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Quick Review of the Major Points

The general linear model can be written as

y = Xb + e
• y = vector of observed dependent values

• X = Design matrix:  observations of the variables in the 
assumed linear model

• b = vector of unknown parameters to estimate

• e = vector of residuals (deviation from model fit),
e = y-X b
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y = Xb + e
Solution to b depends on the covariance structure
(= covariance matrix) of the vector e of residuals

•  OLS:  e ~ MVN(0, s2 I)
•  Residuals are homoscedastic and uncorrelated,

so that we can write the cov matrix of e as Cov(e) = s2I
• the OLS estimate, OLS(b) = (XTX)-1 XTy

Ordinary least squares (OLS)

•  GLS:  e ~ MVN(0, V)
• Residuals are heteroscedastic and/or dependent,
•  GLS(b) = (XT V-1 X)-1 XTV-1y

Generalized least squares (GLS)
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BLUE

• Both the OLS and GLS solutions are also 
called the Best Linear Unbiased Estimator (or 
BLUE for short)

• Whether the OLS or GLS form is used 
depends on the assumed covariance 
structure for the residuals
– Special case of Var(e) = se

2 I -- OLS
– All others, i.e., Var(e) = R -- GLS
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Linear Models
One tries to explain a dependent variable y as a linear
function of a number of independent (or predictor)
variables.

A multiple regression is a typical linear model,

Here e is the residual, or deviation between the true
value observed and the value predicted by the linear
model.

The (partial) regression coefficients are interpreted
as follows:  a unit change in xi while holding all
other variables constant results in a change of bi in y 
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Linear Models

As with a univariate regression (y = a + bx + e), the model
parameters are typically chosen by least squares,
wherein they are chosen to minimize the sum  of
squared residuals, S ei
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This unweighted sum of squared residuals assumes 
an OLS error structure, so all residuals are equally
weighted (homoscedastic) and uncorrelated

If the residuals differ in variances and/or some are
correlated (GLS conditions), then we need to minimize 
the weighted sum eTV-1e, which removes correlations and
gives all residuals equal variance.
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Linear Models in Matrix Form
Suppose we have 3 variables in a multiple regression,
with four (y,x) vectors of observations.

The design matrix X.  Details of both the experimental 
design and the observed values of the predictor variables  
all reside solely in X
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Rank of the design matrix
• With n observations and p unknowns, X is an n x p 

matrix, so that XTX is p x p
• Thus, at most X can provide unique estimates for up 

to p < n parameters
• The rank of X is the number of independent rows of 

X.  If X is of full rank, then rank = p
• A parameter is said to be estimable if we can provide 

a unique estimate of it.  If the rank of X is k < p, then 
exactly k parameters are estimable (some as linear 
combinations, e.g. b1-3b3 = 4)

• if det(XTX) = 0, then X is not of full rank
• Number of nonzero eigenvalues of XTX gives the 

rank of X.
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Experimental design and X
• The structure of X determines not only which 

parameters are estimable, but also the expected 
sample variances, as Var(b) = k (XTX)-1

• Experimental design determines the structure of X 
before an experiment (of course, missing data almost 
always means the final X is different form the 
proposed X)

• Different criteria used for an optimal design.  Let V = 
(XTX)-1 .  The idea is to chose a design for X given the 
constraints of the experiment  that: 
– A-optimality:  minimizes tr(V)
– D-optimality:  minimizes det(V)
– E-optimality: minimizes leading eigenvalue of V
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Ordinary Least Squares (OLS)
When the covariance structure of the residuals has a
certain form, we solve for the vector b using OLS

If the residuals are homoscedastic and uncorrelated,
s2(ei) = se

2, s(ei,ej) = 0. Hence, each residual is equally
weighted, 

Sum of squared
residuals can
be written as

If residuals follow a MVN distribution, OLS = ML solution
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Ordinary Least Squares (OLS)

Taking (matrix) derivatives shows this is minimized by

This is the OLS estimate of the vector b

The variance-covariance estimate for the sample estimates
is

The ij-th element gives the covariance between the
estimates of bi and bj.
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Sample Variances/Covariances
The residual variance can be estimated as

The estimated residual variance can be substituted into

To give an approximation for the sampling variance and 
covariances of our estimates.

Confidence intervals follow since the vector of estimates  
~ MVN(b, Vb)
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Example:  Regression Through the Origin
yi = bxi + ei 

14

Polynomial Regressions

GLM can easily handle any function of the observed
predictor variables, provided the parameters to estimate
are still linear, e.g.  Y = a + b1f(x) + b2g(x) + … + e

Quadratic regression:
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Interaction Effects
Interaction terms (e.g. sex x age) are handled similarly

With x1 held constant, a unit change in x2 changes y
by b2 + b3x1 (i.e., the slope in x2 depends on the current
value of x1 )

Likewise, a unit change in x1 changes y by b1 + b3x2
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The GLM lets you build your 
own model!

• Suppose you want a quadratic regression 
forced through the origin where the slope of 
the quadratic term can vary over the sexes 
(pollen vs. seed parents)

• Yi = b1xi + b2xi
2 + b3sixi

2

• si is an indicator (0/1) variable for the sex (0 = 
male, 1 = female).
– Male slope = b2,
– Female slope = b2 + b3
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Generalized Least Squares (GLS)
Suppose the residuals no longer have the same
variance (i.e., display heteroscedasticity). Clearly
we do not wish to minimize the unweighted sum
of squared residuals, because those residuals with
smaller variance should receive more weight.

Likewise in the event the residuals are correlated,
we also wish to take this into account (i.e., perform
a suitable transformation to remove the correlations)
before minimizing the sum of squares.

Either of the above settings leads to a GLS solution
in place of an OLS solution.
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In the GLS setting, the covariance matrix for the
vector e of residuals is written as  R where 
Rij =   s(ei,ej)

The linear model becomes y = Xb + e, cov(e) = R

The GLS solution for b is 

The variance-covariance of the estimated model 
parameters is given by
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Model diagnostics
• It’s all about the residuals
• Plot the residuals

– Quick and easy screen for outliers
– Plot y or yhat on e

• Test for normality among estimated residuals
– Q-Q plot
– Wilk-Shapiro test
– If non-normal, try transformations, such as log

20

OLS, GLS summary
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Fixed vs.  Random Effects
In linear models are are trying to accomplish two goals:
estimation the values of model parameters and estimate
any appropriate variances.  

For example, in the simplest regression model, 
y = a + bx + e, we estimate the values for a and b and 
also the variance of e.  We, of course, can also
estimate the ei = yi - (a + bxi )

Note that a/b are fixed constants are we trying to
estimate (fixed factors or fixed effects), while the
ei values are drawn from some probability distribution
(typically Normal with mean 0, variance s2

e).  The 
ei are random effects. 
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“Mixed” models (MM) contain both fixed and random factors

This distinction between fixed and random effects is
extremely important in terms of how we analyzed a model.
If a parameter is a fixed constant we wish to estimate,
it is a fixed effect.  If a parameter is drawn from
some probability distribution and we are trying to make
inferences on either the distribution and/or specific 
realizations from this distribution, it is a random effect.

We generally speak of estimating fixed factors (BLUE) and
predicting random effects (BLUP -- best linear unbiased
Predictor)

y = Xb + Zu + e,   u  ~MVN(0,R), e ~ MVN(0,s2
eI)

Key:  need to specify covariance structures for MM
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Random effects models

• It is often useful to treat certain effects as 
random, as opposed to fixed
– Suppose we have k effects.  If we treat these as 

fixed, we lose k degrees of freedom
– If we assume each of the k realizations are drawn 

from a normal with mean zero and unknown 
variance, only one degree of freedom lost --- that 
for estimating the variance

• We can then predict the values of the k realizations
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Environmental effects
• Consider yield data measured over several years in a 

series of plots.
• Standard to treat year-to-year variation at a specific 

site as being random effects
• Often the plot effects (mean value over years) are 

also treated as random.
• For example, consider plants group in growing 

region i, location j within that region, and year 
(season) k for that location-region effect
– E = Ri + Lij + eijk

– Typically R can be a fixed effect, while L and e are 
random effects, Lik ~ N(0,s2

L) and eikj ~ N(0,s2
e)
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Random models
• With a random model, one is assuming that 

all “levels” of a factor are not observed.  
Rather, some subset of values are drawn from 
some underlying distribution
– For example, year to year variation in rainfall at a 

location.  Each year is a random sample from the 
long-term distribution of rainfall values

– Typically, assume a functional form for this 
underlying distribution (e.g., normal with mean 0) 
and then use observations to estimate the 
distribution parameters (here, the variance)
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Random models (cont)
• Key feature:

– Only one degree of freedom used (estimate of 
the variance)

– Using the fixed effects and the estimated 
underlying distribution parameters, one then 
predicts the actual realizations of the individual 
values (i.e., the year effects) 

– Assumption:  the covariance structure among the 
individual realizations of the realized effects.  If 
only a variance is assume, this implies they are 
independent.  If they are assumed to be 
correlated, this structure must be estimated.
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Random models
• Let’s go back to treating yearly effects as random
• If assume these are uncorrelated, only use one 

degree of freedom, but makes assumptions about 
covariance structure
– Standard: Uncorrelated
– Option:  some sort of autocorrelation process, say with a 

yearly decay of r (must also be estimated)
• Conversely, could all be treated as fixed, but would 

use k degrees of freedom for k years, but no 
assumptions on their relationships (covariance 
structure)
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Identifiability 

• Recall that a fixed effect is said to be 
estimable if we can obtain a unique estimate 
for it (either because X is of full rank or when 
using a generalized inverse it returns a 
unique estimate)
– Lack of estimable arises because the experiment 

design confounds effects
• The analogous term for random models is 

identifiability
– The variance components have unique estimates
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y = Xb + Zu + e

The general mixed model

Vector of 
observations 
(phenotypes)

Vector of fixed effects (to be estimated), 
e.g., year, sex and age effects

Vector of random 
effects, such as 

individual 
Breeding values  
(to be estimated)

Vector of residual errors
(random effects)

Incidence 
matrix for 
fixed effects

Incidence matrix for random effects
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y = Xb + Zu + e

The general mixed model

Vector of 
observations 
(phenotypes)

Vector of random 
effects

Incidence 
matrix for 
fixed effects

Vector of fixed effects  

Incidence matrix for random effects

Vector of residual errors

Observe y, X, Z.

Estimate fixed effects b

Estimate random effects u, e
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Means:  E(u) = E(e) = 0,  E(y) = Xb

Let R be the covariance matrix for the 
residuals.  We typically assume R = s2

e*I

Let G be the covariance matrix for the vector
u of random effects

The covariance matrix for y becomes  
V = ZGZT + R

Means & Variances for y = Xb + Zu + e

Variances:

Hence, y ~ MVN (Xb, V)

Mean Xb due to fixed effects
Variance V due to random effects
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Estimating fixed Effects & Predicting 
Random Effects

For a mixed model, we observe y, X, and Z

b, u, R, and G are generally unknown

Two complementary estimation issues

(i)  Estimation of b and u

Estimation of fixed effects

Prediction of random effects

BLUE = Best Linear Unbiased Estimator

BLUP = Best Linear Unbiased Predictor
Recall V = ZGZT + R
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Different statistical models

• GLM = general linear model
– OLS ordinary least squares: e ~ MVN(0,cI)
– GLS generalized least squares: e ~ MVN(0,R)

• Mixed models
– Both fixed and random effects (beyond the residual)

• Mixture models
– A weighted mixture of distributions

• Generalized linear models
– Nonlinear functions, non-normality
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Mixture models
• Under a mixture model, an observation potentially 

comes from one of several different distributions, so that 
the density function is p1f1 + p2f2 + p3f3
– The mixture proportions pi sum to one  
– The fi represent different distribution, e.g.,  normal with mean µi

and variance s2

• Mixture models come up in QTL mapping -- an 
individual could have QTL genotype QQ, Qq, or qq
– See Lynch & Walsh Chapter 13

• They also come up in codon models of evolution, were 
a site may be neutral, deleterious, or advantageous, 
each with a different distribution of selection coefficients
– See Walsh & Lynch (volume 2A website), Chapters 10,11



35

Generalized linear models

Typically assume non-normal distribution for
residuals, e.g., Poisson, binomial, gamma, etc


