Lecture 1: Intro/refresher in Matrix Algebra

Bruce Walsh lecture notes Introduction to Mixed Models
SISG (Module 11), Seattle 20-22 July 2022

Topics

- Definitions, dimensionality, addition, subtraction
- Matrix multiplication
- Inverses, solving systems of equations
- Quadratic products and covariances
- The multivariate normal distribution
- Eigenstructure
- Basic matrix calculations in R
- The Singular Value Decomposition (SVD)
- First PAUSE slide 16

Matrices: An array of elements

Vectors: A matrix with either one row or one column. Usually written in bold lowercase, e.g. a, b, c

$$
a=\left(\begin{array}{l}
12 \\
13 \\
47
\end{array}\right) \quad b=\left(\begin{array}{llll}
2 & 0 & 5 & 21
\end{array}\right)
$$

Column vector Row vector
(3×1)
(1×4)

Dimensionality of a matrix: $\mathrm{r} \times \mathrm{c}$ (rows \times columns) think of Railroad Car

General Matrices

Usually written in bold uppercase, e.g. A, C, D

$$
\begin{array}{r}
\mathbf{C}=\left(\begin{array}{lll}
3 & 1 & 2 \\
2 & 5 & 4 \\
1 & 1 & 2
\end{array}\right) \quad \mathbf{D}=\left(\begin{array}{ll}
0 & 1 \\
3 & 4 \\
2 & 9
\end{array}\right) \\
\text { 3) } \\
\text { Square matrix } \quad(3 \times 2)
\end{array}
$$

(3×3)

Dimensionality of a matrix: $r \times c$ (rows \times columns) think of Railroad Car

A matrix is defined by a list of its elements. B has $i j$-th element $B_{i j}$-- the element in row i and column j

Addition and Subtraction of Matrices

If two matrices have the same dimension (both are $\mathrm{r} \times \mathrm{c}$), then matrix addition and subtraction simply follows by adding (or subtracting) on an element by element basis

Matrix addition: $(A+B)_{i j}=A_{i j}+B_{i j}$
Matrix subtraction: $(A-B)_{i j}=A_{i j}-B_{i j}$
Examples:

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ll}
3 & 0 \\
1 & 2
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \\
\mathbf{C}=\mathbf{A}+\mathbf{B}=\left(\begin{array}{ll}
4 & 2 \\
3 & 3
\end{array}\right) \text { and } \mathbf{D}=\mathrm{A}-\mathrm{B}=\left(\begin{array}{rr}
2 & -2 \\
-1 & 1
\end{array}\right)
\end{gathered}
$$

Partitioned Matrices

It will often prove useful to divide (or partition) the elements of a matrix into a matrix whose elements are itself matrices.

$$
\begin{gathered}
\mathbf{C}=\left(\begin{array}{lll}
3 & 1 & 2 \\
2 & 5 & 4 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{cccc}
3 & \vdots & 1 & 2 \\
\cdots & \cdots & \cdots & \cdots \\
2 & \vdots & 5 & 4 \\
1 & \vdots & 1 & 2
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{d} & \mathbf{B}
\end{array}\right) \\
\mathbf{a}=\left(\begin{array}{ll}
3
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{ll}
1 & 2
\end{array}\right), \quad \mathbf{d}=\binom{2}{1}, \quad \mathbf{B}=\left(\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right)
\end{gathered}
$$

One useful partition is to write the matrix as either a row vector of column vectors or a column vector of row vectors

$$
\begin{aligned}
& \mathbf{C}=\left(\begin{array}{lll}
3 & 1 & 2 \\
2 & 5 & 4 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{l}
\mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\mathbf{r}_{3}
\end{array}\right) \quad \begin{array}{l}
\text { A column vector whose } \\
\text { elements are row vectors }
\end{array} \\
& \mathbf{r}_{1}=\left(\begin{array}{lll}
3 & 1 & 2
\end{array}\right) \\
& \mathbf{r}_{2}=\left(\begin{array}{lll}
2 & 5 & 4
\end{array}\right) \\
& \mathbf{r}_{3}=\left(\begin{array}{lll}
1 & 1 & 2
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{C}=\left(\begin{array}{lll}
3 & 1 & 2 \\
2 & 5 & 4 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{c}_{3}
\end{array}\right)
$$

A row vector whose elements are column vectors

$$
\mathbf{c}_{1}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right), \quad \mathbf{c}_{2}=\left(\begin{array}{l}
1 \\
5 \\
1
\end{array}\right), \quad \mathbf{c}_{3}=\left(\begin{array}{l}
2 \\
4 \\
2
\end{array}\right)
$$

Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of length n) is defined as follows:

$$
\mathbf{a} \cdot \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}
$$

Example:

$$
\begin{gathered}
\mathbf{a}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{llll}
4 & 5 & 7 & 9
\end{array}\right) \\
a \cdot b=1 * 4+2 * 5+3 * 7+4 * 9=71
\end{gathered}
$$

Matrices are compact ways to write systems of equations

$$
\begin{gathered}
5 x_{1}+6 x_{2}+4 x_{3}=6 \\
7 x_{1}-3 x_{2}+5 x_{3}=-9 \\
-x_{1}-x_{2}+6 x_{3}=12 \\
\left(\begin{array}{ccc}
5 & 6 & 4 \\
7 & -3 & 5 \\
-1 & -1 & 6
\end{array}\right) \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
6 \\
-9 \\
12
\end{array}\right) \\
\mathbf{A x}=\mathbf{c}, \quad \text { or } \quad \mathbf{x}=\mathbf{A}^{-1} \mathbf{c}
\end{gathered}
$$

The least-squares solution for the linear model

$$
y=\mu+\beta_{1} z_{1}+\cdots \beta_{n} z_{n}
$$

yields the following system of equations for the β_{i}

$$
\begin{array}{cccc}
\sigma\left(y, z_{1}\right)=\beta_{1} \sigma^{2}\left(z_{1}\right) & +\beta_{2} \sigma\left(z_{1}, z_{2}\right)+\cdots+\beta_{n} \sigma\left(z_{1}, z_{n}\right) \\
\sigma\left(y, z_{2}\right)=\beta_{1} \sigma\left(z_{1}, z_{2}\right)+\beta_{2} \sigma^{2}\left(z_{2}\right) & +\cdots+\beta_{n} \sigma\left(z_{2}, z_{n}\right) \\
\vdots & \vdots & \vdots & \ddots
\end{array} \vdots \vdots .
$$

This can be more compactly written in matrix form as

$$
\left.\begin{array}{c}
\left(\begin{array}{cccc}
\sigma^{2}\left(z_{1}\right) & \sigma\left(z_{1}, z_{2}\right) & \ldots & \sigma\left(z_{1}, z_{n}\right) \\
\sigma\left(z_{1}, z_{2}\right) & \sigma^{2}\left(z_{2}\right) & \ldots & \sigma\left(z_{2}, z_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\sigma\left(z_{1}, z_{n}\right) & \sigma\left(z_{2}, z_{n}\right) & \ldots & \sigma^{2}\left(z_{n}\right)
\end{array}\right) \\
\mathbf{X}^{\top} \mathbf{X} \\
\\
\text { or, } \boldsymbol{\beta}=\left(\begin{array}{c}
\mathbf{\beta}_{1} \\
\left.\beta_{2} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
\end{array}\right. \\
\vdots \\
\beta_{n}
\end{array}\right)=\left(\begin{array}{c}
\sigma\left(y, z_{1}\right) \\
\sigma\left(y, z_{2}\right) \\
\vdots \\
\sigma\left(y, z_{n}\right)
\end{array}\right)
$$

Matrix Multiplication:

The order in which matrices are multiplied affects the matrix product, e.g. $A B \neq B A$

For the product of two matrices to exist, the matrices must conform. For $A B$, the number of columns of A must equal the number of rows of B.

The matrix $C=A B$ has the same number of rows as A and the same number of columns as B.

$$
C_{(r x c)}=A_{(r x k)} \quad B_{(k x c)}
$$

ij -th element of C is given by
Elements in the
jth column of B
$C_{i j}=\sum_{l=1}^{k} A_{i l} B_{l j} \begin{aligned} & \text { Elements in the ith } \\ & \text { row of matrix } \mathbf{A}\end{aligned}$

Outer indices given dimensions of resulting matrix, with r rows (A) and c columns (B)

Inner indices must match columns of $A=$ rows of B

Example: Is the product $A B C D$ defined? If so, what is its dimensionality? Suppose

$$
A_{3 \times 5} B_{5 \times 9} C_{9 \times 6} D_{6 \times 23}
$$

Yes, defined, as inner indices match. Result is a 3×23 matrix (3 rows, 23 columns)

More formally, consider the product $L=M N$
Express the matrix M as a column vector of row vectors

$$
\mathbf{M}=\left(\begin{array}{c}
\mathrm{m}_{1} \\
\mathrm{~m}_{2} \\
\vdots \\
\mathrm{~m}_{\mathrm{r}}
\end{array}\right) \quad \text { where } \quad \mathrm{m}_{\mathrm{i}}=\left(\begin{array}{llll}
M_{i 1} & M_{i 2} & \cdots & M_{i c}
\end{array}\right)
$$

Likewise express N as a row vector of column vectors

$$
\begin{aligned}
& \text { column vectors } \\
& \qquad \mathbf{N}=\left(\begin{array}{llll}
\mathbf{n}_{1} & n_{2} & \cdots & \mathbf{n}_{\mathrm{b}}
\end{array}\right) \quad \text { where } \quad \mathrm{n}_{\mathrm{j}}
\end{aligned}=\left(\begin{array}{c}
N_{1 j} \\
N_{2 j} \\
\vdots \\
\text { The } \mathrm{ij} \text {-th element of } \mathrm{L} \text { is the inner product } \\
N_{c j}
\end{array}\right) .
$$ of M's row i with N's column j

$$
\mathbf{L}=\left(\begin{array}{cccc}
\mathbf{m}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{1}} & \mathbf{m}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{2}} & \cdots & \mathbf{m}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{b}} \\
\mathbf{m}_{\mathbf{2}} \cdot \mathbf{n}_{\mathbf{1}} & \mathbf{m}_{\mathbf{2}} \cdot \mathbf{n}_{\mathbf{2}} & \cdots & \mathbf{m}_{\mathbf{2}} \cdot \mathbf{n}_{\mathbf{b}} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{m}_{\mathbf{r}} \cdot \mathbf{n}_{\mathbf{1}} & \mathbf{m}_{\mathbf{r}} \cdot \mathbf{n}_{\mathbf{2}} & \cdots & \mathbf{m}_{\mathbf{r}} \cdot \mathbf{n}_{\mathbf{b}}
\end{array}\right)
$$

Example

$$
\mathbf{A B}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)
$$

Likewise

$$
\mathbf{B A}=\left(\begin{array}{ll}
a e+c f & e b+d f \\
g a+c h & g d+d h
\end{array}\right)
$$

ORDER of multiplication matters! Indeed, consider $C_{3 \times 5} D_{5 \times 5}$ which gives a 3×5 matrix, versus $D_{5 \times 5} C_{3 \times 5}$, which is not defined.

Matrix multiplication in R

```
>A
M
> B
\begin{tabular}{lrr} 
& {\([, 1]\)} & {\([, 2]\)} \\
{\([1]\),} & 4 & 6 \\
{\([2]\),} & 5 & 7
\end{tabular}
\(>\mathrm{A} \% \%\) B
\begin{tabular}{lrr} 
& {\([, 1]\)} & {\([, 2]\)} \\
{\([1]\),} & 19 & 27 \\
{\([2]\),} & 28 & 40
\end{tabular}
```

$>$ A<-matrix $(c(1,2,3,4)$, nrow $=2)$
$>B<-$ matrix $(c(4,5,6,7)$, nrow $=2)$

Entering A or B displays what was entered (always a good thing to check)

The command \%*\% is the R code for the multiplication of two matrices

On your own: What is the matrix resulting from BA? What is A if nrow $=1$ or nrow $=4$ is used?

PAUSE

- Matrix multiplication arises as a way to compactly write systems of equations
- Indeed, much of linear algebra has deep roots in systems of equations, as we will now explore.
- Next pause at slide 27

The Transpose of a Matrix

The transpose of a matrix exchanges the rows and columns, $\mathrm{A}^{\top}{ }_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ij}}$

Useful identities

$$
\begin{aligned}
& \text { Identities } \\
& \begin{array}{l}
(\mathrm{AB})^{\top}=\mathrm{B}^{\top} \mathrm{A}^{\top} \\
(\mathrm{ABC})^{\top}=\mathrm{C}^{\top} \mathrm{B}^{\top} \mathrm{A}^{\top}
\end{array} \quad \mathbf{a}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
\end{aligned}
$$

$\underline{\text { Inner product }}=a^{\top} b=a^{\top}{ }_{(1 \times n)} b_{(n \times 1)}$
Indices match, matrices conform
Dimension of resulting product is 1×1 (i.e. a scalar)
$\left(\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right)\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)=\mathbf{a}^{T} \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i} \quad$ Note that $\mathrm{b}^{\top} \mathrm{a}=\left(\mathrm{b}^{\top} \mathrm{a}\right)^{\top}=\mathrm{a}^{\top} \mathrm{b}$

Outer product $=a b^{\top}=a{ }_{(n \times 1)} b^{\top}{ }_{(1 \times n)}$

 Resulting product is an $n \times n$ matrix

$$
\begin{aligned}
& \left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \ldots & a_{1} b_{n} \\
a_{2} b_{1} & a_{2} b_{2} & \ldots & a_{2} b_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} b_{1} & a_{n} b_{2} & \ldots & a_{n} b_{b n}
\end{array}\right)
\end{aligned}
$$

R code for transposition

> t(A)			
	[,1]		$t(A)=$ transpose of A
[1,]	1	2	
[2,]	3	4	

> a<-matrix (cc(1,2,3), nrow=3) Enter the column vector a $>\mathrm{a}$
$\begin{array}{lr}{[1,1]} \\ {[1,]} & 1 \\ {[2,]} & 2 \\ {[3,]} & 3\end{array}$
[3,] 3
$>t(a) \%^{*} \%$ a \quad Compute inner product $a^{\top} a$
[1,] 14

Compute outer product $\mathbf{a a}^{\top}$
$\begin{array}{lrrr} & {[, 1]} & {[, 2]} & {[, 3]} \\ {[1,]} & 1 & 2 & 3 \\ {[2,]} & 2 & 4 & 6 \\ {[3,]} & 3 & 6 & 9\end{array}$

Solving equations

- The identity matrix I
- Serves the same role as 1 in scalar algebra, e.g., $a * 1=1 * a=a$, with $A I=I A=A$
- The inverse matrix A^{-1} (IF it exists)
- Defined by $A A^{-1}=I, A^{-1} A=I$
- Serves the same role as scalar division
- To solve ax = c, multiply both sides by ($1 / a$) to give:
- $(1 / \mathrm{a})^{*} \mathrm{ax}=(1 / \mathrm{a}) \mathrm{c}$ or $(1 / \mathrm{a})^{\star} a^{*} \mathrm{x}=1^{*} \mathrm{x}=\mathrm{x}$,
- Hence $x=(1 / \mathrm{a}) \mathrm{c}$
- To solve $A x=c, A^{-1} A x=A^{-1} c$
- $\operatorname{Or} A^{-1} A x=1 x=x=A^{-1} c$

The Identity Matrix, I

The identity matrix serves the role of the number 1 in matrix multiplication: $A I=A, I A=A$

I is a square diagonal matrix, with all diagonal elements being one, all off-diagonal elements zero.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{ij}}=\begin{array}{c}
1 \text { for } \mathrm{i}=\mathrm{j} \\
0 \text { otherwise }
\end{array} \\
\mathbf{I}_{3 x 3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

The Identity Matrix in R

diag(k), where k is an integer, return the $k \times k$ I matrix

$$
\begin{aligned}
& \text { > } \mathrm{I}<-\operatorname{diag}(4) \\
& >\text { I } \\
& \begin{array}{lrrrr}
& {[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} \\
{[1,]} & 1 & 0 & 0 & 0 \\
{[2,]} & 0 & 1 & 0 & 0 \\
{[3,]} & 0 & 0 & 1 & 0 \\
{[4,]} & 0 & 0 & 0 & 1
\end{array} \\
& \text { > I2 <-diag(2) } \\
& >\text { I2 } \\
& \begin{array}{lrr}
& {[, 1]} & {[, 2]} \\
{[1,]} & 1 & 0 \\
{[2,]} & 0 & 1
\end{array}
\end{aligned}
$$

The Inverse Matrix, A^{-1}

For a square matrix A, define its Inverse A^{-1}, as the matrix satisfying

$$
\begin{gathered}
\mathbf{A}^{\mathbf{- 1}} \mathbf{A}=\mathbf{A A}^{\mathbf{- 1}}=\mathbf{I} \\
\text { For } \mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
\end{gathered}
$$

If this quantity (the determinant) is zero, the inverse does not exist.

If $\operatorname{det}(A)$ is not zero, A^{-1} exists and A is said to be non-singular. If $\operatorname{det}(A)=0, A$ is singular, and no unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems of equations, are discussed in Appendix 3 of Lynch \& Walsh
A^{-}is the typical notation to denote the G-inverse of a matrix

When a G-inverse is used, provided the system is consistent, then some of the variables have a family of solutions (e.g., $x_{1}=2$, but $x_{2}+x_{3}=6$)

Inversion in R

solve(A) computes A^{-1}
$\operatorname{det}(A)$ computes determinant of A

```
> A
M}\begin{array}{l}{[,1][,2]}\\{[1,]}\\{1}
> solve(A)
[1,] [, % -2 [, 1.5
[2,] 1-0.5
> solve(A) %%% A
[,1] [,2] Showing that }\mp@subsup{A}{}{-1}A=
[1,] 1-8.881784e-16
[2,] 0 1.000000e+00
> det(A)
[1]-2
Computing determinant of \(A\)
```


Homework

Put the following system of equations in matrix form, and solve using R

$$
\begin{gathered}
3 x_{1}+4 x_{2}+4 x_{3}+6 x_{4}=-10 \\
9 x_{1}+2 x_{2}-x_{3}-6 x_{4}=20 \\
x_{1}+x_{2}+x_{3}-10 x_{4}=2 \\
2 x_{1}+9 x_{2}+2 x_{3}-x_{4}=-10
\end{gathered}
$$

PAUSE

- One can think of the inverse of a square matrix A as the unique solution to its corresponding set of equations.
- The determinant of A informs us as to whether such a unique solution exists
- As we will now see, the eigenstructure (geometry) of A provides a deeper understanding of nature of solutions, especially when $\operatorname{det}(A)=0$.
- Next pause at slide 35

Useful identities

$$
\begin{aligned}
\left(A^{\top}\right)^{-1} & =\left(A^{-1}\right)^{\top} \\
(A B)^{-1} & =B^{-1} A^{-1}
\end{aligned}
$$

For a diagonal matrix D , then $\operatorname{det}(\mathrm{D})$, which is also denoted by |DI, = product of the diagonal elements

Also, the determinant of any square matrix A, $\operatorname{det}(\mathrm{A})$, is simply the product of the eigenvalues λ of A, which satisfy

$$
\mathrm{Ae}=\lambda \mathrm{e}
$$

If A is $n \times n$, solutions to λ are an n-degree polynomial. e is the eigenvector associated with λ. If any of the roots to the equation are zero, A^{-1} is not defined. In this case, for some linear combination b, we have $A b=0$.

Variance-Covariance matrix

- A very important square matrix is the variance-covariance matrix V associated with a vector x of random variables.
- $\mathrm{V}_{\mathrm{ij}}=\operatorname{Cov}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$, so that the i -th diagonal element of V is the variance of x_{i}, and off -diagonal elements are covariances
- V is a symmetric, square matrix

The trace

The trace, $\operatorname{tr}(A)$ or trace (A), of a square matrix A is simply the sum of its diagonal elements

The importance of the trace is that it equals the sum of the eigenvalues of $A, \operatorname{tr}(\mathrm{~A})=\sum \lambda_{\mathrm{i}}$

For a covariance matrix $\mathrm{V}, \operatorname{tr}(\mathrm{V})$ measures the total amount of variation in the variables
$\lambda_{i} / \operatorname{tr}(\mathrm{V})$ is the fraction of the total variation
in x contained in the linear combination $\mathbf{e}_{i}{ }^{\top} \mathbf{x}$, where e_{i}, the i -th principal component of V is also the i-th eigenvector of $\mathrm{V}\left(\mathrm{Ve}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}\right)$

Eigenstructure in R

eigen(A) returns the eigenvalues and vectors of A

```
> V<-matrix(c(10,-5,10,-5,20,0,10,0,30), nrow=3)
>V
```



```
[3,] 10 0 30
> eigen(V)
$values
[1] 34.410103 21.117310 4.472587
\begin{tabular}{lr|r|r} 
\$vectons & \\
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 0.3996151 & 0.2117936 & 0.8918807 \\
{\([2]\),} & -0.1386580 & -0.9477830 & 0.2871955 \\
{\([3]\),} & 0.9061356 & -0.2384340 & -0.3493816 \\
& \\
& PC1 & PC 2
\end{tabular}
PC 1 accounts for 34.4/60 = \(57 \%\) of all the variation
\(0.400^{*} x_{1}-0.139^{*} x_{2}+0.906^{*} x_{3}\)
\(0.212^{*} x_{1}-0.948^{*} x_{2}-0.238^{*} x_{3}\)
```


Quadratic and Bilinear Forms

Quadratic product: for $A_{n \times n}$ and $x_{n \times 1}$

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} \quad \text { Scalar }(1 \times 1)
$$

Bilinear Form (generalization of quadratic product) for $A_{m \times n}, a_{n \times 1}, b_{m \times 1}$ their bilinear form is $b^{\top}{ }_{1 \times m} A_{m \times n} a_{n \times 1}$

$$
\mathbf{b}^{T} \mathbf{A} \mathbf{a}=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} b_{i} a_{j}
$$

Note that $b^{\top} A a=a^{\top} A^{\top} b$

Covariance Matrices for Transformed Variables

What is the variance of the linear combination, $c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$? (note this is a scalar)

$$
\begin{aligned}
\sigma^{2}\left(\mathbf{c}^{T} \mathbf{x}\right) & =\sigma^{2}\left(\sum_{i=1}^{n} c_{i} x_{i}\right)=\sigma\left(\sum_{i=1}^{n} c_{i} x_{i}, \sum_{j=1}^{n} c_{j} x_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sigma\left(c_{i} x_{i}, c_{j} x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} \sigma\left(x_{i}, x_{j}\right) \\
& =\mathbf{c}^{T} \mathbf{V} \mathbf{c}
\end{aligned}
$$

Likewise, the covariance between two linear combinations can be expressed as a bilinear form,

$$
\sigma\left(\mathbf{a}^{T} \mathbf{x}, \mathbf{b}^{T} \mathbf{x}\right)=\mathbf{a}^{T} \mathbf{V} \mathbf{b}
$$

Example: Suppose the variances of x_{1}, x_{2}, and x_{3} are 10,20 , and 30. x_{1} and x_{2} have a covariance of -5 , x_{1} and x_{3} of 10 , while x_{2} and x_{3} are uncorrelated.

What are the variances of the indices

$$
\begin{aligned}
y_{1} & =x_{1}-2 x_{2}+5 x_{3} \text { and } y_{2}=6 x_{2}-4 x_{3} ? \\
\mathbf{V} & =\left(\begin{array}{ccc}
10 & -5 & 10 \\
-5 & 20 & 0 \\
10 & 0 & 30
\end{array}\right), \quad \mathbf{c}_{1}=\left(\begin{array}{c}
1 \\
-2 \\
5
\end{array}\right), \quad \mathbf{c}_{2}=\left(\begin{array}{c}
0 \\
6 \\
-4
\end{array}\right)
\end{aligned}
$$

$$
\operatorname{Var}\left(y_{1}\right)=\operatorname{Var}\left(c_{1}^{\top} x\right)=c_{1}^{\top} \operatorname{Var}(x) c_{1}=960
$$

$$
\operatorname{Var}\left(y_{2}\right)=\operatorname{Var}\left(c_{2}^{\top} x\right)=c_{2}^{\top} \operatorname{Var}(x) c_{2}=1200
$$

$$
\operatorname{Cov}\left(y_{1}, y_{2}\right)=\operatorname{Cov}\left(c_{1}^{\top} x, c_{2}^{\top} x\right)=c_{1}^{\top} \operatorname{Var}(x) c_{2}=-910
$$

Homework: use R to compute the above values

PAUSE

The concepts of inverses, quadratic products, eigenstructure, and covariance matrices form the foundation to explore the multivariate normal (MVN) distribution

- This distribution underpins much of linear and mixed models theory and we will extensively use it properties
- PCs
- Regressions and conditional expectations
- Next pause at slide 53

The Multivariate Normal Distribution (MVN)

Consider the pdf for n independent normal random variables, the ith of which has mean μ_{i} and variance σ_{i}^{2}

$$
\begin{aligned}
p(\mathbf{x}) & =\prod_{i=1}^{n}(2 \pi)^{-1 / 2} \sigma_{i}^{-1} \exp \left(-\frac{\left(x_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right) \\
& =(2 \pi)^{-n / 2}\left(\prod_{i=1}^{n} \sigma_{i}\right)^{-1} \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
\end{aligned}
$$

This can be expressed more compactly in matrix form

Define the covariance matrix V for the vector x of the n normal random variable by

$$
\mathbf{V}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \sigma_{n}^{2}
\end{array}\right) \quad|\mathbf{V}|=\prod_{i=1}^{n} \sigma_{i}^{2}
$$

Define the mean vector μ by gives

$$
\sum_{i=1}^{n} \frac{\left(x_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}=(\mathbf{x}-\boldsymbol{\mu})^{T} \mathbf{V}^{-1}(\mathbf{x}-\boldsymbol{\mu})
$$

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right)
$$

Hence in matrix trom the MVN pdt becomes

$$
p(\mathbf{x})=(2 \pi)^{-n / 2}|\mathbf{V}|^{-1 / 2} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \mathbf{V}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

Notice this holds for any vector μ and symmetric positive -definite matrix V , as $|\mathrm{V}|>0$.

The multivariate normal

- Just as a univariate normal is defined by its mean and spread, a multivariate normal is defined by its mean vector μ (also called the centroid) and variance -covariance matrix V

Vector of means $\boldsymbol{\mu}$ determines location
Spread (geometry) about $\boldsymbol{\mu}$ determined by V

Eigenstructure (the eigenvectors and their corresponding eigenvalues) determines the geometry of V .

Vector of means $\boldsymbol{\mu}$ determines location
Spread (geometry) about $\boldsymbol{\mu}$ determined by V

x_{1}, x_{2} equal variances, negatively correlated

Positive tilt = positive correlations
Negative tilt = negative correlation
No tilt = uncorrelated

Eigenstructure of V

The direction of the largest axis of variation is given by the unit-length

Principal components

- The principal components (or PCs) of a covariance matrix define the axes of variation.
- PC1 is the direction (linear combination $c^{\top} x$) that explains the most variation.
- PC2 is the next largest direction (at 90 degree from PC1), and so on
- $\mathrm{PC}_{\mathrm{i}}=$ ith eigenvector of V
- Fraction of variation accounted for by $\mathrm{PCi}=\lambda_{\mathrm{i}} /$ trace(V)
- If V has a few large eigenvalues, most of the variation is distributed along a few linear combinations (axis of variation)
- The singular value decomposition is the generalization of this idea to nonsquare matrices

Properties of the MVN - I

1) If x is MVN, any subset of the variables in x is also MVN
2) If x is MVN, any linear combination of the elements of x is also MVN. If $x \sim \operatorname{MVN}(\mu, V)$

$$
\begin{aligned}
& \text { for } \quad \mathbf{y}=\mathbf{x}+\mathbf{a}, \quad \mathbf{y} \text { is } \mathrm{MVN}_{n}(\boldsymbol{\mu}+\mathbf{a}, \mathbf{V}) \\
& \text { for } \quad y=\mathbf{a}^{T} \mathbf{x}=\sum_{k=1}^{n} a_{i} x_{i}, \quad y \text { is } \mathrm{N}\left(\mathbf{a}^{T} \boldsymbol{\mu}, \mathbf{a}^{T} \mathbf{V} \mathbf{a}\right) \\
& \text { for } \quad \mathbf{y}=\mathbf{A} \mathbf{x}, \quad \mathbf{y} \text { is } \mathrm{MVN}_{m}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A}^{T} \mathbf{V A}\right)
\end{aligned}
$$

Properties of the MVN - II

3) Conditional distributions are also MVN. Partition x into two components, x_{1} (m dimensional column vector) and x_{2} (n-m dimensional column vector)

$$
\mathbf{x}=\binom{\mathbf{x}_{\mathbf{1}}}{\mathbf{x}_{\mathbf{2}}} \quad \boldsymbol{\mu}=\binom{\mu_{1}}{\boldsymbol{\mu}_{\mathbf{2}}} \quad \text { and } \quad \mathbf{V}=\left(\begin{array}{cc}
\mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{1}} & \mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{2}} \\
\mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{2}}^{T} & \mathbf{V}_{\mathbf{x}_{\mathbf{2}} \mathbf{x}_{\mathbf{2}}}
\end{array}\right)
$$

$x_{1} \mid x_{2}$ is MVN with m-dimensional mean vector

$$
\boldsymbol{\mu}_{\mathbf{X}_{1} \mid \mathbf{x}_{2}}=\boldsymbol{\mu}_{1}+\mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{\mathbf{2}}} \mathbf{V}_{\mathbf{X}_{2} \mathbf{X}_{\mathbf{2}}}^{-1}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{\mathbf{2}}\right)
$$

and $m \times m$ covariance matrix

$$
\mathbf{V}_{\mathbf{x}_{1} \mid \mathbf{x}_{2}}=\mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{1}}-\mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{2}} \mathbf{V}_{\mathbf{x}_{2} \mathbf{x}_{2}}^{-1} \mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{2}}^{T}
$$

Properties of the MVN - III

4) If x is MVN, the regression of any subset of
x on another subset is linear and homoscedastic

$$
\begin{aligned}
\mathbf{x}_{\mathbf{1}} & =\boldsymbol{\mu}_{\mathbf{x}_{1} \mid \mathbf{x}_{\mathbf{2}}}+\mathbf{e} \\
& =\boldsymbol{\mu}_{\mathbf{1}}+\mathbf{V}_{\mathbf{X}_{1} \mathbf{X}_{2}} \mathbf{V}_{\mathbf{x}_{2} \mathbf{X}_{\mathbf{2}}}^{-1}\left(\mathbf{x}_{\mathbf{2}}-\boldsymbol{\mu}_{\mathbf{2}}\right)+\mathbf{e}
\end{aligned}
$$

Where e is MVN with mean vector 0 and variance-covariance matrix $\quad \mathbf{V}_{\mathbf{X}_{1} \mid \mathbf{x}_{2}}$

$$
\int^{\left.\mu_{1}+v_{x \times x} V_{\bar{x} \times x_{x}}^{-x_{2}}-\mu_{2}\right)+e}
$$

The regression is linear because it is a linear function of x_{2}

The regression is homoscedastic because the variancecovariance matrix for e does not depend on the value of the x's

$$
\mathbf{V}_{\mathbf{x}_{1} \mid \mathbf{x}_{2}}=\mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{1}}-\mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{2}} \mathbf{V}_{\mathbf{x}_{2} \mathbf{x}_{2}}^{-1} \mathbf{V}_{\mathbf{x}_{1} \mathbf{x}_{2}}^{T}
$$

All these matrices are constant, and hence the same for any value of x

Example: Regression of Offspring value on Parental values
Assume the vector of offspring value and the values of both its parents is MVN. Then from the correlations among (outbred) relatives,

$$
\begin{gathered}
\left(\begin{array}{c}
z_{o} \\
z_{s} \\
z_{d}
\end{array}\right) \sim \mathrm{MVN}\left[\left(\begin{array}{l}
\mu_{0} \\
\mu_{s} \\
\mu_{d}
\end{array}\right), \sigma_{z}^{2}\left(\begin{array}{ccc}
1 & h^{2} / 2 & h^{2} / 2 \\
h^{2} / 2 & 1 & 0 \\
h^{2} / 2 & 0 & 1
\end{array}\right)\right] \\
\text { Let } \mathbf{x}_{\mathbf{1}}=\left(z_{o}\right), \quad \mathbf{x}_{\mathbf{2}}=\binom{z_{s}}{z_{d}} \\
\mathbf{V}_{\mathbf{x}_{1}, \mathbf{x}_{1}}=\sigma_{z}^{2}, \quad \mathbf{V}_{\mathbf{x}_{1}, \mathbf{x}_{2}}=\frac{h^{2} \sigma_{z}^{2}}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right), \quad \mathbf{V}_{\mathbf{x}_{2}, \mathbf{x}_{2}}=\sigma_{z}^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\\
=\boldsymbol{\mu}_{\mathbf{1}}+\mathbf{V}_{\mathbf{x}_{1} \mathbf{X}_{2}} \mathbf{V}_{\mathbf{x}_{\mathbf{2}} \mathbf{x}_{\mathbf{2}}}^{-1}\left(\mathbf{x}_{\mathbf{2}}-\boldsymbol{\mu}_{\mathbf{2}}\right)+\mathbf{e}
\end{gathered}
$$

Regression of Offspring value on Parental values (cont.)

$$
\begin{gathered}
=\boldsymbol{\mu}_{\mathbf{1}}+\mathbf{V}_{\mathbf{x}_{1} \mathbf{X}_{\mathbf{2}}} \mathbf{V}_{\mathbf{x}_{\mathbf{2}} \mathbf{X}_{\mathbf{2}}}^{-1}\left(\mathbf{x}_{\mathbf{2}}-\boldsymbol{\mu}_{\mathbf{2}}\right)+\mathbf{e} \\
\mathbf{V}_{\mathbf{x}_{1}, \mathbf{x}_{1}}=\sigma_{z}^{2}, \quad \mathbf{V}_{\mathbf{x}_{1}, \mathbf{x}_{2}}=\frac{h^{2} \sigma_{z}^{2}}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right), \quad \mathbf{V}_{\mathbf{x}_{2}, \mathbf{X}_{2}}=\sigma_{z}^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Hence,

$$
\begin{aligned}
z_{o} & =\mu_{o}+\frac{h^{2} \sigma_{z}^{2}}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \sigma_{z}^{-2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{z_{s}-\mu_{s}}{z_{d}-\mu_{d}}+e \\
& =\mu_{o}+\frac{h^{2}}{2}\left(z_{s}-\mu_{s}\right)+\frac{h^{2}}{2}\left(z_{d}-\mu_{d}\right)+e
\end{aligned}
$$

Where e is normal with mean zero and variance

$$
\begin{aligned}
\mathbf{V}_{\mathbf{X}_{1} \mid \mathbf{x}_{\mathbf{2}}} & =\mathbf{V}_{\mathbf{X}_{1} \mathbf{x}_{1}}-\mathbf{V}_{\mathbf{X}_{1} \mathbf{X}_{\mathbf{2}}} \mathbf{V}_{\mathbf{x}_{2} \mathbf{x}_{\mathbf{2}}}^{-1} \mathbf{V}_{\mathbf{X}_{1} \mathbf{x}_{\mathbf{2}}}^{T} \\
\sigma_{e}^{2} & =\sigma_{z}^{2}-\frac{h^{2} \sigma_{z}^{2}}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \sigma_{z}^{-2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \frac{h^{2} \sigma_{z}^{2}}{2}\binom{1}{1} \\
& =\sigma_{z}^{2}\left(1-\frac{h^{4}}{2}\right)
\end{aligned}
$$

Hence, the regression of offspring trait value given the trait values of its parents is

$$
z_{o}=\mu_{o}+h^{2} / 2\left(z_{s}-\mu_{s}\right)+h^{2} / 2\left(z_{d}-\mu_{d}\right)+e
$$

where the residual e is normal with mean zero and $\operatorname{Var}(e)=\sigma_{z}^{2}\left(1-h^{4} / 2\right)$

Similar logic gives the regression of offspring breeding value on parental breeding value as

$$
\begin{aligned}
A_{o} & =\mu_{o}+\left(A_{s}-\mu_{s}\right) / 2+\left(A_{d}-\mu_{d}\right) / 2+e \\
& =A_{s} / 2+A_{d} / 2+e
\end{aligned}
$$

where the residual e is normal with mean zero and $\operatorname{Var}(\mathrm{e})=\sigma_{\mathrm{A}}{ }^{2} / 2$

Additional R matrix commands

```
Operator or Description
Function
A * B Element-wise multiplication
A %*% B Matrix multiplication
A %%% B Outer product. AB'
crossprod(A,B) A'B and A'A respectively.
crossprod(A)
t(A) Transpose
diag(x) Creates diagonal matrix with elements of }\mathbf{x}\mathrm{ in the principal diagonal
diag(A) Returns a vector containing the elements of the principal diagonal
diag(k) If k is a scalar, this creates a k x k identity matrix. Go figure.
solve(A, b) Returns vector }\mathbf{x}\mathrm{ in the equation b = Ax (i.e., }\mp@subsup{A}{}{-1}b
solve(A) Inverse of A where A is a square matrix.
ginv(A) Moore-Penrose Generalized Inverse of A.
    ginv(A) requires loading the MASS package.
y<-eigen(A) y$val are the eigenvalues of A
    y$vec are the eigenvectors of A
y<-svd(A) Single value decomposition of A.
    y$d = vector containing the singular values of A
    y$u= matrix with columns contain the left singular vectors of A
    y$v= matrix with columns contain the right singular vectors of A
```


Additional R matrix commands (cont)

```
R<- chol(A) Choleski factorization of A. Returns the upper triangular factor, such that R'R =
    A.
y<- qr(A) QR decomposition of A.
    y$qr has an upper triangle that contains the decomposition and a lower
    triangle that contains information on the Q decomposition.
    y$rank is the rank of A.
    y$qraux a vector which contains additional information on Q.
    y$pivot contains information on the pivoting strategy used.
cbind(A,B,\ldots.) Combine matrices(vectors) horizontally. Returns a matrix.
rbind(A,B,\ldots.) Combine matrices(vectors) vertically. Returns a matrix.
rowMeans(A) Returns vector of row means.
rowSums(A) Returns vector of row sums.
colMeans(A) Returns vector of column means.
colSums(A) Returns vector of coumn means.
```


Additional references

- Lynch, Visccher, \& Walsh Chapter 10 (intro to matrices) (on website)
- Walsh and Lynch,
- Appendix 5 (Matrix geometry) (on website)
- Appendix 6 (Matrix derivatives)

PAUSE

- Many of the key results in linear and mixed models arise by considering the regression of one subset of a vector of random variable on another (slides 44-46)
- We conclude with a few optional slides on the singular value decomposition, the generalization of eigenstructure to any matrix (such as nonsquare matrices).
- The SVD arises when consider certain Gx E problems.

The Singular-Value Decomposition (SVD)

An $n \times p$ matrix \mathbf{A} can always be decomposed as the product of three matrices: an $n \times p$ diagonal matrix $\boldsymbol{\Lambda}$ and two unitary matrices, \mathbf{U} which is $n \times n$ and \mathbf{V} which is $p \times p$. The resulting singular value decomposition (SVD) of \mathbf{A} is given by

$$
\begin{equation*}
\mathbf{A}_{n \times p}=\mathbf{U}_{n \times n} \boldsymbol{\Lambda}_{n \times p} \mathbf{V}_{p \times p}^{T} \tag{39.16a}
\end{equation*}
$$

We have indicated the dimensionality of each matrix to allow the reader to verify that each matrix multiplication conforms. The diagonal elements $\lambda_{1}, \cdots, \lambda_{s}$ of $\boldsymbol{\Lambda}$ correspond to the singular values of \mathbf{A} and are ordered by decreasing magnitude. Returning to the unitary matrices \mathbf{U} and \mathbf{V}, we can write each as a row vector of column vectors,

$$
\begin{equation*}
\mathbf{U}=\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{i}, \cdots \mathbf{u}_{n}\right), \quad \mathbf{V}=\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{i}, \cdots \mathbf{v}_{p}\right) \tag{39.16b}
\end{equation*}
$$

where \mathbf{u}_{i} and \mathbf{v}_{i} are n and p-dimensional column vectors (often called the left and right singular vectors, respectively). Since both \mathbf{U} and \mathbf{V} are unitary, by definition (Appendix 4) each column vector has length one and are mutually orthogonal (i.e., if $i \neq j, \mathbf{u}_{i} \mathbf{u}_{j}^{T}=\mathbf{v}_{i} \mathbf{v}_{j}^{T}=$ 0). Since $\boldsymbol{\Lambda}$ is diagonal, it immediately follows from matrix multiplication that we can write any element in \mathbf{A} as

$$
\begin{equation*}
A_{i j}=\sum_{k=1}^{s} \lambda_{k} u_{i k} v_{k j} \tag{39.16c}
\end{equation*}
$$

where λ_{k} is the k th singular value and $s \leq \min (p, n)$ is the number of non-zero singular values.

The importance of the singular value decomposition in the analysis of $G \times E$ arises from the Eckart-Young theorem (1938), which relates the best approximation of a matrix by some lower-rank (say k) matrix with the SVD. Define as our measure of goodness of fit between a matrix \mathbf{A} and a lower rank approximation $\widehat{\mathbf{A}}$ as the sum of squared differences over all elements,

$$
\sum_{i j}\left(A_{i j}-\hat{A}_{i j}\right)^{2}
$$

Eckart and Young show that the best fitting approximation $\widehat{\mathbf{A}}$ of rank $m<s$ is given from the first m terms of the singular value decomposition (the rank-mSVD),

$$
\begin{equation*}
\hat{A}_{i j}=\sum_{k=1}^{m} \lambda_{k} u_{i k} v_{k j} \tag{39.17a}
\end{equation*}
$$

For example, the best rank-2 approximation for the $G \times E$ interaction is given by

$$
\begin{equation*}
G E_{i j} \simeq \lambda_{1} u_{i 1} v_{j 1}+\lambda_{2} u_{i 2} v_{j 2} \tag{39.17b}
\end{equation*}
$$

where λ_{i} is the i th singular value of the GE matrix, \mathbf{u} and \mathbf{v} are the associated singular vectors (see Example 39.3). The fraction of total variation of a matrixaccounted for by taking the first m terms in its SVD is

$$
\sum_{k=1}^{m} \lambda_{k}^{2} / \sum_{i j} A_{i j}^{2}=\frac{\lambda_{1}^{2}+\cdots+\lambda_{m}^{2}}{\lambda_{1}^{2}+\cdots+\lambda_{s}^{2}}
$$

A data set for soybeans grown in New York (Gauch 1992) gives the GE matrix as

$$
\mathbf{G E}=\left(\begin{array}{rrr}
57 & 176 & -233 \\
-36 & -196 & 233 \\
-45 & -324 & 369 \\
-66 & 178 & -112
\end{array}\right) \quad \begin{aligned}
& \text { Where } \mathrm{GE}_{\mathrm{ij}}=\text { value for } \\
& \text { Genotype } \mathrm{i} \text { in envir. } \mathrm{j}
\end{aligned}
$$

In \boldsymbol{R}, the compact SVD (Equation 39.16d) of a matrix X is given by $\mathbf{s v d}(\mathbf{x})$, returning the SVD of $\mathbf{G E}$ as

$$
\left(\begin{array}{rrr}
0.40 & 0.21 & 0.18 \\
-0.41 & 0.00 & 0.91 \\
-0.66 & 0.12 & -0.30 \\
0.26 & -0.83 & 0.11 \\
0.41 & 0.50 & 0.19
\end{array}\right)\left(\begin{array}{ccc}
746.10 & 0 & 0 \\
0 & 131.36 & 0 \\
0 & 0 & 0.53
\end{array}\right)\left(\begin{array}{rrr}
0.12 & 0.64 & -0.76 \\
0.81 & -0.51 & -0.30 \\
0.58 & 0.58 & 0.58
\end{array}\right)
$$

The first singul ar val ue accounts for $746.10^{2} /\left(743.26^{2}+131.36^{2}+0.53^{2}\right)=97.0 \%$ of the total variation of GE, while the second singul ar val ue accounts for 3.0%, so that together they account for es sentially all of the total variation. The rank-1 SVD approximation of $\mathbf{G E}$ is given by setting all of the diagonal elements of $\boldsymbol{\Lambda}$ except the first entry to zero,

$$
\mathbf{G} \mathbf{E}_{1}=\left(\begin{array}{rrr}
0.40 & 0.21 & 0.18 \\
-0.41 & 0.00 & 0.91 \\
-0.66 & 0.12 & -0.30 \\
0.26 & -0.83 & 0.11 \\
0.41 & 0.50 & 0.19
\end{array}\right)\left(\begin{array}{ccc}
746.10 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
0.12 & 0.64 & -0.76 \\
0.81 & -0.51 & -0.30 \\
0.58 & 0.58 & 0.58
\end{array}\right)
$$

Simil arly, the rank-2 SVD is given by setting all but the first two singul ar val ues to zero,

$$
\mathbf{G E}_{2}=\left(\begin{array}{rrr}
0.40 & 0.21 & 0.18 \\
-0.41 & 0.00 & 0.91 \\
-0.66 & 0.12 & -0.30 \\
0.26 & -0.83 & 0.11 \\
0.41 & 0.50 & 0.19
\end{array}\right)\left(\begin{array}{ccc}
746.10 & 0 & 0 \\
0 & 131.36 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
0.12 & 0.64 & -0.76 \\
0.81 & -0.51 & -0.30 \\
0.58 & 0.58 & 0.58
\end{array}\right)
$$

For example, the rank-1 SVD approximation for GE_{32} is $g_{31} \lambda_{1} e_{12}=746.10^{*}(-0.66)^{*} 0.64=-315$

While the rank-2 SVD approximation is $g_{31} \lambda_{2} \mathrm{e}_{12}+\mathrm{g}_{32} \lambda_{2} \mathrm{e}_{22}=$ 746.10*(-0.66)*0.64 + 131.36* 0.12*(-0.51) $=-323$

Actual value is -324
Generally, the rank-2 SVD approximation for $\mathrm{GE}_{\mathrm{ij}}$ is $g_{i 1} \lambda_{1} e_{1 j}+g_{i 2} \lambda_{2} e_{2 j}$

