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Covariate Adjustment

m Covariate adjustment is a statistical analysis method with
high potential to improve precision for many trials.

O Pre-planned adjustment for baseline variables when
estimating average treatment effect.

O Estimand is same as when using unadjusted estimator (e.g.,
difference in means).

[0 Goal: avoid making any model assumptions beyond what's
assumed for unadjusted estimator (robustness to model
misspecification).

(e.g., Koch et al., 1998; Yang and Tsiatis, 2001; Rubin and van der Laan, 2008;

Tsiatis et al., 2008; Moore and van der Laan, 2009b,a; Zhang, 2015; Jiang
et al., 2018; Benkeser et al., 2020)
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FDA Guidance: Example
I ==

H Primary endpoint Y: binary.
m Estimand: 0 = E(Y|A=1)—- E(Y|A=0).
m Estimator: G-computation/Standardization
Fit logistic regression model for
P(Y = 1|A, B) = logit (70 + 1A + 72B).
Compute standardized estimators for treatment specific means

m E(Y|A=1)= 137, logit *(f0 + 41 + 42B;)
m E(Y[A=0)= 137, logit " (50 + 4:B))

n

Calculate d = E(Y|A=1)— E(Y]A=0)
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Potential Challenge
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B The uncertainty at the design stage about the amount of
precision gain and corresponding sample size reduction.
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precision gain and corresponding sample size reduction.

[0 Approach 1: assume conservatively that covariate adjustment
will not lead to a precision gain.

O Approach 2: consider how much precision can be gained
based on external (trial) data when calculating the sample size.
(Li et al., 2023)

® An incorrect projection of a covariate’s prognostic value, may
still lead to an over- or underpowered future trial.

[0 Potential solution: combine covariate adjustment with
information-adaptive designs (also known as information
monitoring).
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Algorithm for Analysis Timing: Design Stage
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B Specify the operating characteristics of the study
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Algorithm for Analysis Timing: Design Stage
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B Specify the operating characteristics of the study

® We compute the maximum/total information needed to
preserve these operational characteristics

Za/2 + z3 2
Oa—0o )’

for a fixed design (no interim analyses), and

Za/2 + z3 2 IE
04 — bt

when data is sequentially monitored with the possibility of
early stopping.

(Mehta and Tsiatis, 2001)
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Algorithm for Analysis Timing: Information
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B We propose to monitor the accrued information,
(se(6;))~2, through time t.

B We consider a trial with an interim analysis when 50% of the
information is available:

[0 We conduct the interim analysis at time t; when

O We conduct the final analysis at time t; when

2
(5e(0,) 2 > (22228 ik,
04— b

(Mehta and Tsiatis, 2001; Zhang, 2009)
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Algorithm for Analysis Timing: (Dis)advantages
I

B The information-adaptive design is well suited for being
adopted for covariate adjusted estimators:

[0 We do not have to prespecify the prognostic value of the
covariates nor other nuisance parameters.

O When the estimator is more efficient than unadjusted
estimator, covariate adjustment can lead to a shorter trial due
to faster information accrual.
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B The information-adaptive design is well suited for being
adopted for covariate adjusted estimators:

[0 We do not have to prespecify the prognostic value of the
covariates nor other nuisance parameters.

O When the estimator is more efficient than unadjusted
estimator, covariate adjustment can lead to a shorter trial due
to faster information accrual.

B Administrative inconvenience: it does not give an idea to
the investigators about the necessary resources (i.e., length of
study, sample size, ...).

10/22



Algorithm for Analysis Timing: Practical Issues
I I —————

B We suggest to posit some guesses on the nuisance
parameters.

O Probability of success in control arm (binary endpoint),
prognostic value of covariates, ...

11/22



Algorithm for Analysis Timing: Practical Issues
I ———

B We suggest to posit some guesses on the nuisance
parameters.

O Probability of success in control arm (binary endpoint),
prognostic value of covariates, ...

B Assessing feasibility by estimating the number of
participants corresponding with the maximum information.

[0 Usings the standard formulas for sample size calculations.

0 We recommend setting the sample size conservatively as if
there were no precision gain from covariate adjustment.

11/22



Algorithm for Analysis Timing: Practical Issues
I ———

B We suggest to posit some guesses on the nuisance
parameters.

O Probability of success in control arm (binary endpoint),
prognostic value of covariates, ...

B Assessing feasibility by estimating the number of
participants corresponding with the maximum information.

[0 Usings the standard formulas for sample size calculations.

0 We recommend setting the sample size conservatively as if
there were no precision gain from covariate adjustment.

B However, miscalculations can occur at the design stage.

O We should use the emerging data to evaluate whether the
maximum information will be reached in the planned time.

11/22



Algorithm for Analysis Timing: Practical Issues
I I —————

B However, miscalculations can occur at the design stage.

12/22



Algorithm for Analysis Timing: Practical Issues
I I —————

B However, miscalculations can occur at the design stage.

B We should use the emerging data to evaluate whether the
maximum information will be reached with the planned
sample size.

12/22



Algorithm for Analysis Timing: Practical Issues
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B However, miscalculations can occur at the design stage.

B We should use the emerging data to evaluate whether the
maximum information will be reached with the planned
sample size.

B If not, we should update the maximum sample size at time
t as )
za/z—i—Zﬁ
o (B2) IF
(se(0:))~2

where n(t) is the number of patients used in the analysis at
time t.

nmax - Y

(Mehta and Tsiatis, 2001)

12/22



Algorithm for Analysis Timing: Contribution

I ==
B We proposed an information-adaptive trial design,
where the analysis timing is based on accruing information
and is data-adaptive.
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Algorithm for Analysis Timing: Contribution

-4
B We proposed an information-adaptive trial design,
where the analysis timing is based on accruing information
and is data-adaptive.

B By automatically adapting to amount of precision gain
due to covariate adjustment,
it results in correctly powered trials.

B Information will accrue faster as covariate adjusted estimators
typically have smaller variance,
leading to faster trials at no additional cost.

B Since adaptations to the analysis timing are pre-planned
based on nuisance parameters only,
they are generally acceptable to regulators.

13/22



Outline
S

Simulation Study

14 /22



MISTIE Il trial (Stroke)
__

B Functional outcome: proportion of patients who achieved a
modified Rankin Scale score of 0-3 at 365 days (binary).

B Estimand of interest: risk difference.

B Total sample size of approximately 498 patients (in original
trial):
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MISTIE Il trial (Stroke)
__

B Functional outcome: proportion of patients who achieved a
modified Rankin Scale score of 0-3 at 365 days (binary).

B Estimand of interest: risk difference.

B Total sample size of approximately 498 patients (in original
trial):
[0 1:1 randomization

O Power of 88% to detect an average effect size of 13% at a 5%
significance level

[0 Success rate: 25% in standard medical care group versus 38%
in MISTIE group

m We will focus on information instead of sample size!
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Simulation Study: K =1

m Information-adaptive design with maximum information

equal to 582

B Maximum sample size design with n,,,, = 498

0 = 0.13 (Alternative)

Power ASN AAT Al

Information-adaptive design Unadjusted 88.4% 571 1876 582
Standardization 87.3% 433 1509 567

Maximum sample size design  Unadjusted 83.1% - 1682 508
Standardization 91.1% - 1682 652

ASN: average sample number; AAT: average analysis time (days); Al: average

information.
Conclusion under alternative:

24% reduction of sample size due to covariate adjustment

16 /22



Simulation Study
T,

m Information-adaptive design with maximum information
equal to 582

B Maximum sample size design with n,,,, = 498

=0 (Null)
Typel ASN AAT Al
Information-adaptive design Unadjusted 5.28% 569 1871 582

Standardization 5.28% 402 1427 568

Maximum sample size design  Unadjusted 5.14% - 1682 509
Standardization  5.14% - 1682 705

ASN: average sample number; AAT: average analysis time (days); Al: average
information.

Conclusion under null:

29% reduction of sample size due to covariate adjustment
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Thank you for your attention!

Interested? https://doi.org/10.48550/arXiv.2201.12921
E-mail: kelly.vanlancker@ugent.be
Website: kellyvanlancker.com
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