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Animal/plant breeding programs are based on the 
principle that phenotypic observations on related 
individuals can provide information about their 
underlying genotypic values

The additive component of genetic variation is the 
primary determinant of the degree to which 
offspring resemble their parents, and therefore 
this is usually the component of interest in 
artificial selection programs
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Many statistical methods for analysis of genetic 
data are specific (or more appropriate) for 
phenotypic measurements obtained from planned 
experimental designs and with balanced data sets

While such situations may be possible within 
laboratory or greenhouse experimental settings, 
data from natural populations and agricultural 
species are generally highly unbalanced and 
fragmented by numerous kinds of relationships
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Culling of data to accommodate conventional statistical 
techniques (e.g. ANOVA) may introduce bias and/or lead 
to a substantial loss of information

The mixed model methodology allows efficient estimation 
of genetic parameters (such as variance components and 
heritability) and breeding values while accommodating 
extended pedigrees, unequal family sizes, overlapping 
generations, sex-limited traits, assortative mating, and 
natural or artificial selection

To illustrate such application of mixed models in breeding 
programs, we consider here the so-called Animal Model in 
situations with a single trait and a single observation 
(including missing values) per individual
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The animal model can be described as:

eZuXβy ++=

y is an (n ´ 1) vector of observations (phenotypic scores)

b is a (p ´ 1) vector of fixed effects (e.g. herd-year-
season effects)

u ~ N(0, G) is a (q ´ 1) vector of breeding values (relative 
to all individuals with record or in the pedigree file, 
such that q is in general bigger than n)

e ~ N(0, Inσe2) represents residual effects, where σe2 is 
the residual variance
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The Matrix  A
The matrix G describing the covariances among the 
random effects (here the breeding values) follows 
from standard results for the covariances between 
relatives

It can be shown that the additive genetic covariance 
between two relatives i and i’ is given by             , 
where       is the coefficient of coancestry between 
individuals i and i’, and       is the additive genetic 
variance in the base population

Hence, under the animal model,                , where A
is the additive genetic (or numerator) relationship 
matrix, having elements given by
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The Matrix  A

For each animal i in the pedigree (i = 1, 2,…,n), going from 
older to younger animals, compute aii and aij (j = 1, 2,…,i-1) 
as follows:

If both parents (s and d) of animal i are known:

aij = aji = (ajs + ajd)/2 and aii = 1 + asd/2

If only one parent (e.g. d) of animal i is known:

aij = aji = ajd/2 and aii = 1

If parents unknown:

aij = aji = 0 and aii = 1
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Example

1 2

4 3

5 6

Animal Sire Dam
1 - -
2 - -
3 1 2
4 1 -
5 4 3
6 5 2
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In general, in animal/plant breeding interest is 
on prediction of breeding values (for selection 
of superior individuals), and on estimation of 
variance components and functions thereof, 
such as heritability

The fixed effects are, in some sense, nuisance 
factors with no central interest in terms of 
inferences, but which need to be taken into 
account (i.e., they need to be corrected for 
when inferring breeding values)
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Since under the animal model                        and                   
, the mixed model equations can be 

expressed as:
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Conditional on the variance components ratio λ, the 
BLUP of the breeding values are given then by:

These are generally referred to as Estimated Breeding 
Values (EBV)

Alternatively, some breeders associations express their 
results as Predicted Transmitting Abilities (PTA) (or 
Estimated Transmitting Abilities (ETA) or Expected 
Progeny Difference (EPD)), which are equal to half the 
EBV, representing the portion of an animal’s breeding 
values that is passed to its offspring
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The amount of information contained in an animal’s 
genetic evaluation depends on the availability of its 
own record, as well as how many (and how close) 
relatives it has with phenotypic information

As a measure of amount of information in livestock 
genetic evaluations, EBVs are typically reported 
with its associated accuracies

Accuracy of predictions is defined as the 
correlation between true and estimated breeding 
values, i.e.,                    

Instead of accuracy, some livestock species genetic 
evaluations use reliability, which is the squared 
correlation of accuracy (   )
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The calculation of               requires the diagonal 
elements of the inverse of the MME coefficient 
matrix, represented as:

It can be shown that the prediction error variance of 
EBV      is given by:

where      is the i-th diagonal element of       , relative 
to animal i. 

Prediction Accuracy
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Prediction Accuracy

The PEV can be interpreted as the fraction of 
additive genetic variance not accounted for by 
the prediction

Therefore, PEV can be expressed also as:

such that                             , from which the 
reliability is obtained as:
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PAUSE

ð Animal Model

ð Numerator relationship matrix

ð EBV and prediction accuracy

ð Next: Examples

Next PAUSE, slide 21
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The animal model can be extended to model multiple
(correlated) traits, multiple random effects (such as
maternal effects and common environmental effects),
repeated records (e.g. test day models), and so on

Example (Mrode 1996, pp74-76): Weaning weight (kg)
of piglets, progeny of three sows mated to two boars:
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A linear model with the  (fixed) effect of sex, and the 
(random) effects of common environment (related to 
each litter) and breeding values can be expressed as X:

Assuming that            ,              and            , the MME 
are as follows:

where                         and
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The BLUEs and BLUPs 
(inverting the numerator 
relationship matrix) are:
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PAUSE

ð Examples with single trait analysis

ð Models with multiple random effects
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Animal Model Extensions

• Multiple-trait Model
• Repeatability Model
• Maternal Effects
• Generalized Linear Models
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Multiple (Correlated) Traits
The animal model can be extended for the joint analysis 
of multiple traits
Let the model for each of k traits be:

where j is an index to indicate the trait (j = 1, 2,…,k). 
For the joint analysis of the k trait, the model becomes:

with design matrices given by:

y j =X jβ j +Z ja j + ε j

y =Xβ+Za+ ε
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Multiple (Correlated) Traits
In this case it is assumed that:

where G and Σ are the genetic and residual variance-
covariance matrices, given by:

Note: ⊗ represents the direct (Kronecker) product24



Multiple (Correlated) Traits

The MME for multi-trait analyses are of the same form 
as before, i.e.:

from which the BLUEs and BLUPs of β and a can be 
obtained.
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Multiple (Correlated) Traits

The dimensionality of multi-trait MME, however, can 
become a hurdle for solving it when more than two or 
three traits are considered

An alternative for the analysis of multiple traits is to 
use a canonical transformation of the traits, which 
consists of transforming the vectors of correlated 
traits into a new vector of uncorrelated variables

In such case, each transformed variable can be analyzed 
independently using standard single trait models, and 
subsequently the estimated breeding values are 
transformed back to the original scale of measurement
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Repeatability Model
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Repeatability Model

For the analysis of repeated measurements, 
environmental effects can be partitioned into 
permanent and temporary effects

In this case, the mixed model, usually called 
‘repeatability model’, can be written as:

where p ~ N(0, Iσp
2) is the vector of permanent 

environmental effects, with each level pertaining to 
a common effect to all observations of each animal
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Repeatability Model

It is often assumed that a, p, and ε, which are 
independent from each other

Under these assumptions, the MME becomes:

with                   and
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Maternal Effects
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Maternal Effects
There are some traits of interest in livestock, such 
as weaning weight in beef cattle, in which progeny 
performance is affected by the dam’s ability to 
affect the calf’s environment, such as in the form 
of nourishment through her milk production, the 
quantity and quality of which is in part genetically 
determined

In such cases, dams contribute to the performance 
of their progeny not only through the genes passed 
to the progeny (the “direct genetic effects”) but 
also through their ability to provide a suitable 
environment (the “indirect genetic effects”)
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Maternal Effects
Maternally influenced traits can be analyzed by using 
a model as:

where m is a vector of random maternal genetic 
effects, and p is a vector of random maternal 
permanent environmental effects

It is assumed that m ~ N(0, Aσm
2) and p ~ N(0, Iσp

2), 
and quite often a covariance structure between 
direct and maternal additive genetic effects is 
considered, assumed equal to Aσa,m
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Computing Strategies

Solving the MME does not necessary require the 
inversion of the coefficient matrix C

More computationally convenient alternatives for 
solving high dimensional systems of linear equations 
include methods based on iteration on the MME, such 
as the Jacobi or Gauss-Seidel iteration, and the 
“iteration on the data” strategy, which is commonly 
used methodology in national genetic evaluations 
involving millions of records
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Generalized Linear Models

The models discussed so far assumed a Gaussian 
(normal) distribution of the phenotypic traits

Often however phenotypic traits are expressed a a 
binary (e.g., pregnancy in dairy cattle, or germination 
in seeds) or count variable (e.g., litter size in swine, 
or fruits in trees)

In such cases the linear (Gaussian) model is not 
appropriate, and a generalized linear model (GLM) 
approach is necessary
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Generalized Linear Models
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Generalized Linear Models

GLM can actually model outcomes (response 
variables) generated from any distribution from 
the exponential family, which includes the normal, 
binomial, Poisson and gamma distributions, among 
others

The GLM consists of three elements:

1. Probability distribution from the exponential 
family.

2. Linear predictor η = Xβ
3. Link function g such that E(Y) = µ = g-1(η). 
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Generalized Linear Mixed Models

Notice that the Gaussian model is a specific case 
of the GLM, with the normal distribution and an 
identity link function

In the case of Generalized Linear Mixed Models, 
including the applications in animal/plant 
breeding, the model is defined as: 

1. Probability distribution from the exponential 
family.

2. Linear predictor η = Xβ + Zu
3. Link function g such that E(Y|u) = µ = g-1(η)
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GLMM in R

GLMM can be implemented in R using the 
package lme4

lme4, however, assumes independence 
between levels of random effects, and as 
such it is not suitable for many 
animal/plant breeding applications

pedigreemm is an R package that uses lme4 
with a Cholesky decomposition strategy to 
overcome this problem
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(Harville and Callanan 1989)

pedigreemm
An R package for fitting generalized linear mixed 
models in animal breeding
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