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Topics

Definitions, dimensionality, addition,
subtraction

Matrix multiplication

Inverses, solving systems of equations
Quadratic products and covariances
The multivariate normal distribution
Eigenstructure

Basic matrix calculations in R

The Singular Value Decompositon (SVD)



Matrices: An array of elements

Vectors: A matrix with either one row or one column.

Usually written in bold lowercase, e.g. a, b, c

12
a=|13) b=(2 0 5 21)
47

Column vector Row vector

3x1) (1 x4)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

General Matrices

Usually written in bold uppercase, e.g. A, C, D

3 1 2 0 1
C=1(2 5 4 D=|3 4
1 1 2 2 9
(3 x 3)
Square matrix (3x2)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element B -- the element in row i
and column j



Addition and Subtraction of Matrices

If two matrices have the same dimension (both are r x ¢),
then matrix addition and subtraction simply follows by
adding (or subtracting) on an element by element basis

Matrix addition: (A+B); =A; + B

Matrix subtraction: (A-B);=A;-B

J ij

(3 0) (1 2
A—(l 2) and B—(2 1)

492 A 9 -9
C—A+B—(3 3) and D=ADB ‘(—1 1)

Examples:

Partitioned Matrices

It will often prove useful to divide (or partition) the
elements of a matrix into a matrix whose elements are
itself matrices.

3 1 2 SR L.
11 2 2 ‘5 4 d B
1 1 2

R 7 « . 2 . 5 4
a=(3). b=(1 2), d (1) B (1 2)

One usetul partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors



elements are row vectors

._ ) B (rl) A column vector whose

—_ U

A row vector whose
—(e; ¢ c3) elements are column
vectors

A S

Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

a'b= i:(lzbi
i=1

Example:

and b=(4 5 7 9)

[+
II
L B B

a'b=1*4+2*5+ 3*7 + 4*9 = 60



Matrices are compact ways to write
systems of equations

The least-squares solution for the linear model

y=p+01z1+ " Pnzn
yields the following system of equations for the §;
o(y,z1) = Bio*(z1) + Boo(z1,22) + -+ + PBuo(z1, 2n)
o(y,z2)= B1o(21,22) + B20%(22) + *+*+ Bno(za,2n)

G(ya zn)z 310(21: zn) +‘;320'(22, zn) + 0+ 3.“02(2"‘)
This can be more compactly written in matrix form as

UZ(zl) 0'(21,22) T U(zlrz"-) 31 U(y:zl)
o(z1,22) 0%(z2) ... o(22,2n) Ba _ o(y, z)
o(zl-, Zyn) o(zzi, Zn) .. 02('.2,() Bn o(y Zp)

XX B Xy

or, [3 = (XTX)'1 Xy 10



Matrix Multiplication:

The order in which matrices are multiplied affects
the matrix product, e.g. AB 7 BA

For the product of two matrices to exist, the matrices
must conform. For AB, the number of columns of A must
equal the number of rows of B.

The matrix C = AB has the same number of rows as A
and the same number of columns as B.

C(rxc) = A(rxk) B(kxc)
ij-th element of C is given by

Elements in the
jth column of B

Cij = ZZ:AHBU Elements in the i‘rn
= row of matrix A

Outer indices given dimensions of
resulting matrix, W|th r rows (
and ¢ columns (B

rxc _ rxk) B (kxc)

\/

Inner indices must match
columns of A = rows of B

Example: Is the product ABCD defined? If so, what
is its dimensionality? Suppose

A3><5 BSx9 C9x6 D6x23

Yes, defined, as inner indices match. Resultisa 3 x 23
matrix (3 rows, 23 columns) 1



More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors

m;
ms

M= : where m; = (M Mip =~ M)
\m./

Likewise express N as a row vector of

column vectors :f
+V23

N=(n; n; -+ mny) where n; = _

The ij-th element of L is the inner product |\
- C-"

of M's row i with N's column j

ml.nl ml.n2 ... ml..nb
m2- nl m2 -n2 ... m2 -nb
L= : , :
mr-nl mr.n2 ... mr -nb
13

_f[a b e f\ [(ae+bg af-+bh
AB_(C d) (g h)_(ce+dg cf+dh)

Likewise

[ ae+cf eb4df
BA_(ga-}—ch gd—l—dh)

ORDER of multiplication matters! Indeed, consider
Cs,5 Ds, s which gives a 3 x 5 matrix, versus Dg,s Cs, 5,
which is not defined.

14



Matrix multiplication in R

, R fills in the matrix from
> A<-matrix(c(l,2,3,4),nron=2) h | _[_-” .
> B<-matrix(c(4,5,6,7),nron=2) the list C by g in as

> A columns, here with 2 rows
0,11 [,2] —

0] 13 (nrow=2)

2,1 2 4

> B ) )

L1 Entering A or B displays what was

EH AS' g entered (always a good thing to check)

> A %*% B
(1] [2] .

1,1 19 27 The command %*% is the R code

[2,] 28 40 for the multiplication of two matrices

On your own: What is the matrix resulting from BA?
What is A if nrow=1 or nrow=4 is used?
15

The Transpose of a Matrix

The transpose of a matrix exchanges the

rows and columns, AT, = A,

Useful identities
(AB)T = BT AT o B
(ABC)T=CTBTAT 27| : i
Inner product =a'™ = a’; x b nx1

\

Indices match, matrices conform

Dimension of resulting productis 1 X 1 (i.e. a scalar)

by .
(ay, - a,) ( ;‘ ) -a’b X“;"J: Note that bTa = (bTa)T =a'b

b, 16



Outer product = ab™ = a (,x b7 1 x )

~.

Resulting product is an n x n matrix

a)
a9

. ( bl b2 bn )
an
(llbl (I.le .. (l‘lb”
(I.le (IQbQ - (l-zbn
a,by a,bs ... a,bp,

R code for transposition

t(A
> K %,1] [,2] t(A) = transpose of A
[, 1 2
2,3 3 4

> ge-matrix(c(l,2,3),nron=3) Enter the column vector a
> 0a

(1]

1,1 1

[2,] 2

(3.1 3 ,

> £(a) %*% Compute inner product a'a
1]

1,1 14

E g]%+% () Compute outer product aa’
(.11 G.2] 3]

i 1 2 3

2 4 6
(3,] 3 6 9

17

18



Solving equations

e The identity matrix |

— Serves the same role as 1 in scalar algebra, e.g.,
a*1=1*a =a, with Al=1A= A

e The inverse matrix A (IF it exists)
— Defined by AAT=1, A1A =1

— Serves the same role as scalar division
* To solve ax = ¢, multiply both sides by (1/a) to give:
e (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,
¢ Hence x = (1/a)c
e Tosolve Ax=c, ATAx=A1c
e OrA'Ax =Ix=x=A'c

19

The Identity Matrix, |

The identity matrix serves the role of the
number 1 in matrix multiplication: Al =A, IA = A

| is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

1 fori=j

0 otherwise

1 0 0
I:s::s ={0 10
0 0 1

20



The Identity Matrix in R

diag(k), where k is an integer, return the k x k | matix

> I<-diog(4)
> 1
.11 0,21 [,3] [.4]

[1,] 1 0 0 0
2,1 0 1 0 0
[3,] 0 0 1 0
4,7 5} 0 0 1
> 12 <-diag(2)
> 12

.11 [, 2]
1,] 1 0
[2,] 0 1

21

The Inverse Matrix, A

For a square matrix A, define its Inverse A, as
the matrix satisfying

ATA=AA1 =1

b _ 1 d -~ b
For A= (¢ d)Al:-c )
/'

If this quantity (the determinant)
is zero, the inverse does not exist.

22



If det(A) is not zero, A" exists and A is said to be
non-singular. If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch &
Walsh

A is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is

consistent, then some of the variables have a family
of solutions (e.g., x; =2, but x, + x5 = 6)

23

Inversion in R

solve(A) computes A

det(A) computes determinant of A

> A Using A entered earlier
(11 [, 2]
(1,] 1 3
2,1 2 4 -
> solve(d) Compute A
(11 [, 2]
[1,] -2 1.5
[2,] 1-0.5
lve(A) %*% A
- E‘fg]) [,2] Showing that AT A = |

[1,] 1 -8.881784e-16
[2,] 0 1.000000e+00
Elgefgm Computing determinant of A

24



Homework

Put the following system of equations in matrix
form, and solve using R

3x; +4x, + 4 x5 + 6%, =-10
9% + 2%, - X3 -6x,= 20
X;+ X, + Xg3-10x,= 2
2x; + 9%, +2x53 - x4 =-10

25

Example: solve the OLS for Biny = a + Byz; + Byz, + €
ﬁ - v_l c . (U(?Jszl)) V— ( C’2(351) a(zlzz'Z))
o(y, z2) o(21,22) 0%(2)
It is more compact to use o(z1,2;) = p12 0(21)0(22)

1 0-2(22) —O(ZI: 32)
V=
o?(z1)0?(22) (1 — P%2) 02(31)

_‘7(31 ) Z3)

(.31) 3 1 ( 0?(22) _0(31,7«’2)) (U(y,zl))
Bs _02(31)0'2(22)(1_17%2) —o(z1, 22) 02(21) oy, z2)




o 1 o(y, z,) o o(y, 2,)
br=1z 37 [ o2(z1) 1P U(ZI)U(ZZ)]
. 1 o(y,zz) | o(y,21)

If p1, = 0, these reduce to the two univariate slopes,

_o(y,z1) _ 0y, 22)
A= 02) PR T oy

Likewise, if p;, = 1, this reduces to a univariate regression,

27

Useful identities
(A7) = (AT
(AB)! = BT A

For a diagonal matrix D, then det (D), which is also
denoted by IDI, = product of the diagonal elements

Also, the determinant of any square matrix A,
det(A), is simply the product of the eigenvalues X of A,
which statisfy

Ae = Le

If Alis n x n, solutions to A are an n-degree polynomial. e is
the eigenvector associated with A. If any of the roots to the
equation are zero, A" is not defined. In this case, for some

linear combination b, we have Ab = 0.
28



Variance-Covariance matrix

* A very important square matrix is the
variance-covariance matrix V associated with
a vector x of random variables.

* V; = Cov(x;x), so that the i-th diagonal
element of V is the variance of x;, and off-
diagonal elements are covariances

* Vis a symmetric, square matrix

29

The trace

The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals

the sum of the eigenvalues of A, tr(A) = 2 A,

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

A / tr(V) is the fraction of the total variation
in x contained in the linear combination e,'x, where
e, the i-th principal component of V is also the
i-th eigenvector of V (Ve, = A, e)
30



Eigenstructure in R
eigen(A) returns the eigenvalues and vectors of A

> V<-matrix(c(10,-5,10,-5,20,0,10,0,30),nron=3)
>V
11 0,27 [L3]
[1,] 10 -5 10 Trace = 60
2,1 -5 20 0
[3,1] 10 O 30

> eigen(V)
3512234101@3 21.117310  4.472587 PC 1 accounts for 34.4/60 =
' ' ' 57% of all the variation
$vectors
- [,2] [,3]

[1,7] ©.3996151 | 0.2117936 0.8918807 * * *
[2,11-0.1386580 |-0.9477830 0.2871955 0.400 X1 = 0.139 Xy, + 0.906 X3
[3,]| 0.9061356 |-0.2384340 -0.3493816

PC 1

31

Quadratic and Bilinear Forms

Quadratic product: for A, , and x, . ;

T T
xTAx = ZZaijxia:j Scalar (1 x 1)
i=1 j=1

Bilinear Form (generalization of quadratic product)

for A, .., a,,1, b, their bilinear formis b™,, . A

m s
bTAa=) ) Aibia
=1 j=1
Note that bTAa =a'ATb

a

Txm ™ mxn%%nx1

32



Covariance Matrices for
Transformed Variables

What is the variance of the linear combination,
C1Xqy + CX, + ... + ¢, X, ? (note this is a scalar)

n n n
2(.T — 2 E : _ E : § :
o (C X) =0 CGT; | =0 C;T; , C; Ty
i=1 i=1 J=1
n n 71. 11
= E g o(cizi,cjz;) = E E cicjo (zi,x;)

i=1j=1 =1 j=1
—c'Ve
Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

o(a’x,b’x)=a’Vb .

Example: Suppose the variances of x;, x,, and x; are
10, 20, and 30. x, and x, have a covariance of -5,
X, and x5 of 10, while x, and x5 are uncorrelated.

What are the variances of the indices
Yq = X1-2X,+5x5 and y, = 6x,-4x57?

10 =5 10 | 0
V=1|-5 20 0 ]|]. e={-21]. = 6
10 0 30 5 —4

Var(y,) = Var(c,"x) = ¢, Var(x) ¢, = 960
Var(y,) = Var(c,'x) = ¢, Var(x) c, = 1200
Cov(yq,y,) = Cov(c %, c,'x) = ¢, Var(x) c, = -910

Homework: use R to compute the above values
34



The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
w and variance ¢?,

7L s ) (.'EZ' . /_Li)z
p(x) = | [(2m) 20" exp (— o7

-1
T mn 2

— —n/2 | I : — § '(x;—u,,)

= (@m) (i 101) P ( = 20?7 )

This can be expressed more compactly in matrix form

35

Define the covariance matrix V for the vector x of
the n normal random variable by

o2 0 = 0 ;
0 0% =+ 0 ,
v=| 2 Vi=]]0?
S i=1
0 v v o2
Define the mean vector u by gives Z;
p=|.
n T - 1 2 . B .
S BT - TV (- pn

i=1
Hence in matrix tfrom the MVIN pdT becomes

i - 1 S
p(x) = (2r)” 2| V|72 exp —g(x—u)IV x—p)

Notice this holds for any vector p and symmetric positive-
definite matrix V, as IV | > 0. 36



The multivariate normal

e Just as a univariate normal is defined by
its mean and spread, a multivariate
normal is defined by its mean vector p
(also called the centroid) and variance-
covariance matrix V

37

Vector of means p determines location

Spread (geometry) about p determined by V

X4, X, equal variances,

X4, X, equal variances,
10 %2 €9 uncorrelated

positively correlated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.

38



Vector of means p determines location

Spread (geometry) about p determined by V

1 —
X;, X, equal variances, Var(x,) < Var(x,),
negatively correlated uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation

No tilt = uncorrelated .

Eigenstructure of V

The direction of the largest axis of
variation is given by the unit-length

— vector €, the 1st eigenvector of V.

A, €1
! The next largest axis of orthogonal

. (at 90 degrees from) €4, is
-~ given by €,, the 2nd eigenvector

........

40



Principal components

® The principal components (or PCs) of a covariance
matrix define the axes of variation.

— PC1 is the direction (linear combination c¢™x) that explains
the most variation.

— PC2 is the next largest direction (at 90degree from PC1),
and so on

e PC. = ith eigenvector of V
e Fraction of variation accounted for by PCi = A, /
trace(V)

e |fV has a few large eigenvalues, most of the variation
is distributed along a few linear combinations (axis of
variation)

® The singular value decomposition is the
generalization of this idea to nonsquare matrices

41

Properties of the MVN - |

1) If x is MVN, any subset of the variables in x is also MVN

2) If xis MVN, any linear combination of the
elements of x is also MVN. If x ~ MVN(u,V)

for y=x+a, y is MVN,,(u + a, V)

mn
for y=alx= Zaixi, yis N@@alp,a’ Va)
k=1

for y= Ax, y is MVN,, (Au,, ATVA>

42



Properties of the MVN - ||

3) Conditional distributions are also MVN. Partition x
into two components, x, (m dimensional column vector)
and x, ( n-m dimensional column vector)

Vx1x1 Vx1XQ
() e () = v (G
2 V)élXQ Vx2x,
Xq | X, is MVN with m-dimensional mean vector

l‘l’xll)(Q - IJ"]_ + VX1X2V)Z21X2 (x2 o “2)

and m x m covariance matrix

—1 T

Vxilx2 = Vxaxi - VX1X2VX2X2 VX1X2 23

Properties of the MVN - |l|

4) If x is MVN, the regression of any subset of
X on another subset is linear and homoscedastic

X1 = Bx, (%2 +e

= K4 + VX1X2 lexz (x2 o ”2) + €

Where e is MVN with mean vector 0 and

variance-covariance matrix =~ Vy |x,

44



1+ Viax Vix, (X2 = 1y) +e

The regression is linear because it is a linear function
of x,

The regression is homoscedastic because the variance-
covariance matrix for e does not depend on the value of
the x's

VX1|X2 — VX1X1 VXl X2VX2X2 Vxlx2

All these matrices are constant, and hence

the same for any value of x .5

Example: Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN. Then from the correlations
among (outbred) relatives,

Zo Lo 1 h%/2 h?/2
z | ~NMVN | | ps |,02| h2/2 1 0
Zd Hd h2/2 0 1

Let x;=(2,), Xz2= (ZS)

2d

. h?c? of 1 0
VX1,X1=U§a Vxix: = 9 (1 l)a VX2,X2=0'5<0 1

= Hq+ VX1X2V£21X2 (x2 o uz) t+e

46



Regression of Offspring value on Parental values (cont.)

= pq+ VXIXZV)Zleg (xg — pg) + e

. h2c? (1 0
VX1,X1=U,§; VX1X2= 22(1 l)a VX25X2=U§<O 1

Hence, _ h*o? o1 0 (zs— ps
Zo = Hot —5 (1 1)o, 0 1)\ 20— pa +e

h.2 2
= Ho+ 5 (25 = ps) + 5 (2a — pa) +e
Where e is normal with mean zero and variance

_ —1 T
Vx1|x2 - VX1X1 - VX1X2VX2X2 VX1X2

h202 1 0\ h202 (1
2 _ 52 _ 2 -2 -z
o = o 5 (1 1)o; (O 1) 5 (1>

B4
—s2(1 =
2 (1 2 ) 47

Hence, the regression of offspring trait value given
the trait values of its parents is

z, = Y, + h%/2(z- pn) + h?/2(z4- ng) + e

where the residual e is normal with mean zero and
Var(e) = 6,2(1-h%/2)

Similar logic gives the regression of offspring breeding
value on parental breeding value as

A, =1, + (A 1)/2 + (A png)/2 + e
=A/2+ AJ/2+e

where the residual e is normal with mean zero and
Var(e) = 6,%/2

48



The Singular-Value Decomposition (SVD)
An n x p matrix A can always be decomposed as the product of three matrices: ann x p
diagonal matrix A and two unitary matrices, U which is n x n and V which is p x p. The
resulting singular value decomposition (SVD) of A is given by

Anx;) - Unx nAnx pVT

pXp

(30.16a)

We have indicated the dimensionality of each matrix to allow the reader to verify that each
matrix multiplication conforms. The diagonal elements A;.- .\, of A correspond to the
singular values of A and are ordered by decreasing magnitude. Returning to the unitary
matrices U and V, we can write each as a row vector of column vectors,

U=(u..u.u,). V=(vi vV, (30.16b)

where w; and v; are n and p-dimensional column vectors (often called the left and right
singular vectors, respectively). Since both U and V are unitary, by definition (Appendix4)
T

each column vector has length one and are mutually orthogonal (i.e., ifi # j, u,—uJT =VV; =

0). Since A is diagonal, itimmediately follows from matrix multiplication that we can write
any elementin A as

Aij = Z/\k Wik Vkj (39.16¢)
k=1

where A is the kth singular value and s < min(p.n) is the number of non-zero singular
values.

The importance of the singular value decomposition in the analysis of G xE arises from
the Eckart-Young theorem (1938), which relates the best approximation of a matrixby some
lower-rank (say k) matrix with the SVD. Define as our measure of goodness of fit between

a matrix A and a lower rank approximation A as the sum of squared differences over all

elements, ‘
Z(Azj — Aij)?
&
Eckart and Young show that the best fitting approximation A of rank m < s is given from
the first m terms of the singular value decomposition (the rank-m SVD),

Aij = Z/\k Wik Vkj (39.17a)
k=1

For example, the best rank-2 approximation for the G x E interaction is given by
GEij ey )\1 i U4 + A2 tin V52 (3917}))

where J; is the ith singular value of the GE matrix, u and v are the associated singular
vectors (see Example 39.3). The fraction of total variation of a matrixaccounted forby taking
the tirst m terms in its SVD is

2

m 2

2N g At AL
> ’“Z'u Nt A2
k=1 i3 b

50



A data set for soybeans grown in New York (Gauch 1992) gives the
GE matrix as
57 176 —233
36 —196 233 Where GEij = value for
GE = | —15 =321 369 Genotype i in envir. j
—66 178 —112
89 165 —254

InR, the compact SVD (Equation 39.16d) of amatrix Xis givenby svd (X), returning the SVD
of GE as

0.40 0.21 0.18

—0.41 0.00 091 746.10 0 0 0.12 064 -0.76
—0.66 012 —-0.30 0 131.36 0 081 —0.51 —0.30
0.26 —0.83 0.11 0 0 0.53 0.58 058  0.58

0.41 0.50 0.19

The first singular value accounts for 746.10%/(743.26% + 131.36% + 0.532) = 97.0% of the
total variation of GE, while the second singular value accounts for 3.0%, so that together
they account for essentially all of the total variation. The rank-1 SVD approximation of GE is
givenby setting all of the diagonal elements of A except the first entry to zero,

040  0.21 0.18

—0.41 0.00 0.91 746.10 0 0 0.12 064 —-0.76
GE, = | —-066 0.12 —-0.30 0 0 0 0.81 —0.51 —0.30
0.26 —-0.83 0.11 0 0 0 0.58  0.58 0.58

0.41 0.50 0.19

Similarly, the rank-2 SVD is givenby setting all but the first two singular val ues to zero,

0.40 0.21 0.18

—0.41 0.00 091 746.10 0 0 0.12 064 -0.76

GE; = | -066 0.12 —-0.30 0 131.36 0 0.81 —-0.51 —0.30
0.26 —0.83 0.11 0 0 0 0.58  0.58 0.58
0.41 0.50  0.19

For example, the rank-1 SVD approximation for GE;, is
J31M€1, = 746.10%(-0.66)*0.64 = -315

While the rank-2 SVD approximation is gs;iA,e, + g3oh€5, =
746.10*(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323

Actual value is -324

Generally, the rank-2 SVD approximation for GE; is

i€+ giphoey; -



Additional R matrix commands

Operator or Description

Function

A*B Element-wise multiplication

A %*% B Matrix multiplication

A %o% B Outer product. AB'

crossprod(A,B) A'B and A'A respectively.

crossprod(A)

t(A) Transpose

diag(x) Creates diagonal matrix with elements of x in the principal diagonal
diag(A) Returns a vector containing the elements of the principal diagonal
diag(k) If k is a scalar, this creates a k x k identity matrix. Go figure.

solve(A, b) Returns vector x in the equation b = Ax (i.e., A"'b)
solve(A) Inverse of A where A is a square matrix.

ginv(A) Moore-Penrose Generalized Inverse of A.
ginv(A) requires loading the MASS package.

y<-eigen(A) ySval are the eigenvalues of A
ySvec are the eigenvectors of A

y<-svd(A) Single value decomposition of A.
y$d = vector containing the singular values of A
ySu = matrix with columns contain the left singular vectors of A
y$v = matrix with columns contain the right singular vectors of A 53

Additional R matrix commands (cont)

R <- chol(A) Choleski factorization of A. Returns the upper triangular factor, such that R'R =
A

y <- qr(A) QR decomposition of A.
ySqr has an upper triangle that contains the decomposition and a lower
triangle that contains information on the Q decomposition.
ySrank is the rank of A.
ySqraux a vector which contains additional information on Q.
ySpivot contains information on the pivoting strategy used.

cbind(A,B,...) Combine matrices(vectors) horizontally. Returns a matrix.
rbind(A,B,...) Combine matrices(vectors) vertically. Returns a matrix.
rowMeans(A) Returns vector of row means.

rowSums(A) Returns vector of row sums.

colMeans(A) Returns vector of column means.

colSums(A) Returns vector of coumn means.
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Additional references

* Lynch & Walsh Chapter 8 (intro to
matrices)

¢ Online notes:
— Appendix 4 (Matrix geometry)
— Appendix 5 (Matrix derivatives)
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