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Topics

Definitions, dimensionality, addition,
subtraction

Matrix multiplication

Inverses, solving systems of equations
Quadratic products and covariances
The multivariate normal distribution
Eigenstructure

Basic matrix calculations in R

The Singular Value Decomposition (SVD)
— First PAUSE slide 16



Matrices: An array of elements

Vectors: A matrix with either one row or one column.

Usually written in bold lowercase, e.g. a, b, c

12
a=| 13 b=(2 0 5 21)
47

Column vector Row vector

(3x1) (1 x 4)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car



General Matrices

Usually written in bold uppercase, e.g. A, C, D

3 1 2 0 1
C=1|(2 5 4 D=3 4
1 1 2 2 9
(3 x 3)
Square matrix (3x2)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element B;; -- the element in row i
and column |



Addition and Subtraction of Matrices

If two matrices have the same dimension (both are r x ¢,
then matrix addition and subtraction simply follows by
adding (or subtracting) on an element by element basis

Matrix addition: (A+B); = A+ B

Matrix subtraction: (A-B);=A ;- B

j - =

(3 0 , (1 2
A—(l 2) and B—(2 1)

4 2 _ A 2 -2
C-A—+—B—(3 3) and D= A-B _(_1 1)

Examples:



Partitioned Matrices

It will often prove useful to divide (or partition) the
elements of a matrix into a matrix whose elements are
itself matrices.

3
C=1|2
1

e (2 (5 4
a=(3)., b=(1 2), d (l) B (l 2)

One usetul partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors

/3212\

B _(a b)
2 i 5 4 d B
1 2

b = BO

.0C|.l



3 1

C=12 5

11
ry = (3
122(2
132(1
3
c=|2
l

3

C| = 2

|

o = B
A S =

A column vector whose
elements are row vectors

Ca C3 )

0
|
N s DD

A row vector whose
elements are column
vectors



Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

a'b= ia;b::
1=1

Example:

and b=(4 5 7 9)

= O B

a'b=1*+2*5+3*7 +4*9 =71



Matrices are compact ways to write
systems of equations

5;1.‘1 + 6.‘1?»2 + él;l.‘g =6
Try — 315 + 53 = —9Y

—T1 — To + 6rg = 12

H 6 4 I 6
7T =3 5 | =1 -9
— l — 1 6 I3 1 2

Ax =c. or x=A"'¢



The least-squares solution for the linear model

y=p+0121+ " OnzZn
yields the following system of equations for the ;
o(y,z1) = Bio%(z1) +Beo(z1,22) + -+ + Bno(21, 2n)
o(y,22)= Bio(21,22) + B20(22) + -+ Pno(22, 2n)

U(ya zn)‘: ﬁlo(zlz zn) +.4620(223 zn) + 0+ 6110’2(‘371)
This can be more compactly written in matrix form as

o%(z,) zl Zo) ... a('zl,zn) 8, o(y, z1)
& VAW

o(z1,22) (zz) . 0(22,2n) o(y, z)

\o(zl.,zn) o(z2.,z.”) oQ(z,l)/ \,B.n/ \o(y;zn))
XTX B X'y

or [3 — (XTX)-1 Xy 10



Matrix Multiplication:

The order in which matrices are multiplied affects
the matrix product, e.g. AB 7 BA

For the product of two matrices to exist, the matrices
must conform. For AB, the number of columns of A must
equal the number of rows of B.

The matrix C = AB has the same number of rows as A
and the same number of columns as B.

Clrxe) = A B :
{rasc) = Ty =joxc) Elements in the

ij-th element of C is given by / ith column of B

k
Cij=)_AitBi  Elements in the ith
(=1 row of matrix A



Outer indices given dimensions of
resulting matrix, with r rows (

and c columns ( 7
B(k

rxc _ rx|<) XC)

Inner |nd|ces must match
columns of A = rows of B

Example: Is the product ABCD defined? If so, what
is its dimensionality? Suppose

A3x5 BSx9 C‘?xé D6x23

Yes, defined, as inner indices match. Resultis a 3 x 23
matrix (3 rows, 23 columns) 1



More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors

m;
M = { \ where m;= (Mg My -~ M)
\mm,/

Likewise express N as a row vector of

Im;
r

column vectors :z
N=(n, n, - my) where n; =
The ij-th element of L is the inner product N:c.
of M's row i with N's column | ’
m;"n; Img 'ng °“°° ImMp~Np
m2-n; mMz- "Nz °“°° mM2- Np

L=

mr'nl mr.n2 e mr.nb/



Example

~(a b\ [fe f\ [(ae+bg af+bh
AB_(C d) (g h>_(ce+dg cf+dh)

Likewise

~ (ae+cf eb+df
BA_(ga-l—ch gd—-dh)

ORDER of multiplication matters! Indeed, consider
Cs,5 D5, s which gives a 3 x 5 matrix, versus Ds,5 Cs,5,
which is not defined.

14



Matrix multiplication in R

- R fills in the matrix from
> A<-matrix(c(l,2,3,4),nron=2)

> B<-matrix(c(4,5,6,7), nron=2) the list ¢ by filling in as

>A columns, here with 2 rows
(.11 [.2]

[1,] 1 3 (nrow=2)

2,1 2 4

> B . .

L1 Entering A or B displays what was
EH g g entered (always a good thing to check)
> A %*% B

(.11 [.Z2] .
[1,] 19 27 The command %*% is the R code

Lol eSS for the multiplication of two matrices

On your own: What is the matrix resulting from BA?

What is A if nrow=1 or nrow=4 is used?
15



The Transpose of a Matrix

The transpose of a matrix exchanges the

rows and columns, AT, = A,

Useful identities

(AB)T = BT AT I T
(ABC)T=CTBTAT 7| : |

a’ll

Inner product = a'™b = a'j x b @ x 1)

\

Indices match, matrices conform

Dimension of resulting productis 1 X 1 (i.e. a scalar)

b "
(ay - a,) ( ) —a’b X“:"J: Note that b'a = (bTa)T =a'b

b, 16



Outer product = ab" =a ,x yb" (1 xn)

~.

Resulting product is an n x n matrix

(1
5

.| (b b by, )
an
(l'lbl (l‘lbg . = (l.lbn
(I'Qb] (l‘;‘_)_bQ " = (I.an



R code for transposition

> t(A)

[,1] [, 2] t(A) = transpose of A
[1,] 1 2
[Z,] 3 4

> g<-matrix(c(l,2,3),nron=3) Enter the column vector a

> Q
[,1]

(1,1 1

(2,1 ¢

(3.1 3 |

> t(a) ¥*% a Compute inner product a'a
[,1]

1,1 14

E a]%+% N Compute outer product aa'

(.11 [, 2] [,3]

L] 1 2 3
[2,] 2 4 6
3 6 9

18



Solving equations

 The identity matrix |

— Serves the same role as 1 in scalar algebra, e.g.,
a*1=1*a =a, with Al=1A= A

e The inverse matrix A (IF it exists)
— Definedby AAT =1, ATA = |

— Serves the same role as scalar division
* To solve ax = ¢, multiply both sides by (1/a) to give:
e (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,
e Hence x = (1/a)c
e Tosolve Ax=c, A'Ax=A"Tc
e OrA'Ax =Ix=x=A"c

19



The ldentity Matrix, |

The identity matrix serves the role of the
number 1 in matrix multiplication: Al =A, |A = A

| is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

1 fori=|

] :
O otherwise

(i

oo
o= 0O
00

20



The |dentity Matrix in R

diag(k), where k is an integer, return the k x k | matrix

> I<-diag(4)
> 1

(.11 [,2] [,3] [L,4]
[1,] 1 o 0 0

[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
> I2 <-diag(2)
> 12

(.11 [,2]
[1,] 1 0
[2,] 0 1

21



The Inverse Matrix, A

For a square matrix A, define its Inverse Al as
the matrix satisfying

ATA=AAT =1

- ab) i) d -b
For'A—(C J A _@-c a)

If this quantity (the determinant)
is zero, the inverse does not exist.

22



If det(A) is not zero, A! exists and A is said to be
non-singular. If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch &

Walsh

A is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is
consistent, then some of the variables have a family

of solutions (e.g., Xx; =2, but x, + x3 = 6)

23



Inversion in R

solve(A) computes A

det(A) computes determinant of A

> A Using A entered earlier
[,11 [ 2]

[1,] 1 3

[2,] 2 4 ]

> solve(A) Compute A !
[,11 [ 2]

[1,] -2 1.5

[2,] 1 -0.5

> solve(A) %*% A
[,1] [,2] Showing that AT A = |

[1,] 1 -8.881784e-16
[2,] 0 1.000000e+00

Eﬁjef?‘) Computing determinant of A

24



Useful identities
(AT = (AT
(AB)1 =BT A"

For a diagonal matrix D, then det (D), which is also
denoted by IDI, = product of the diagonal elements

Also, the determinant of any square matrix A,
det(A), is simply the product of the eigenvalues A of A,
which satisfy

Ae = Ae

If A'is n x n, solutions to A are an n-degree polynomial. e is
the eigenvector associated with A. If any of the roots to the
equation are zero, A™! is not defined. In this case, for some

linear combination b, we have Ab = 0.
25



Variance-Covariance matrix

e A very important square matrix is the
variance-covariance matrix V associated with
a vector x of random variables.

e V; = Cov(x;xj), so that the i-th diagonal
element of V is the variance of x;, and off-
diagonal elements are covariances

* Vis a symmetric, square matrix

26



The trace

The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals

the sum of the eigenvalues of A, tr(A) = 2 A,

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

L / tr(V) is the fraction of the total variation
in x contained in the linear combination e 'x, where
e;, the i-th principal component of V is also the

i-th eigenvector of V (Ve = A e))
27



Eigenstructure in R

eigen (A) returns the eigenvalues and vectors of A

> V<-matrix(c(10,-5,10,-5,20,0,10,0,30),nrow=3)

>V

C.11 [, 2] [.3]
1,7 1 -5 10
[2,] -5 20 0
[3,] 10 B 30
> eigen(V)
$values

[1] 34.410103 21.117310 4.472587

$Vec (alals]

[,1]

[,2]

[1,]] ©.3996151 | 0.2117936
[2,]]-0.1386580 |-0.9477830
[3,]] 0.9061356 |-0.2384340

[,3]
0.8918807
0.2871955

-0.3493816

PC1 PC2

Trace = 60

PC 1 accounts for 34.4/60 =
57% of all the variation

0.400* x4 — 0.139*x, + 0.906*x;
0.212* x; — 0.948*x, - 0.238*x3

28



Quadratic and Bilinear Forms

Quadratic product: for A, , and X, 4 1

TL n
xT Ax = Z Zaij:cz'xj Scalar (1 x 1)

1=1 j=1

Bilinear Form (generalization of quadratic product)
for A xn @nx 1, b1 their bilinear formis by, 1  An i n@n 1

bTAa = zm: iAijbz‘aj

1=1 Jj=1
Note that b'Aa =a'Alb

29



Covariance Matrices for
Transformed Variables

What is the variance of the linear combination,
C1X1 + CoXo + ... + ¢ X, ? (note this is a scalar)

n n n
2( T, — 2 —
g \C X)) =0 CGIT; | =0 Ct'CL'z', C}'SEJ
i=1 ‘
n mn
:E E o(cizi,cjT;) = E E cicjo(zi,z;)

i=1 7=1 =1 j7=1
—c'Ve
Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

oc(a’x,b’x)=a’Vb

30



Example: Suppose the variances of x;, x5, and x3 are
10, 20, and 30. x4 and x, have a covariance of -5,
x1 and x5 of 10, while x, and x3 are uncorrelated.

What are the variances of the indices
y1 = X1 -2X2+5X3 and y2 = 6X2-4X3?

10 =5 10 l 0
V=1-5 20 0], cg=1|-2]. c= 6
10 0 30 5 —4

Var(y;) = Var(c;'x) = ¢4" Var(x) ¢; = 960
Var(y,) = Var(c,'x) = ¢," Var(x) ¢, = 1200
Cov(yq,y2) = Cov(c,'x, c,'x) = ¢4" Var(x) ¢, = -910

Homework: use R to compute the above values



The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
w; and variance c?

- -1/2 _- (z; — p)*
p(x) = ] [(2m) %0, " exp (—- 52

1=1

n =1 " N2
= (2m) /2 (Ha;) exp (— Z (5'3%20/;:.) )
ey

i=1 z

This can be expressed more compactly in matrix form

32



Define the covariance matrix V for the vector x of
the n normal random variable by

2 0 e ()
/(61 2 0\

n
o— ..o 2
v=| . 7. V=]]o?
S P i=1
Y
Define the mean vector u by gives /Z; \
K= :
n z; - z'2 o .
Z( 02#) =(x—p)' V1(x—p) \#'n)
i=1 ()
Hence in matrix trom the MVN pdt becomes
5 e 1 —
p(x) = (2m)" "2 [VIT2 exp | = (x— )" V7 (x — p)

Notice this holds for any vector p and symmetric positive-
definite matrix V, as |V | > O. 33



The multivariate normal

e Just as a univariate normal is defined by
its mean and spread, a multivariate

normal is defined by its mean vector pn
(also called the centroid) and variance-

covariance matrix V

34



Vector of means p determines location

Spread (geometry) about p determined by V

X1, X equal variances,

X1, X» equal variances,
1. X2 €9 uncorrelated

positively correlated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.

35



Vector of means p determines location

Spread (geometry) about p determined by V

T T —
I | ——
X1, X equal variances, Var(xq) < Var(xy),
negatively correlated uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation

No tilt = uncorrelated "



Eigenstructure of V

The direction of the largest axis of
variation is given by the unit-length

The next largest axis of orthogonal
(at 90 degrees from) €1, is

given by €,, the 2nd eigenvector

37



Principal components

The principal components (or PCs) of a covariance
matrix define the axes of variation.

— PC1 is the direction (linear combination c'x) that explains
the most variation.

— PC2 is the next largest direction (at 90 degree from PC1),
and so on

PC, = ith eigenvector of V

Fraction of variation accounted for by PCi = A, /
trace(V)

It V has a few large eigenvalues, most of the variation
is distributed along a few linear combinations (axis of
variation)

The singular value decomposition is the
generalization of this idea to nonsquare matrices

38



Properties of the MVN - |

1) If x is MVN, any subset of the variables in x is also MVN

2) If xis MVN, any linear combination of the
elements of x is also MVN. If x ~ MVN(u,V)

for y=x+a, y is MVN,,(p + a, V)

TL
for y=alx= Zaia:i, yis N@a’p,a’ Va)
k=1

for y=Ax, vy is MVNnm (Au,ATVA)

39



Properties of the MVN - |I

3) Conditional distributions are also MVN. Partition x
into two components, x; (m dimensional column vector)
and X, ( n-m dimensional column vector)

Vx,x, Vx,x,
x=(x1) o= (“1> and V =
Xo Ho T

VX1 X2 Vx2 X2

X1 | X5 is MVN with m-dimensional mean vector

Hxix2 = M1 T Vxix2 Vx;»x;» (xz “2)
and m X m covariance matrix

Vx1|x2 — VX1X1 - VX1X2VX2X2 Vx1x2 40



Properties of the MVN - I

4) 1t x is MVN, the regression of any subset of
X on another subset is linear and homoscedastic

X1 = Px, %, +e
= Hq Vxixz V)Zglxg (X2 - /1'2) €

Where e is MVN with mean vector 0 and
variance-covariance matrix =~ Vy |x,

41



Bt Vx, Xsz2x2 (x2 —py) +e

The regression is linear because it is a linear function
Of X2

The regression is homoscedastic because the variance-
covariance matrix for e does not depend on the value of
the x's

Vx1|x2 — VX1X1 - VX1X2Vx2x2 Vx1x2

All these matrices are constant, and hence

the same for any value of x o



Example: Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN. Then from the correlations
among (outbred) relatives,

2o v 1 h?/2 h?/2
zs | ~NMVN || ps |,02| R%/2 1 0
Zd i Hd h2/2 0 1 _

Zd

Let x1=(2,), x2= (ZS>

: hc? of 1 0
Vxix: =05 Vxixs = 2 (1 1), sz’X2=0§<O 1

= M, + VX1X2V}Z21X2 (Xo — py) +€

43



Regression of Offspring value on Parental values (cont.)

= Py T VXIXZ’V)Zlez (X2 o u’Z) +e

. hz 2 1 0
Vxlexl = aﬁ’ vxl X2 = ( 1 1) Vx2’x2 = 02(0 1

h252 _
Hence, — 4+ a"(l 1)o. ((1) (1)) (zs ﬂs>+e

Zd — Id
2 2
=Mo+‘?’(zs_ll«s)+7‘(zd_#d)+6
Where e is normal with mean zero and variance

Vx1|x2 — VX1X1 - VX1X2VX2X2 VX1X2

h202 1 0\ h2c2 /1
2 _ 2 Z -2 Z
e=0m— (1 Do (0 1) 2 (1)

4
— 0.;2 (1 _h_)
2 44




Hence, the regression of oftspring trait value given
the trait values of its parents is
Zo = Ho T h2/2(zs' Ms) + h2/2(zd' “d) T e

where the residual e is normal with mean zero and
Var(e) = 5,%(1-h%/2)

Similar logic gives the regression of offspring breeding
value on parental breeding value as

Ao = Ho + (A n)/2 + (Ag-pg)/2 + e
=AJ/2+ A2 + e

where the residual e is normal with mean zero and
Var(e) = 6,%/2

45



Additional R matrix commands

Operator or Description

Function

A*B Element-wise multiplication

A%*% B Matrix multiplication

A %0% B Outer product. AB'

crossprod(A,B) A'B and A'A respectively.

crossprod(A)

t(A) Transpose

diag(x) Creates diagonal matrix with elements of x in the principal diagonal
diag(A) Returns a vector containing the elements of the principal diagonal
diag(k) If k is a scalar, this creates a k x k identity matrix. Go figure.

solve(A, b) Returns vector x in the equation b = Ax (i.e., A"1b)
solve(A) Inverse of A where A is a square matrix.

ginv(A) Moore-Penrose Generalized Inverse of A.
ginv(A) requires loading the MASS package.

y<-eigen(A) ySval are the eigenvalues of A
ySvec are the eigenvectors of A

y<-svd(A) Single value decomposition of A.
yS$d = vector containing the singular values of A
ySu = matrix with columns contain the left singular vectors of A
ySv = matrix with columns contain the right singular vectors of A



Additional R matrix commands (cont)

R <- chol(A)

y <- qr(A)

cbind(A,B,...)
rbind(A,B,...)
rowMeans(A)
rowSums(A)
colMeans(A)
colSums(A)

Choleski factorization of A. Returns the upper triangular factor, such that R'R =
A.

QR decomposition of A.

ySqr has an upper triangle that contains the decomposition and a lower
triangle that contains information on the Q decomposition.

ySrank is the rank of A.

ySqraux a vector which contains additional information on Q.

ySpivot contains information on the pivoting strategy used.

Combine matrices(vectors) horizontally. Returns a matrix.
Combine matrices(vectors) vertically. Returns a matrix.
Returns vector of row means.

Returns vector of row sums.

Returns vector of column means.

Returns vector of coumn means.

47



Additional references

* Lynch, Visscher, & Walsh Chapter 10
(intro to matrices) (on website)

e \Walsh and Lynch (2018),

— Appendix 5 (Matrix geometry)
— Appendix 6 (Matrix derivatives)

48



The Singular-Value Decomposition (SVD)

An n x p matrix A can always be decomposed as the product of three matrices: ann x p
diagonal matrix A and two unitary matrices, U which is n x n and V which is p x p. The

resulting singular value decomposition (SVD) of A is given by

T
An): o Un): nAn>: pV

o (39.16a)
We have indicated the dimensionality of each matrix to allow the reader to verify that each
matrix multiplication conforms. The diagonal elements A;.---. A, of A correspond to the
singular values of A and are ordered by decreasing magnitude. Returning to the unitary
matrices U and V, we can write each as a row vector of column vectors,

U= (u.---.w.---u,). V= (v v vy (39.16h)
where u; and v; are n and p-dimensional column vectors (often called the left and right
singular vectors, respectively). Since both U and V are unitary, by definition (Appendix 4)
each column vector has length one and are mutually orthogonal (i.e., ifi # j, u,—uf = V; v}" =
0). Since A is diagonal, itimmediately follows from matrix multiplication that we can write

any elementin A as

A = Z/\"’ Uik Uk (39.16¢)
k=1

where Ay is the kth singular value and s < min(p.n) is the number of non-zero singular
values.



The importance of the singular value decomposition in the analysis of G xE arises from
the Eckart-Young theorem (1938), which relates the best approximation of a matrixby some
lower-rank (say k) matrix with the SVD. Define as our measure of goodness of fit between

a matrix A and a lower rank approximation A as the sum of squared differences over all

elements, ‘

Z(Az'j — Aij)?

ij
Eckart and Young show that the best fitting approximation A of rank m < s is given from
the tirst i terms of the singular value decomposition (the rank-m SVD),

m

Aij =) Mk wak v (39.17a)

For example, the best rank-2 approximation for the G x E interaction is given by
GE;; >~ A uy v + Ag i V4o (39.17h)

where A; is the ith singular value of the GE matrix, u and v are the associated singular
vectors (see Example 39.3). The fraction of total variation of a matrixaccounted forby taking

the first mm terms in its SVD is
-+ AL,
2 .
R

50



A data set for soybeans grown in New York (Gauch 1992) gives the
GE matrix as
57 176 —233
36 _106 933 Where GE; = value for
GE=| 4 -3¢ 360 Genotype i in envir. |
—66 178 —112
89 165 —254

InR, the compact SVD (Equation 39.16d) of amatrix Xis given by svd ( X), returning the SVD
of GE as

0.40 021  0.18

—0.41 0.00 091 746.10 0 0 0.12 064 —-0.76
—0.66  0.12 —-0.30 0 131.36 0 0.81 —0.51 —0.30
0.26 —0.83 0.11 0 0 (.53 0.58  0.58 (.58

0.41 0.50  0.19

The first singular value accounts for 746.102%/(743.26% + 131.36% + 0.53%) = 97.0% of the
total variation of GE, while the second singular value accounts for 3.0%, so that together
they account for essentially all of the total variation. The rank-1 SVD approximation of GE is
givenby setting all of the diagonal elements of A except the first entry to zero,

040 021  0.18

—0.41 0.00 091 746.10 0 0 0.12 064 —-0.76
GE; = | -066 012 —-0.30 0 0 0 0.81 —-0.51 —=0.30
0.26 —-0.83 0.11 0 0 0 0.58  0.58  0.58

0.41 0.50  0.19



Similarly, the rank-2 5VD is given by setting all but the first two singular val ues to zero,
0.40 021  0.18
—0.41  0.00 091 746.10 0 () 0.12 064 —-0.76
GE; = | -066 012 —-0.30 0 131.36 0 0.81 —-0.51 —0.30
0.26 —0.83  0.11 ( 0 0 ()) ( 0.58  0.58 (l.:').\')
0.41 0.50  0.19

For example, the rank-1 SVD approximation for GEj, is
gz1heqp = 746.10%(-0.66)*0.64 = -315

While the rank-2 SVD approximation is gziA,e15 + gzohre5, =
746.10*(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323

Actual value is -324

Generally, the rank-2 SVD approximation for GE; is

gitAeqj + giohey -



