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MAS: Use of genetic markers to improve the 
efficiency of genetic selection

Basic idea behind of MAS:

• Most traits of economic importance are controlled 
by a fairly large number of genes

• Some of these genes, however, with larger effect

• Following the pattern of inheritance of such genes 
might assist in selection

Marker Assisted Selection
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MAS Could Help Improve
Low heritability traits 
Phenotypes that can be measured on one sex only

Characteristics that are not measurable before 
sexual maturity

Traits that are difficult to measured or require 
sacrifice

Size (effect) of QTL
Frequency of favorable allele

Recombination rate between marker(s) and QTL

Efficiency of MAS
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y = Xβ+Wq+Za + ε

a ~ N(0,Aσa
2 )

phenotype

fixed effects 
(environmental)

QTL effects

Polygenic 
effects

residual
ε ~ N(0, Iσε

2 )

Modeling Effects at The 
QTL Genotype

4



QTL-genotype as a fixed effect: Regression of 
phenotypes using QTL genotype probabilities from 
segregation analysis  (Kinghorn et al. 1993, 
Meuwissen and Goddard 1997)

QTL-genotype as a random effect: QTL effect is 
modeled as the sum of the two gametic effects 
(Fernando and Grossman 1989) 

Modeling Effects at the QTL Genotype
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PAUSE

ð Marker Assisted Selection 

ð Different modelling approaches, 
but always with just a few 
markers included

Next PAUSE, slide 21
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As most quantitative traits are influenced by 
many genes, tracking a small number of them 
using molecular markers will explain only a small 
fraction of the total genetic variance

GWMAS, on the other hand, makes use of a very 
dense set of markers covering the entire genome, 
which potentially explain all genetic variance

Genomic Selection
(Genome-wide Marker Assisted Selection)
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1. Reference Population

3. Genomic Selection

2. Data Analysis

4. Selected Animals

Animals with genotypic and 
phenotypic information

- QC and data processing
- Prediction model:

Young animals 
(selection candidates)

Prediction of genetic merit 
using marker information

Superior animals 
(higher gEBV), selected 

earlier with higher accuracy

yi = µ + wijb j
j=1

p

∑ + ei

gEBVk = wkjb̂ j
j=1

p

∑

Genomic Selection
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(Meuwissen et al., 2001)

Genetic effects

yi = µ + xi1g1 + xi2g2 +...+ xipgp + ei

Marker genotypes

ð ‘big p small n paradigm’
ð Dimension reduction techniques (e.g. SVD 

and PLS), and stepwise strategies
ð Alternatively, ridge regression, random 

effects models, and hierarchical modeling 

Genomic Selection

GEBV = xi1ĝ1 + xi2ĝ2 +...+ xipĝp = xijĝ j
j=1

p

∑Genomic EBV:
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Two-step Procedure:
  Test each marker (chromosome segment) for presence 

of QTL and select those with significant effects
  Fit selected markers simultaneously using multiple 

regression
  Predict breeding values using fitted regression 

(similar to LD- MAS approach with multiple markers)

Problems:
  Over estimation of markers effects due to first-step 

(selection)
  Do not capture all QTL

Least Squares
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gj ~ N(0,σ0
2 )

BLUP
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How to choose       ?

  Arbitrary; but        controls amount of shrinkage 

  Alternative: set                    , where       is an 
estimate (prior) of total additive genetic variance 

2
0s

2
0s

2
usp/2u

2
0 s=s

y =1µ + X jg j
j=1

p

∑ + e
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Bayes A

y =1µ + X jg j
j=1

p

∑ + e y |µ,g j,σe
2 ~ N(1µ + X jg j

j=1

p

∑ , Iσe
2 )

gj |σ j
2 ~ N(0,σ j

2 )

σ j
2 ~ χ−2 (ν,S)
(scaled inverted chi-square distribution with 
scale parameter S and n degrees of freedom)

σe
2 ~ χ−2 (−2,0)

Prior distributions:
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Bayes B

y =1µ + X jg j
j=1

p

∑ + e y |µ,g j,σe
2 ~ N(1µ + X jg j

j=1

p

∑ , Iσe
2 )

Prior distributions:

σe
2 ~ χ−2 (−2,0)

gj = 0
gj |σ j

2 ~ N(0,σ j
2 )

with probability p
with probability (1 - p)

σ j
2 ~ χ−2 (ν,S)

13



Simulation Study

Genome: 1000 cM with markers every 1 cM
Markers surrounding each 1 cM region combined 
into haplotypes
LD between marker and QTLs due to finite 
population size (Ne = 100)
Training sample: single generation with 2,000 
animals
Test sample: prediction of breeding values of 
their progeny based on marker genotypes
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Simulation Study
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Simulation Study
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Simulation Study
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Simulation Study
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Application with Real Data
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PAUSE

ð Principles of Genomic Selection 

ð Some additional details on 
statistical modelling next

Next PAUSE, slide 30
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ð Goodness-of-fit  vs.  Model Complexity 
(Bias-variance tradeoff)

Over-reduction Over-fit

Model Selection
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ð Goodness-of-fit 
▪ likelihood ratio approach (LRT; nested models)

ð Model complexity
▪ number of free parameters, p (effective number)
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Model Selection
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ð Balancing goodness-of-fit and complexity

▪ Akaike information criterion (AIC):

▪ Bayesian information criterion (BIC):
(or Schwarz Criterion)

( )Llnp2AIC -=

( )Lln2)nln(pBIC -=

( )LlnpRSS1BIC 2
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Model Selection

24



Ridge Regression
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)xx and yy (i.e., s'x and y centeringafter 

N/yyˆ

iiii

i0

--

==b å

RSS(λ) = (y−Xβ)'(y−Xβ)+ λβ 'β

Ridge Regression

β̂ridge = (X 'X+ λI)−1X 'y
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LASSO
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The solid blue areas are the constraint regions                   (lasso) 
and                (ridge regression), while the red ellipses are the 

contours of the least squares error function.
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▪ Estimation picture for the LASSO (left) and Ridge Regression (right)
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Predictive Ability

Behavior of test sample and training sample 
error as the model complexity is varied

(H
astie et al 2009)
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Cross-validation

ð K-FOLD

ð LEAVE-ONE-OUT (“n-FOLD”)

Training set
Testing set
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PAUSE

ð Model Comparison, variable selection 

ð Penalized regression

ð Cross-validation

Next PAUSE, slide 38 (end)
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Bayesian Alternative

y =1µ + X jg j
j=1

p

∑ + e y |µ,g j,σe
2 ~ N(1µ + X jg j

j=1

p

∑ , Iσe
2 )

gj |σ0
2 ~ N(0,σ0

2 )BRR:

Bayes A:

Bayes B,C:

BLasso:

BX:

gj |σ j
2 ~ N(0,σ j

2 ),   σ j
2 ~ χ−2 (ν,S)

gj | k,σ j
2 ~ π×N(0, kσ j

2 )+ (1− π)×N(0,σ j
2 )

gj |σ j
2 ~ N(0,σ j

2 ),   σ j
2 ~ Exponential(λ)

gj |σ j
2 ~ N(0,σ j

2 ),   σ j
2 ~ X
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Normal/Independent Distributions

p(gj) = p(gj |σ j
2 )p(σ j

2 )
σ j
2
∫ dσ j

2

BRR: Normal

Bayes A: Student-t

Bayes B,C: Mixtures

BLasso: Double exponential
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GBLUP

gj |σg
2 ~ N(0,σg

2 )y =1µ + X jg j
j=1

p

∑ + e , with:

Regression with genetic effects with 
normal distribution with common variance

a |σa
2 ~ N(0,Gσa

2 )y =1µ + a+ e , with:

Equivalent Model

G is the genomic relationship matrix:

G = 2 pj(1− pj)
j=1

p

∑
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33VanRaden, P. M. (2008) Efficient methods to compute genomic
predictions. Journal of Dairy Science 91: 4414-4423.



ssGBLUP

Single-step GBLUP: Single mixed model with 
all animals (genotyped and non-genotyped) 
included, with matrix A replaced by H

H−1 =A−1 +
0 0
0 G−1 −A22
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T. J. (2010) Hot topic: A unified approach to utilize phenotypic, full
pedigree, and genomic information for genetic evaluation of Holstein
final score. Journal of Dairy Science 93:743-752.



Preventive and Personalized Medicine

Training population

Prediction 
Model

New 
patient

Personalized 
treatment
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_ 5,132 subjects from Framingham Heart Study
_ Phenotypes measured from 1948 until death

_ Genotypes: Affymetrix 500K SNPs

Photo: http://www.framinghamheartstudy.org/36



Probit B-LASSO

or

1. No-SNP: standard covariables
2. Covariates + familial relationships
3. Covariates + SNPs (PC or Bayesian LASSO)

Models
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Results (ROC, Area Under the Curve)

Comparison of Models
Models with increasing 

number of SNPs
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