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Marker Assisted Selection

MAS: Use of genetic markers to improve the
efficiency of genetic selection

Basic idea behind of MAS:

* Most traits of economic importance are controlled
by a fairly large number of genes

-+ Some of these genes, however, with larger effect

> Following the pattern of inheritance of such genes
might assist in selection



MAS Could Help Improve

Low heritability traits
Phenotypes that can be measured on one sex only

Characteristics that are not measurable before
sexual maturity

Traits that are difficult to measured or require
sacrifice

Efficiency of MAS
Size (effect) of QTL

Frequency of favorable allele

Recombination rate between marker(s) and QTL,



Modeling Effects at The
QTL Genotype

y=XB+Wq+ Z@
phenotype / residual
!

2
fixed effects e~N(0.lo;)

(environmental) Polygenic

effects
QTL effects a ~ N(0, Ao’i)



Modeling Effects at the QTL Genotype

QTL-genotype as a fixed effect: Regression of
phenotypes using QTL genotype probabilities from
segregation analysis (Kinghorn et al. 1993,
Meuwissen and Goddard 1997)

QTL-genotype as a random effect: QTL effect is
modeled as the sum of the two gametic effects
(Fernando and Grossman 1989)

oy [Ger 0 o)
y=XB+WV+Za+£, Var| a =/ 0 Ao’ 0
\ / 0

Gametic relationship matrix -



PAUSE

= Marker Assisted Selection

= Different modelling approaches,
but always with just a few
markers included

Next PAUSE, slide 21




Genomic Selection
(Genome-wide Marker Assisted Selection)

As most quantitative traits are influenced by
many genes, tracking a small number of them
using molecular markers will explain only a small
fraction of the total genetic variance

GWMAS, on the other hand, makes use of a very
dense set of markers covering the entire genome,
which potentially explain all genetic variance



Genomic Selection

/ 1. Reference Popula’rion\

4 2. Data Analysis )

- QC and data processing
- Prediction model:
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Genomic Selection
(Meuwissen et al., 2001)

Yi= W+ X8 T Xpp8y ...+ X 8, T

/

Marker genotypes Genetic effects

P
Genomic EBV: GEBV =x,,g, +X,g, +...+X, g = EXijéj
=l
= ‘big p small n paradigm’

= Dimension reduction techniques (e.g. SVD
and PLS), and stepwise strategies

= Alternatively, ridge regression, random
effects models, and hierarchical modeling 9



Least Squares

Two-step Procedure:

- Test each marker (chromosome segment) for presence
of QTL and select those with significant effects

- Fit selected markers simultaneously using multiple
regression

* Predict breeding values using fitted regression
(similar to LD- MAS approach with multiple markers)
Problems:

- Over estimation of markers effects due to first-step
(selection)

Do not capture all QTL
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BLUP

11 1X 1y
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y=1u+Engj+e
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gj ~ N(an-g)

1 )=
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Y=Oe/00

How to choose Gg ?
= Arbitrary; but G(Z) controls amount of shrinkage

- Alternative: set Gg = Gi /p, where 6121 IS an

estimate (prior) of total additive genetic variance
11




Bayes A

p p
y=lu+ Y Xg +e — ylug,o. ~Ndu+ ) Xg o))
=1 j=1

Prior distributions:

.
g, |0? ~ N(O,G?)

2 -2
o2 ~ % 2(v,S)

< (scaled inverted chi-square distribution with
scale parameter S and v degrees of freedom)

\ o ~ % (=2,0)
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Bayes B

P P
y=1u+Engj+e — ylu,gj,oz~N(1u,+2ngj,IG§)
=1 =1

Prior distributions:

[ . "
g, =0 with probability =

g, |67 ~N(0,07) with probability (1 - )

< 2 -2
o, ~ X (V,S)

k Gz ~ X_z(_zao)
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Simulation Study

Genome: 1000 cM with markers every 1 cM

Markers surrounding each 1 ¢cM region combined
into haplotypes

LD between marker and QTLs due to finite
population size (N, = 100)

Training sample: single generation with 2,000
animals

Test sample: prediction of breeding values of
their progeny based on marker genotypes

14



Simulation Study

The parameters of the simulated genetic model

I0 | Il | |2 // 9? I I?OCM
| Y 77 o

Map per chromosome* N}' Q Mz QM 100 Qoo Moy
Number of chromosomes is the total number of morgans 10
Mutation rate of QTL 2.5 X 1075
Distribution of additive mutational effects Gamma(1.66; 0.4)
Dominance of QTL effects 0
Mutation rate of marker loci 2.5 X 107°
Population structure

Generations 1-1000 Ideal’, N = 100

Generation 1001 Ideal’, N = 200

Generation 1002 20 half-sib families, N = 2000

Generation 1003 and later Ideal’, N = 2000
Marker genotyping Generations 1001 and later
Phenotypic recording Generations 1001 and 1002

“M, marker position; Q, QTL position.

*Ideal denotes a population structure where the effective size equals the actual population size. This structure
is simulated by giving every male (female) in generation ¢ — 1 an equal probability of becoming the sire (dam)
of animal : in generation #, which implies no selection and random mating of males and females.
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Simulation Study

Comparing estimated vs. true breeding values
in generation 1003

FTBV:ERV + SE bTBV.EB\" + SE
LS 0.318 £ 0.018 0.285 * 0.024
BLUP 0.732 £ 0.030 0.896 %= 0.045
BayesA 0.798 0.827
BayesB 0.848 + 0.012 0.946 + 0.018

Mean of five replicated simulations, except for BayesA which
is based on one replicate. LS, least squares; BLUP, best linear
unbiased prediction; BayesA, Bayesian method with inverse
chi-square prior distribution; BayesB, Bayesian method where
the prior density of having zero QIL effects was increased;
mevEsys correlation between estimated and true breeding val-
ues (equals accuracy of selection); bpygpy, regression of true
on estimated breeding value.
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Simulation Study

Correlations between true and estimated breeding values

when the number of phenotypic records is varied

No. of phenotypic records

500 1000 2200
LS 0.124 0.204 0.318
BLUP 0.579 0.659 0.732
BayesB 0.708 0.787 (0.848

Correlations between true and estimated breeding values
when the density of the marker map is varied and

effective population size is 100

Marker spacing (cM)

1 2 4
LS 0.318 0.354 0.363
BLUP 0.732 0.708 0.6638
BayesB 0.848 0.810 0.737
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Simulation Study

The correlation between estimated and true breeding values
in generations 1003-1008, where the estimated breeding
values are obtained from the BayesB marker estimates
in generations 1001 and 1002

Generation FIBV-EBV
1003 0.848
1004 0.804
1005 0.768
1006 0.758
1007 0.734
1008 0.718

The generations 1004-1008 are obtained in the same way
as 1003 from their parental generations.



Application with Real Data
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(VanRaden et al., 2608)



Table 2. Coefficients of determination (R* x 100) for 2008 daughter deviations with 2003 predictions

Genomic prediction Gain from nonlinear genomic
Traditional prediction compared
Trait parent average Linear Nonlinear Difference’ with parent average
Net merit 11 28 28 0 17
Milk yield 28 47T 49 2 21
Fat yield 15 42 44 2 29
Protein yield 27 47 4T 0 20
Fat percentage 25 55 63 8 38
Protein percentage 28 51 58 7 30
Productive life 17 26 27 1 10
SCS 23 37 38 1 15
Daughter pregnancy rate 20 30 29 -1 9
Sire calving ease 17 21 22 1 5
Daughter calving ease 14 22 22 0 8
Final score 23 35 36 1 13
Stature 27 49 50 1 23
Strength 16 33 34 1 18
Body depth 17 36 37 1 20
Dairy form 9 29 28 -1 19
Foot angle 13 23 21 -2 8
Rear legs (side view) 10 27 27 0 17
Rear legs (rear view) 11 21 19 -2 8
Rump angle 20 44 43 -1 23
Rump width 19 38 36 -2 17
Fore udder 17 39 40 1 23
Rear udder height 20 35 36 1 16
Udder depth 18 47 46 -1 28
Udder cleft 18 30 30 0 12
Front teat placement 22 41 42 1 20
Teat length 12 35 34 -1 22
All 19 36 37 1 18

‘Nonlinear minus linear genomic prediction.
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PAUSE

= Principles of Genomic Selection

= Some additional details on
statistical modelling next

Next PAUSE, slide 30
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Model Selection

= Goodness-of-fit vs. Model Complexity
(Bias-variance tradeoff)

Over-reduction Over-fit

22



Model Selection

= Goodness-of-fit
- likelihood ratio approach (LRT; nested models)

L 2
LRT=-2 ln[L—IJ ~ Xp-p2)
2

= Model complexity
* number of free parameters, p (effective number)

Linear (regularized) fitting: y =Sy — p = trace(S)
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Model Selection

= Balancing goodness-of-fit and complexity
- Akaike information criterion (AIC):
AIC=2p— ln(L)

+ Bayesian information criterion (BIC):

Schwarz Criteri
(or Schwarz Criterion) BIC:pln(n)—Zln(L)
i1id
= Tf C. NN(Oa GZ) then:

AIC=2p+n ln(R—SS) and BIC= Lz RSS+p ln(L)

n o o



Ridge Regression

B ¢ = arg min-
B i=1

M=
N
<
=
|
e
.
\°_/N
_I_
>
M»s

=
—

A = O (complexity parameter)

2
. N p
or, equivalently: B"**° = argmin Z [yi —B, — Z X;B jj :
p i=1 j=1

p
subject to: ) B <s
=1
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Ridge Regression

{BO_Y_ZYi/N

after centering y, and x.'s (1.e., y, —y and x; —X)

RSS(M) =(y-XB)'(y-XB)+AB'B
lgridge _ (X'X + }\'I)—Iva
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LASSO
2
n N p p
B = argminZ)[yi -B, —injﬁjj , subject to: Z| B,I<t
B i=1 j=1 j=1

+ Estimation picture for the LASSO (left) and Ridge Regression (right)

The solid blue areas are the constraint regions |B, |+|B, <t (lasso)
and B; +pB; <t* (ridge regression), while the red ellipses are the -
contours of the least squares error function.



Predictive Ability

High Bias Low Bias
Low Variance High Variance ‘
- e mm-- e e e - - p— |

Test Sample

/

Prediction Error
(6002 |0 +2 214SDH)

a

Training Sample ™

Low High
Model Complexity

Behavior of test sample and training sample
error as the model complexity is varied 28



Cross-validation

> KFOLD .
w — v \
. Testing set
Training set
ry:XI}+e PMSE=iE(y1_§]1)2
—N m 1

[i -estimate of 8

= LEAVE-ONE-OUT (“/+FOLD”)

4

~,
~

y=Xp

.
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PAUSE

= Model Comparison, variable selection
= Penalized regression

= Cross-validation

Next PAUSE, slide 38 (end)
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Bayesian Alternative

P p
y=lu+ Yy Xg +e — ylug,ol ~N(pu+ Y X g, Io?)
)=l j=1

gE—

BRR: g;10; ~N(0,0;)
Bayes A: gj|0]2 ~N(0,0?), 0? ~ %" (v,S)
< BayesB,C: g;lk,07 ~mtxN(0,ko?)+(1-m)xN(0,07)

BLasso: & |O’? ~ N(0,0’?), O'J? ~ Exponential(A)

| BX: g lo; ~N(0,07), 0/ ~X
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Normal/Independent Distributions

p(g;) = [ p(g;107)p(o) o]

gE—

BRR: Normal
| /\ Bayes A: Student-t
Bayes B,C: Mixtures

BLasso: Double exponential
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GBLUP

Regression with genetic effects with
normal distribution with common variance

p
y = IM+Engj +e ,with: g |0§ ~ N(O,Gg)
=l
Equivalent Model

y=1u+a+e, with: aloj ~N(0,G()'§)

—> G is the genomic relationship matrix:
-1

2¥ p,(1-p))| X-M)(X-M)’

j=1

G-=

VanRaden, P. M. (2008) Efficient methods to compute genomic

predictions. Journal of Dairy Science 91: 4414-4423. 3



ssGBLUP

Single-step GBLUP: Single mixed model with
all animals (genotyped and non-genotyped)
included, with matrix A replaced by H

0 0
0 G -A

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S. and Lawlor,
T. J. (2010) Hot tfopic: A unified approach to utilize phenotypic, full
pedigree, and genomic information for genetic evaluation of Holstein
final score. Journal of Dairy Science 93:743-752. 34



Preventive and Personalized Medicine

R
L

Training population

New { w
patient J| b

Prediction
Model

Personalized

treatment
35



A Comprehensive Genetic Approach for Improving
Prediction of Skin Cancer Risk in Humans

Ana |. Vazquez,*' Gustavo de los Campos,* Yann C. Klimentidis,* Guilherme J. M. Rosa,*

Daniel Gianola," Nengjun Yi,* and David B. Allison*
*Section on Statistical Genetics, Department of Biostatistics, University of Alabama, Birmingham, Alabama 35294, and

TDepartment of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53705

Genetics, Vol. 192, 1493-1502 December 2012

= 5,132 subjects from Framingham Heart Study
= Phenotypes measured from 1948 until death
= Genotypes: Affymetrix 500K SNPs

'

ree generations of pal;ticil;an, Photo: h’r’rp://www.framinghamhearts’rudy.%?g/




Models

1. No-SNP: standard covariables
2. Covariates + familial relationships
3. Covariates + SNPs (PC or Bayesian LASSQ)

5132

Probit B-LASSO pIB.w) = |] {[@(m)]yf[1—¢>(ni)]1-yf}

i=1

P P2 P1
mi=Bo+ Y XuBy+ Y XaiiBy  or  mi=Bo+ Yy X1Byj+u;
j=1 j=1 j=1

p(601811 Bz,u,‘rz,)\) o [

% f[EXP(TzP‘Z)] xG(A%|a1,az)

]
x N(u|0,Ac?) x x ?(o?2|S,df), 37



Results (ROC, Area Under the Curve)

Models with increasing
Comparison of Models number of SNPs
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Thousand of SNPs
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