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Topics

Definitions, dimensionality, addition,
subtraction

Matrix multiplication

Inverses, solving systems of equations
Quadratic products and covariances
The multivariate normal distribution
Eigenstructure

Basic matrix calculations in R

The Singular Value Decomposition (SVD)
— First PAUSE slide 16



Matrices: An array of elements

Vectors: A matrix with either one row or one column.

Usually written in bold lowercase, e.g. a, b, ¢

12
a=[13] b=(2 0 5 21)
47

Column vector Row vector

(3x1) (1 x 4)

Dimensionality of a matrix: r x c (rows x columns)
think of Railroad Car



General Matrices

Usually written in bold uppercase, e.g. A, C, D

3 1 2 0 1
C=12 5 4 D=3 4
1 1 2 2 9
(3 x 3)
Square matrix (3x2)

Dimensionality of a matrix: r x c (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element B;; -- the element in row i
and column j



Addition and Subtraction of Matrices

If two matrices have the same dimension (both are r x ¢),
then matrix addition and subtraction simply follows by
adding (or subtracting) on an element by element basis

Matrix addition: (A+B); =A; + B

Matrix subtraction: (A-B),=A,-B

] 1

Examples: 2 g {9
A= (2 9) wa m=(}2)

4 2 2 -2
C—A-+—B—(3 3) and D= A-B —(_1 1)



Partitioned Matrices

It will often prove useful to divide (or partition) the
elements of a matrix into a matrix whose elements are
itself matrices.

/3212\

r— o ‘ [ 2 (5 4
a=(3)., b=(1 2), d (l) B (1 2)

One useful partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors



3 1

2 5

[ 1
r = (3
1‘-2=(2
1‘3:(1
3
C=12
|

3

=2

|

b = D

A column vector whose
elements are row vectors

A row vector whose

Co 'C3
elements are column
vectors
2
C3 = 4
2



Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

a'b= i:a;b-;
i=1

Example:

and b=(4 5 7 9)

e O B

a'b=1% +2*5+3*7 + 4*9 =71



Matrices are compact ways to write
systems of equations

5.’1.‘1 -+ ()';172 ~ -11;1,'3 =6
Try — 315 +Dxy = —Y

—T1 — To + 6ry = 12



The least-squares solution for the linear model

y=p+0121+ " Pnzn
yields the following system of equations for the 8,
o(y,21) = B10%(z1) + Bao(z1,22) + -+ Pno(21, 20)
o(y,22)= B10(21,22) + B20%(22) + +**+ Buo(22, 2n)

U(y, zn)z 310(21: zn) +.’320'(223 zn) + 0 ﬁnaz(zn)
This can be more compactly written in matrix form as

0%(z1) o(z21,22) ... o(z1,2n) 5, o(y, 1)
o(z1,22) o%(z2) ... o(z2,2n) B2 - o(y, )
a(zl', Zn ) a(z2', Zn) ... 02(.;:,‘) Bn o(y; Zn)

XX [3 Xy

or, B = (XX X7y 10



Matrix Multiplication:

The order in which matrices are multiplied affects
the matrix product, e.g. AB # BA

For the product of two matrices to exist, the matrices
must conform. For AB, the number of columns of A must
equal the number of rows of B.

The matrix C = AB has the same number of rows as A
and the same number of columns as B.

C = A 2 )
(rxc) = THrxk) = (kxc) Elements in the

ij-th element of C is given by/ ith column of B

k
Cij = Z Ay By Elements in the itg
(=1 row of matrix A



Outer indices given dimensions of
resulting matrix, with r rows (

and ¢ columns (B / \
rxc

er< kxc

Inner mdlces must match
columns of A = rows of B

Example: Is the product ABCD defined? If so, what
is its dimensionality? Suppose

A3x5 BSX9 C‘?xé D6x23

Yes, defined, as inner indices match. Resultis a 3 x 23
matrix (3 rows, 23 columns) 1



More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors

Im;
M= { ) where m; = (Miy My =~ M)
\im./

Likewise express N as a row vector of

m;
r

column vectors :Z
N=(n; n, - ng) where n; = :
The ij-th element of L is the inner product N.,
of M's row i with N's column j
m;"m Imj'nz °°° ImMp“Np

L m2.n1 m2.n2 .- " m2.nb

\mr.nl mr'n2 e mr'nb/



Example

_[(a b e f\ [(ae+bg af+bh
AB—(C d) (g h)_(ce+dg cf+dh)

Likewise

[ ae+cf eb+df
BA_(ga-I—ch gd—-dh)

ORDER of multiplication matters! Indeed, consider
C;,s De, s which gives a 3 x 5 matrix, versus De,: Cs ¢,
which is not defined.

14



Matrix multiplication in R

> A<-matrix(c(l,2,3,4),nron=2) R fills in the matrix from

> B<-matrix(c(4,5,6,7),nron=2) the list ¢ by f||||ng INn as
s A .

F 1] [.2] columns, here with 2 rows
n,] 1 3 (hrow=2)
2,] 2 4
> B

[,1] [,2] Entering A or B displays what was
[1,] 4 6 )
23 5 7 entered (always a good thing to check)
> A %*% B

(1] [,2] |
[1,] 19 27 The command %*% is the R code

el w for the multiplication of two matrices

On your own: What is the matrix resulting from BA?

What is A if nrow=1 or nrow=4 is used?
15



PAUSE

— Matrix multiplication arises as a way to
compactly write systems of equations

— Indeed, much of linear algebra has deep
roots in systems of equations, as we will
now explore.

— Next pause at slide 27

16



The Transpose of a Matrix

The transpose of a matrix exchanges the

rows and columns, AT, = A,

Useful identities b
(AB)T = BT AT . N
(ABC)T=CTBTAT 27 | : B

Inner product = a’b = aT; x b x1

Indices match, matrices conform

Dimension of resulting productis 1 X 1 (i.e. a scalar)

{J- n
la;, - a,) ( ) —a'b: X“*bf Note that b'a = (bTa)T =a'b

b, 17



Outer product = ab™ = a (,x 1)b" (1 xn)

~.

Resulting product is an n x n matrix

(1
5]

( bl b2 bn )
(np
(l.lbl (l'lbg - (llb”
(I.le (I‘ng . (Lgbn
a,by a,bs ... a,bp,

18



R code for transposition

> t(A)
[,1] [L2] t(A) = transpose of A
[2,] 3 4

> a<-matrix(c(l,2,3),nron=3)

Enter the column vector a
> 0a

[,1]

(1,1 1

(2,1 ¢

(3,0 3 |

> £(a) ¥*% o Compute inner product a'a
[,1]

[1,] 14

> 0 %*% t(a) Compute outer product aa’
(.11 [,2] [,3]

1,1 1 2 3

2 4 6
[3,] 3 6 9

19



Solving equations

* The identity matrix |

— Serves the same role as 1 in scalar algebra, e.g.,
a*1=1*a =a, with Al=IA= A

e The inverse matrix A (IF it exists)
— Defined by AA =1, A A = |

— Serves the same role as scalar division
* To solve ax = ¢, multiply both sides by (1/a) to give:
e (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,
e Hence x = (1/a)c
e Tosolve Ax=c, A TAx=A"c
e OrA'Ax =Ix=x=ATc

20



The ldentity Matrix, |

The identity matrix serves the role of the
number 1 in matrix multiplication: Al =A, |A = A

| is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

1 fori=|j

O otherwise

(i1

o O -
o - O
-0 O

21



The Identity Matrix in R

diag(k), where k is an integer, return the k x k | matrix

> I<-diag(4)
>
(.11 [,2] [,3] [L,4]

[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
> I2 <-diag(2)
> 12

(.11 [, 2]
[1,] 1 0

(2,1 o 1



The Inverse Matrix, A

For a square matrix A, define its Inverse A, as
the matrix satisfying

ATA =AAT =1

- ab) . 1 d - b
I‘:or'A—(C J A —@_c a)

If this quantity (the determinant)
is zero, the inverse does not exist.

23



If det(A) is not zero, A! exists and A is said to be
non-singular. If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch &
Walsh

A is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is
consistent, then some of the variables have a family
of solutions (e.g., x; =2, but x, + x5 = 6)

24



Inversion in R

solve(A) computes A

det(A) computes determinant of A

> A Using A entered earlier
[,1] [, 2]

[1,] 1 3

] 2 4 _

> solve(A) Compute A’
(.11 [, 2]

[1,] -2 1.5

[2,] 1 -0.5

> solve(A) %*% A
[,1] [,2] Showing that A”T A = |

[1,] 1 -8.881784e-16
[Z,] 0 1.000000e+00

det(A _ .
Ene-g ) Computing determinant of A

25



Homework

Put the following system of equations in matrix
form, and solve using R

3x; + 4x, + 4 x5 + 6x,=-10
Xy + 2%y - X3 -6x,= 20
X1+ X, + Xg3-10x,= 2
2X, + 9%, +2x3 - x4, =-10

26



PAUSE

— One can think of the inverse of a square
matrix A as the unique solution to its
corresponding set of equations.

— The determinant of A informs us as to
whether such a unique solution exists

— As we will now see, the eigenstructure
(geometry) of A provides a deeper
understanding of nature of solutions,
especially when det(A)= 0.

— Next pause at slide 35

27



Useful identities
(AT = (AT
(AB)' = BT A

For a diagonal matrix D, then det (D), which is also
denoted by IDI, = product of the diagonal elements

Also, the determinant of any square matrix A,
det(A), is simply the product of the eigenvalues A of A,
which satisfy

Ae = A\e

If A'is n x n, solutions to A are an n-degree polynomial. e is
the eigenvector associated with A. If any of the roots to the
equation are zero, A is not defined. In this case, for some

linear combination b, we have Ab = 0.
28



Variance-Covariance matrix

* A very important square matrix is the
variance-covariance matrix V associated with
a vector x of random variables.

* V= Cov(xi,xj), so that the i-th diagonal
element of V is the variance of x;, and off
-diagonal elements are covariances

* Vis a symmetric, square matrix

29



The trace

The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals

the sum of the eigenvalues of A, tr(A) = 2 A,

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

A / tr(V) is the fraction of the total variation
in x contained in the linear combination e,'x, where
e, the i-th principal component of V is also the

i-th eigenvector of V (Ve. = A\ e)
30



Eigenstructure in R

eigen(A) returns the eigenvalues and vectors of A

> V<-matrix(c(10,-5,10,-5,20,0,10,0,30), nron=3)

>V

(.11 [,2]
1,7 18 -5
2,1 -5 20
[3,] 10 0
> eigen(V)
$values

[,3]
10
0
30

[1] 34.410103 21.117310 4.472587

$VEC Salal~

[,1]
[1,]] ©.3996151
[2,]|-0.1386580
[3,]| ©.9061356

.....................................

[,2] [,3]
0.2117936 : 0.8918807
-0.9477830  0.2871955
-0.2384340 -0.3493816

PC 1

PC 2

Trace = 60

PC 1 accounts for 34.4/60 =
57% of all the variation

0.400* x, = 0.139*x, + 0.906*x,
0.212* x, — 0.948*x, - 0.238%*x,

31



Quadratic and Bilinear Forms

Quadratic product: for A, , , and x,, 1

TL

n
T
X Ax = Zzaisz'ivj Scalar (1 x 1)
i=1 j=1

Bilinear Form (generalization of quadratic product)

for A .., a, .1, b, their bilinear formis b", A .a. . ;
™ TL
b" Aa = Aijb,;aj
=1 j=1

Note that bTAa =a'A'b

32



Covariance Matrices for
Transformed Variables

What is the variance of the linear combination,
CiX; + CX, + ... + ¢ X, ? (note this is a scalar)

n n n
2 T 2 _
o (C x) =0 C;IT; =0 C;T; , C]- .’E}
i=1 1=1 =1
n mn T T
= E § :U(C-z‘.ﬁv-z-:C.)fBa) = E :E i ¢j 0 (x4, ;)

=1 j=1 =1 j3=1
—c'Ve
Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

oc(a’x,b’x)=a’ Vb )



Example: Suppose the variances of x;, x,, and x5 are
10, 20, and 30. x, and x, have a covariance of -5,
X, and x5 of 10, while x, and x5 are uncorrelated.

What are the variances of the indices
Yq = X1-2X,+5%5 and y, = 6x,-4x57?

10 =5 10 l 0
V = —5 20 0 . C| = —2 . Co = 6
10 0 30 5 —4

Var(y,) = Var(c,'x) = ¢, Var(x) ¢, = 960
Var(y,) = Var(c,'x) = c,' Var(x) c, = 1200
Covly,,y,) = Cov(c,'x, c,'x) = ¢," Var(x) c, = -210

Homework: use R to compute the above values



PAUSE

The concepts of inverses, quadratic
products, eigenstructure, and covariance
matrices form the foundation to explore
the multivariate normal (MVN) distribution

— This distribution underpins much of linear
and mixed models theory and we will
extensively use it properties

* PCs
* Regressions and conditional expectations

— Next pause at slide 53
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The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
w. and variance o2,

p(x) = ﬁ(27r)’l""2a;l exp (_ (i — ,ﬁ“i)z)

1=1

n -1 n ¢
= (2m) ™2 [ [ o: -y A
(2m) (i la) cxp( 5 2

i=1 t

This can be expressed more compactly in matrix form

36



Define the covariance matrix V for the vector x of
the n normal random variable by

2 0 w0
(%1 2 O\

0'2

TL
o VI=]]0?
\ o . o 02) =

Define the mean vector u by gives Z;
p=\ .

n (L‘.z' — ) 2 P o '
Z( o—zu) =x—p)' V(x—p) Hn
i1=1 2

Hence in matrix from the MVN pdt becomes

- /2 1 Ty
p(x) = (2m) "2V exp | = (x = )" VT (x — )

Notice this holds for any vector u and symmetric positive
-definite matrix V, as |V | > O. 37



The multivariate normal

e Just as a univariate normal is defined by
its mean and spread, a multivariate
normal is defined by its mean vector n
(also called the centroid) and variance
-covariance matrix V

38



Vector of means p determines location

Spread (geometry) about p determined by V

X;, X, equal variances,

X,, X, @qual variances,
10 %2 €9 uncorrelated

positively correlated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.

39



Vector of means p determines location

Spread (geometry) about p determined by V

| IS
X4, X, equal variances, Var(x;) < Var(x,),
negatively correlated uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation

No tilt = uncorrelated 2



Eigenstructure of V

The direction of the largest axis of
variation is given by the unit-length

The next largest axis of orthogonal
(at 90 degrees from) €4, is

given by €,, the 2nd eigenvector

41



Principal components

The principal components (or PCs) of a covariance
matrix define the axes of variation.

— PC1 is the direction (linear combination c'x) that explains
the most variation.

— PC2 is the next largest direction (at 90 degree from PC1),
and so on

PC. = ith eigenvector of V

Fraction of variation accounted for by PCi = A, /
trace(V)

It V has a few large eigenvalues, most of the variation

is distributed along a few linear combinations (axis
of variation)

The singular value decomposition is the
generalization of this idea to nonsquare matrices

42



Properties of the MVN - |

1) If x is MVN, any subset of the variables in x is also MVN

2) If xis MVN, any linear combination of the
elements of x is also MVN. If x ~ MVN(u,V)

for y=x+a, y is MVN,,(u + a, V)

TL
for y=a'x= Zaixi, yis N@@’p,a’ Va)
k=1

for y=Ax, y is MVNn (Au, ATVA)

43



Properties of the MVN - |I

3) Conditional distributions are also MVN. Partition x
into two components, x, (m dimensional column vector)
and x, ( n-m dimensional column vector)

Vx,x, Vx,x,
x=(x1) #=(u1> and V=(
X2 H2 T

VX1X2 Vx2x2
X, | x5 is MVN with m-dimensional mean vector

Hx,|x2 = M1 + VXl X2 VX2X2 (x2 ”’2)
and m x m covariance matrix

VX1|X2 - VXle - VX1X2VX2X2 VX1X2



Properties of the MVN - I

4) If x is MVN, the regression of any subset of
X on another subset is linear and homoscedastic

X1 = Hx,(X2 +e
= Mq T VX1X2V)221X2 (X2 o /"’2) T €

Where e is MVN with mean vector O and
variance-covariance matrix ~ Vx,|x,

45



Kyt VXIX2VX2X2 (x2 o “2) +e

The regression is linear because it is a linear function
of X,

The regression is homoscedastic because the variance-

covariance matrix for e does not depend on the value of
the x’s

VX]_IXz = Vxix1 - VX1X2Vx2x2 Vx1x2

All these matrices are constant, and hence

the same for any value of x 2



Example: Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN. Then from the correlations
among (outbred) relatives,

2o [ 1o 1 h?/2 h?%/2
zs | ~MVN Ls |, ag h?/2 1 0
Zd i Hd h2/2 0 1 _

Let x1=(20), x2= (Zs)

Zd

. ho? of 1 0
VX1=X1=a§a vX1X2= 9 (1 1)’ vxz’xzzazz(() 1

= M, t VX1X2V)221X2 (x2 o “2) +e

47



Regression of Offspring value on Parental values (cont.)

= Hq + VXIX2VX21X2 (x2 ”'2) + e

. hz 2 0
VX1:X1 = aﬁa VX1X2 = (1 1) sz X2 — O < 1)

h2g2 _
Hence, 2, = 20 (1 1)o, ((1) ?) (zs ”s)+e

Z2d — Hd

h? h?
:/‘lao+?’(zs_,us)+?'(zd_#d)+8

Where e is normal with mean zero and variance

Vx1|x2 — VX1X1 - vX1X2VX2X2 vX1X2

h2o2 1 0\ h2c2 /1
2 _ 2 Z -2 z
o=y (1 De (0 1) 2 (1)

4
= ag (1 —h—)
2 48




Hence, the regression of offspring trait value given
the trait values of its parents is
z, =W, +h%/2(z-u) + h?/2(z- uy) + e

where the residual e is normal with mean zero and
Var(e) = 0,%(1-h%/2)

Similar logic gives the regression of offspring breeding
value on parental breeding value as

A,=u, +(A-w)/2+ (Aj-uny/2+e
- AS/Z + Ad/2 + e

where the residual e is normal with mean zero and
Var(e) = 0,%/2

49



Additional R matrix commands

Operator or
Function

A*B
A%*% B
A %o% B

crossprod(A,B)
crossprod(A)

t(A)
diag(x)
diag(A)
diag(k)
solve(A, b)
solve(A)
ginv(A)

y<-eigen(A)

y<-svd(A)

Description

Element-wise multiplication
Matrix multiplication

Outer product. AB'

A'B and A'A respectively.

Transpose

Creates diagonal matrix with elements of x in the principal diagonal

Returns a vector containing the elements of the principal diagonal

If k is a scalar, this creates a k x k identity matrix. Go figure.

Returns vector x in the equation b = Ax (i.e., A"b)
Inverse of A where A is a square matrix.

Moore-Penrose Generalized Inverse of A.
ginv(A) requires loading the MASS package.

ySval are the eigenvalues of A
ySvec are the eigenvectors of A

Single value decomposition of A.

yS$d = vector containing the singular values of A

ySu = matrix with columns contain the left singular vectors of A
ySv = matrix with columns contain the right singular vectors of A

50



Additional R matrix commands (cont)

R <- chol(A)

y <- qr(A)

cbind(A,B,...)
rbind(A,B,...)
rowMeans(A)
rowSums(A)
colMeans(A)
colSums(A)

Choleski factorization of A. Returns the upper triangular factor, such that R'R =
A.

QR decomposition of A.

ySqr has an upper triangle that contains the decomposition and a lower
triangle that contains information on the Q decomposition.

ySrank is the rank of A.

ySqraux a vector which contains additional information on Q.

ySpivot contains information on the pivoting strategy used.

Combine matrices(vectors) horizontally. Returns a matrix.
Combine matrices(vectors) vertically. Returns a matrix.
Returns vector of row means.

Returns vector of row sums.

Returns vector of column means.

Returns vector of coumn means.

51



Additional references

* Lynch & Walsh Chapter 8 (intro to
matrices)

e \Walsh and Lynch,

— Appendix 5 (Matrix geometry)
— Appendix 6 (Matrix derivatives)

52



PAUSE

— Many of the key results in linear and mixed

models arise by considering the
regression of one subset of a vector of
random variable on another (slides 44-46)

— We conclude with a few optional slides on
the singular value decomposition, the
generalization of eigenstructure to any
matrix (such as nonsquare matrices).

— The SVD arises when consider certain G x
E problems.

53



The Singular-Value Decomposition (SVD)

An n x p matrix A can always be decomposed as the product of three matrices: ann x p
diagonal matrix A and two unitary matrices, U which is n x n and V which is p x p. The
resulting singular value decomposition (SVD) of A is given by

T
An): P Un): nAnx pV

i (39.16a)
We have indicated the dimensionality of each matrix to allow the reader to verify that each
matrix multiplication conforms. The diagonal elements A;..--. A, of A correspond to the
singular values of A and are ordered by decreasing magnitude. Returning to the unitary
matrices U and V, we can write each as a row vector of column vectors,

U=(u.---.w.---u,). V= (v, v vy

(30.16b)

where u; and v; are n and p-dimensional column vectors (often called the left and right
singular vectors, respectively). Since both U and V are unitary, by definition (Appendix4)
each column vector has length one and are mutually orthogonal (i.e., ifi # j, u; uJT = V; vf =
0). Since A is diagonal, it immediately follows from matrix multiplication that we can write

any elementin A as

A;; = Z/\k. Wik Vkj (39.16¢)
k=1

where A is the kth singular value and s < min(p.n) is the number of non-zero singular
values.



The importance of the singular value decomposition in the analysis of G xE arises from
the Eckart-Young theorem (1938), which relates the best approximation of a matrixby some
lower-rank (say k) matrix with the SVD. Detine as our measure of goodness of fit between

a matrix A and a lower rank approximation A as the sum of squared differences over all

elements, ’
> (Aij — Aig)?
i
Eckart and Young show that the best fitting approximation A of rank m < s is given from
the first i terms of the singular value decomposition (the rank-m SVD),

m

Aij =) A tin vk (30.17a)
k=1

For example, the best rank-2 approximation for the G x E interaction is given by
GE!J o~ /\1 i l'j'l -+ /\2 ;o l‘j-z (3917}))

where A; is the ith singular value of the GE matrix, u and v are the associated singular
vectors (see Example 39.3). The fraction of total variation of a matrixaccounted forby taking
the first m terms in its SVD is

7

I , A4+ A2
2 12 1 n
Z)\k"'xzfli’j - /\f ¥ /\‘2

k:I

55



A data set for soybeans grown in New York (Gauch 1992) gives the
GE matrix as
57 176 —233
—36 —106 233 Where GE; = value for
GE = | —45 -—-324 369 P P
e mm 1o Genotype i in envir. |
89 165 —254

InR, the compact SVD (Equation 39.16d) of amatrix Xis givenby svd ( X), returning the SVD
of GE as

0.40 021  0.18

—0.41 0.00 091 746.10 0 0 0.12 064 -0.76
—0.66  0.12 —-0.30 0 131.36 0 0.81 —-0.51 —0.30
0.26 —0.83 0.11 0 0 (.53 0.58  0.58  0.58

0.41 0.50  0.19

The first singular value accounts for 746.102/(743.26% + 131.36% + 0.53%) = 97.0% of the
total variation of GE, while the second singular value accounts for 3.0%, so that together
they account for essentially all of the total variation. The rank-1 SVD approximation of GE is
givenby setting all of the diagonal elements of A except the first entry to zero,

040  0.21 0.18

—0.41 0.00 091 746.10 0 0O 0.12 064 —-0.76
GE, = | -066 012 -0.30 0 0 0 0.81 —0.51 —0.30
0.26 —-0.83 0.11 0 0 0 0.58  0.58  0.58

0.41 0.50  0.19



Simiarly, the rank-2 5VD is given by setting all but the first two singular val ues to zero,
0.40 021  0.18
—0.41  0.00 091 746.10 0 0 0.12 064 —-0.76
GE; = | =066 012 -0.30 0 131.36 0 0.81 —-0.51 —-0.30
0.26 —0.83  0.11 ( 0 0 ()) ( 0.58  0.58 ().5.\')
0.41 0.50  0.19

For example, the rank-1 SVD approximation for GE;, is
J31M€qo = 746.10%(-0.66)*0.64 = -315

While the rank-2 SVD approximation is g;:A,e1, + g35A,€90 =
746.10%(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323

Actual value is -324

Generally, the rank-2 SVD approximation for GE; is

ey + giphoey -



