton provided the empirical motivation for Pearson’s formal development
of the theory of regression and correlation (Provine 1971, Stigler 1986). Fisher’s 1918 pa-
per introduced the concept of variance-component partitioning, upon which the principles
of analysis of variance (ANOVA) are based, and his subsequent contributions had a pro-
found influence on the development of methods for experimental design (Appendix 9)
and hypothesis testing (Fisher 1925, 1935, 1956). Wright’s (1921a) method of path analysis
(Appendix 2) beaome broadly embraced by the social and ecological sciences.

As the field of QG continued to mature, more advanced methods arose from interac-
tions between statisticians and quantitative geneticists. Starting with Henderson’s work on
mixed linear models, the power of random-effects models for many quantitative genetics
problems became apparent. As computational advances allowed Fisher’s method of max-
imum likelihood (Appendix 4) to be feasible in more general settings, it quickly gained
prominence in quantitative genetics. The ML-based variance estimation method of REML
(Chapter 32) arose from the concern of adjusting the estimated variance for the very large
number of fixed effects typically fitted by animal breeders. REML later went on to be one
of the workhorse methods in the genomic analysis of complex traits (Chapter 32).

More recently, the complex, high-dimensional nature of modern QG data sets, coupled
with further computational and algorithmic advances (Appendix 8), led to the widespread
use of Bayesian methods (Appendix 7). As data sets, especially with marker information,
became both more complex and more numerous, the field embraced evolving statistical
concepts such as false discovery rate (FDR) control for multiple comparisons (Appendix
6) and meta-analysis approaches for combining information from multiple data sets (Ap-
pendix 6). After the early sojourn of path analysis through the social sciences, it returned
with a vengeance in quantitative genetics in the guise of mediation analysis to examine
the impact of molecular intermediates on potentially downstream traits values (Chapter
21). Path analysis also birthed the important field of Mendelian randomization for control-
ling for confounding factors in complex epidemiological settings using quantitative genetic
features (Appendix 2). Advances in QG continue drive new methods. For example, with
whole gene sequences becoming more routinely used in QG analysis, new statistics on
sparse, high-dimensional data will need to be developed. Thus, QG has been both a driver,
and a grateful recipient, of advances in statistical theory and methodology. One final point
is worst mentioning. While the impact of the genomics revolution has been obvious, what
is less appreciated is that a nearly comparable revolution has occurred in modern statistics.
In part, much of this new machinery arose from dealing the size, scale, and complexity of
quantitative-genetic data sets.

THE MAJOR GOALS OF QUANTITATIVE GENETICS

Despite the great diversity fields using quantitative genetics machinery, most of the ques-
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tions being examined revolve around a few key issues. Hence, before proceeding, we give
a very brief summary of the main issues to be addressed in the remainder of the book:

The Nature of Quantitative-trait Variation

As we have just reviewed, the expression of quantitative characters is typically influenced
by both genetic and environmental factors, with patterns of variation that are qualitatively
consistent with Mendelian expectations. However, many questions remain. An obvious
one, of interest from many perspectives, is, How much of the standing variation in populations
is due to genetic causes and how much to environmental ones? From the standpoint of evolution
and applied breeding programs, genetic components of variance are of particular interest
because they determine the rates at which characters respond to artificial and natural selec-
tion. Environmental variance reduces the efficiency of the response to selection by causing
the phenotypes of selected individuals to deviate from their underlying genotypic values.
From the perspective of human genetic disorders, the degree to which the expression of un-
desirable traits is determined by genetic vs. environmental causes has broad implications
for the development of preventative procedures and genetic counseling strategies.

Many methods exist for partitioning phenotypic variance into its various components
(Chapters 22–32), all of which are based on the principle that the phenotypic resemblance
between relatives provides information on the degree of genetic differentiation among in-
dividuals (Chapter 7). With a sufficiently dense set of molecular markers, we no longer
need a known collections of relatives, as we can estimate relatedness within a population
sample (Chapter 8). Provided this sample has sufficient variance in relatedness, we can
apply standard QG methods to estimate variance components (Chapters 8, 31, and 32).

Despite the flexibility of relative-based estimation procedures, virtually all of the meth-
ods have some undesirable theoretical and methodological features. For example, the as-
sumed additivity of G and E in the base model—which generates a simple dichotomy
between genetic and environmental sources of variation—is often overly simplistic, as
genotype × environment interaction may exist (Chapter 27). Examples include drug in-
teractions with specific genotypes and local adaptation. In the latter, the performance of
a line (or population) is disproportionately better (or worse) relative to other lines in a
particular environment (i.e., G and E are no longer additive).

A further complication is that there are several components of both environmental
and genetic variation (Chapters 4–6). The different components influence the resemblance
between relatives to different degrees, and as a consequence, have substantially different
influences on the evolutionary process. They also impact expressions for the joint disease risk
occurrence over different sets of relatives. The additive component of the genetic variance
(also known as the variance of breeding values) is of particular interest because it is the
primary determinant of the degree to which offspring resemble their parents, which governs
the rate of response of a character to selection. When significant nonadditive variance is
present, breeders of species that can self (or be cloned) have a variety of options to exploit
this other variance (WL Chapters 21–23). Similarly, when dominance is present, disease risk
is greater than for a pair of full sibs than between parent and offspring.

Ultimately, the pool of genetic variation in a population must be due to a quasi-balance
between the forces of selection and random genetic drift, both of which tend to eliminate
variation, and the replenishing force of mutation (Chapters 15 and 21; WL Chapters 7 and
28). Recent work has shown that the mutational rate of production of new variation for
quantitative traits is remarkably high (Chapter 15), in part due to a very large number of
potential mutational target sites (Chapter 21). Further, different traits may have different
genetic architectures (the underlying number of loci and the joint distribution of allele
effects and frequencies at such loci). These architectures are functions of both the underly-
ing molecular mechanisms generating trait variation and the past evolution history of their
underlying genetic variants. For example, early-onset diseases likely face different evolu-
tionary pressures than do diseases that appear after reproduction, potentially resulting in
rather different genetic architectures. Likewise, a trait itself may be under no selection, but
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its underlying variants could still be due to pleiotropic effects on in other selected traits
(Chapters 21 and 26; WL Chapter 28). The machinery from Chapters 18–21 is starting to
provide insight into the size-frequency distribution, which, in turn, informs us somewhat
about past evolutionary history.

The Consequences of Inbreeding and Outcrossing

The mean phenotypes of progeny from consanguineous matings commonly differ from
those of progeny from random-bred parents. Such inbreeding effects are almost always
deleterious (inbreeding depression), generally increasing linearly with the degree of relat-
edness between parents (Chapter 12). These observations are consistent with the presence
of deleterious recessive alleles segregating at the loci underlying quantitative variation.
The mechanisms and consequences of inbreeding have a number of practical implications,
e.g., in the design of breeding programs for captive populations of endangered species,
the maintenance of inbred lines for biomedical and agricultural research, and the nature of
increased disease risk in small, closed human populations. Patterns of fitness decline with
inbreeding can also provide insight into the rate and average effects of deleterious mutation
(Chapter 12).

While crosses between relatives within a population can be deleterious, crosses between
individuals from different populations often exhibit “hybrid vigor” in the F1 generation,
only to be followed by substantial fitness decline in the next (F2) generation. The pattern
of change in mean phenotypes in line crosses can yield insight into the mode of gene
action, particularly with regard to interaction between genes at different loci (Chapters
11 and 13). In particular, dominance is a necessary, but not sufficient, condition for both
inbreeding depression and hybrid vigor. Conversely, as the individuals being crossed come
from increasingly divergent populations, outbreeding depression is often seen. Here, F1

hybrids have reduced fitness, in the extreme, being sterile or inviable. Unlike hybrid vigor,
epistasis is required for outbreeding depression, and understanding the genetics of this
processes is vital to attempts to understand the mechanisms of speciation (Chapter 17).

The Constraints on the Evolutionary Process

Fundamental questions arise in evolutionary biology and in selective breeding programs
as to the factors that limit the rate of phenotypic evolution. As noted above, when selection
operates on a single trait, the response to selection is roughly proportional to the additive ge-
netic variance for the trait (Chapter 3). However, if the same genes influence the expression
of different traits, then an evolutionary change in one trait will necessarily lead to changes
in the correlated traits. This can impede the breeding/evolutionary process when there is
a conflict in the fitness consequences of selection operating directly on a trait and that op-
erating on correlated traits. Questions of evolutionary trade-offs have long been the focus
of evolutionary ecology, but many of the ideas in that field (e.g., life-history theory) have
developed out of simple energetic arguments or comparative surveys on the phenotypes
of different species. An unambiguous understanding of the constraints on the evolution
of systems of complex characters requires information on the magnitude and direction of
genetic correlations between characters. Quantitative-genetic methodology provides a pow-
erful, but data demanding, means of elucidating these issues (Chapter 26). Ultimately, we
would like to know the extent to which patterns of genetic correlations within populations
are reflected in multivariate patterns of differentiation among species.

A related issue is the unresolved question about the nature of pleiotropy (one variant
influencing multiple traits), the component (along with linkage disequilibrium) underlying
genetic correlations. How common is this, and when it occurs, are its effects limited to a set of
traits in within some developmental module, or are they more widespread? Does the effect
size on one trait influence the extent of pleiotropy? For example, is a major mutation for
one trait more likely to also influence additional traits? Resolving the pleiotropic structure
of new mutations is critical for a better understanding the evolutionary forces that maintain
quantitative genetic variation (WL Chapter 28).
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The Estimation of Breeding Values and Predicting Phenotypes

Plant and animal breeding programs are based on choosing the best individuals to serve as
parents for the next generation. In the case where offspring are clones of the selected parents
(such as choosing among inbred individuals, and then selfing each to produce offspring),
the goal is to choose the parents with the best genotypic (or line) values, as these are exactly
what their offspring receive. In the case where offspring are produced by sexually crossing
parents, offspring are a mixture of their parental genotypes. In this setting, the goal of
breeders is to chose those parents with the best breeding values (Chapter 4), as the expected
offspring mean from two parents is the average of their breeding values. Phenotypes are
an imperfect predictor of either of these measures (line/genotypic and breeding values).
The precision of these estimates can be improved by using information from relatives in a
mixed-model framework (BLUP; Chapter 31). More recently, molecular marker information
can be used to improve these estimates (genomic selection; Chapters 31 and 32). A related
issue is precision medicine, the use of an individual’s marker information to predict their
future phenotype (the notion of a polygenic risk score).

Statistical and Mathematical Tools for Quantitative Genetics

A number of reviews of helpful quantitative tools are scattered throughout this book. While
we have tried to concentrate these either where they needed, or summarize them in specific
sections (such as the Appendixes), we also encourage the reader to use the very extensive
subject index when perusing for information about particular tool.

Chapter 2 introduces basic properties of univariate distributions, such as moments
(mean, variance, skew, kurtosis), as well as some less common distributions that arise
in certain quantitative-genetics applications (such as the hypergeometric distribution for
sampling without replacement and the negative binomial for the waiting time for exactly k
events to occur). Bivariate distributions and their metrics (such as correlations, covariances,
and regressions) are introduced in Chapter 3, which also examines conditional probability,
and, in particular, the powerful theorem of Bayes. Appendix 1 develops the Taylor-series
based delta method for obtaining approximations for means, variance, and covariances of
more complex statistics (such as ratios or products). Appendix 2 introduces the method of
path analysis for exploring causality, with an extended discussion on Mendelian Random-
ization approaches.

The most useful mathematical machinery in QG is linear (matrix) algebra, which is
introduced in Chapter 9, with additional topics (such as generalized inverses) discussed
in Appendix 3. Chapters 10, 31, and 32 build heavily on matrix machinery to present both
the general linear model (GLM) and the mixed model (an extension of the GLM to include
random effects). The latter is one of the main workhorse tools in QG, arising in GWAS
(Chapter 20), G x E (Chapter 27), estimation of genetic and breeding values (Chapters 31
and 32), genomic selection and prediction (Chapter 31), meta-analysis (Appendix 6), and
experimental design (Appendix 9), to name just a few. The scale on which a trait is measured
impacts its analysis, and Chapter 14 discusses various topics in this area. Scales of analysis
also serve as an introduction to generalized linear models—such as logistic regressions
and log-linear models—which more easily handle discrete (i.e., zero/one or count) data
than standard linear models. These are widely used in both GWAS (Chapter 20) and in the
analysis of threshold traits (Chapter 30).

Chapter 16 introduces mixture distributions (not to be confused with mixed models), which
are weighted sums of simpler distributions (such as a weighted sum of normals). These are
commonly used in the search for major genes (Chapter 16) and in QTL mapping (Chapters 16
and 17). Fisher’s method of Maximum likelihood (ML)—which provides a unified approach
for estimation, assigning standard errors, and hypotheses testing—is widely used in QG,
and is reviewed in Appendix 4. Bayesian methods (Appendix 7) are the extension of ML
methods to more general settings. Their analysis uses straightforward, but computationally
demanding, iterative approaches, such as MCMC, which a are reviewed in Appendix 8.
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Table 1.1 Suggested topic-specifc pathways through this book.

Topic Suggested Chapters

Basic quantitative genetics 2–7, 11–13, 22–24, 26, 27

Analytic tools 2, 3, 9, 10, 14, 30–32, Appendicies 1–9

Agricultrue and breeding 11–14, 17–20, 25–27, 31–32, Appendix 9

Evolutionary quantitative genetics 12–15, 21, 26–29, Appendicies 4–8

Human genetics 8–10, 12, 16-17, 19–21, 23, 24, 30–32, Appendices 2, 4–8

Genomic applications 8–10, 16–21, 31–32, Appendices 2, 4–8

Finally, calculation of statistical power is critical before any experiment. Appendix 5 ex-
amines power for simple t and z tests, as well as for both fixed and random effects ANOVA,
general linear models, and for certain ML settings. Modern quantitative genetic datasets
typically have a large number of tested parameters, raising issues with controlling for mul-
tiple testing. Various approaches for control (such as FDR and sequential Bonferroni) are
reviewed in Appendix 6. This appendix also examines the related field of meta-analysis:
how best to combine signals over a number of studies. Lastly, Appendix 9 reviews basic fea-
tures in Fisher’s theory of experimental design, focusing on analysis under heterogeneous
environments.

NAVIGATING THE SCIENCE OF QUANTITATIVE GENETICS

The science of quantitative genetics has been around for over a hundred years, its main
principles having been outlined independently by Ronald Fisher (1918) and Sewall Wright
(1921a–d). It has served as the theoretical basis for most plant and animal breeding programs
for almost a century (Lush 1937, 1945; Hanson and Robinson 1963; Turner and Young 1969;
Namkoong 1979; Mayo 1980, 1987; Hallauer and Miranda 1981; Mather and Jinks 1982;
Pirchner 1983; Henderson 1984a; Wricke and Weber 1986; Ollivier 1988; Hill and Mackay
1989; Gianola and Hammond 1990; Weller 1994; Bos and Caligari 1995; Falconer and Mackay
1996; Kearsey and Pooni 1996; Cameron 1997; Simm 1998; Kinghorn et al. 2000; Gallais
2003; Hallauer et al. 2010; Bernardo 2010, 2020). It has also played an important role in
our understanding of the inheritance of complex human genetic disorders and underpins
much of disease genomics (Lander and Schork 1994; Risch and Merikangas 1996; Jansen
and Nap 2001; de Koning and Haley 2005; Gibson and Weir 2005; Rockman and Kruglyak
2006; Wellcome Trust Case Control Consortium 2007; Altschuler et al. 2008; Visscher et al.
2012, 2017; Boyle et al. 2017a). Finally, it has become also well entrenched in the field of
evolutionary biology (Bulmer 1980; Lande 1988; Barton and Turelli 1989; Boake 1994; Walsh
and Lynch 2018).

Hence, this book attempts to reach a very broad audience. As such, the reader might
the detailed level of discussion on some topics to be of less interests that others. How, then,
should one navigate this volume? Chapters 2–7 gives the basics that all QG practitioners
should know. From here, paths can diverge dramatically given the interests and questions
of the reader. Table 1.1 provides some guidance on how to proceed. We have tried to write
chapters in such a way that their dependencies on specific previous Chapters are clear, but
otherwise make them as independent as possible. Hence, we encourage the reader to feel
free to skip around topics. Further, we have endeavored to develop a very detailed index
to help the reader find hidden gems of interest on a particular topic that might appear in a
somewhat out of the way location. Enjoy!
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