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QTL & Association mapping
• We would like to know both the genomic 

locations (map positions) and effects (either 
genotypic means or variances) for genes 
underlying quantitative trait variation

• QTL mapping
– Using linkage information on a set of known 

relatives
• Association mapping

– Using very fine scale LD to map genes in a set of 
random individuals from a population
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Outline
• Basics of QTL mapping  

– Line crosses
• typically fixed effects models

– Outbred populations
• Random effects family models
• General pedigree methods

• High parameter models
– Shrinkage approaches for detecting epistasis

• Association mapping
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Inbred Line Cross QTL mapping
• Most powerful design

– Cross two fully inbred lines, look at marker-trait 
segregation in the F2 (or other, such as Fn) 
generations

– P1: MMQQ, P2:mmqq
– All F1 same genotype/phase: MQ/mq
– Hence, in the F1, all parents have the same 

genotype
– At most only two alleles, each with freq 1/2
– Idea:  Does the mean trait value of (say) MM 

individuals differ from (say) mm
• Different marker genotypes have different mean trait 

values
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Expected Marker Means
The expected trait mean for marker genotype Mj
is just

For example, if QQ = 2a, Qq = a(1+d), qq = 0, then in 
the F2 of an MMQQ/mmqq cross,

• If the trait mean is significantly different for the
genotypes at a marker locus, it is linked to a QTL

• A small MM-mm difference could be (i) a tightly-linked
QTL of small effect or (ii) loose linkage to a large QTL  
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Linear Models for QTL Detection
The use of differences in the mean trait value
for different marker genotypes to detect a QTL 
and estimate its effects is a use of linear models.

One-way ANOVA.
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Detection:  a  QTL is linked to the marker if at least 
one of the bi is significantly different from zero

Estimation: (QTL effect and position):  This requires
relating the bi to the QTL effects and map position 
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Detecting epistasis
One major advantage of linear models is their
flexibility.  To test for epistasis between two QTLs,
use  ANOVA with an interaction term
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Detecting epistasis

• At least one of the ai significantly different from 0
---- QTL linked to first marker set

• At least one of the  bk significantly different from 0
---- QTL linked to second marker set

• At least one of the  dik significantly different from 0
---- interactions between QTL in sets 1 and two

Problem:  Huge number of potential interaction terms
(order m2, where m = number of markers)
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Model selection
• With (say) 300 markers, we have (potentially) 300 

single-marker terms and 300*299/2 = 44,850 
epistatic terms 
– Hence, a model with up to p= 45,150 possible parameters
– 2p possible submodels = 1013,600 ouch!

• The issue of Model selection becomes very 
important.

• How do we find the best model?
– Stepwise regression approaches

• Forward selection (add terms one at a time)
• Backwards selection (delete terms one at a time)

– Try all models, assess best fit
– Mixed-model approaches (Stochastic Search 

Variable Selection, or SSVS)
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Model Selection

Model Selection: Use some criteria to chose  among a 
number of candidate models.  Weight goodness-of-fit 
(L, value of the likelihood at the MLEs) vs.  number of 
estimated parameters (k)

AIC = Akaike’s information criterion 
AIC = 2k - 2 Ln(L)

BIC = Bayesian information criterion (Schwarz criterion)
BIC = k*ln(n)/n - 2 Ln(L)/n

BIC penalizes free parameters more strongly than AIC

Other measures.  For these (and AIVC, BIC) smaller
score indicates better model fit
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Model averaging
Model averaging: Generate a composite model by weighting
(averaging) the various models, using AIC, BIC, or other

Idea:  Perhaps no “best” model, but several models
all extremely close.  Better to report this “distribution”
rather than the best one

One approach is to average the coefficients on the
“best-fitting” models using some scheme to return
a composite model
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What is a “QTL”
• A detected “QTL” in a mapping experiment 

is a region of a chromosome detected by 
linkage.

• Usually large (typically 10-40 cM)
• When further examined, most “large” QTLs 

turn out to be a linked collection of locations 
with increasingly smaller effects

• The more one localizes, the more subregions 
that are found, and the smaller the effect in 
each subregion

• This is called fractionation
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Limitations of QTL mapping
• Poor resolution (~20 cM or greater in most 

designs with sample sizes in low to mid 100’s)
– Detected “QTLs” are thus large chromosomal regions

• Fine mapping requires either
– Further crosses (recombinations) involving regions of 

interest (i.e., RILs, NILs)
– Enormous sample sizes  

• If marker-QTL distance is 0.5cM, require sample sizes 
in excess of 3400  to have a 95% chance of 10 (or 
more) recombination events in sample

• 10 recombination events allows one to separate 
effects that differ by ~ 0.6 SD
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• “Major” QTLs typically fractionate
– QTLs of large effect (accounting for  > 10% of the 

variance) are routinely discovered.
– However, a large QTL peak in an initial experiment 

generally becomes a series of smaller and smaller 
peaks upon subsequent fine-mapping.

• The Beavis effect:
– When power for detection is low, marker-trait 

associations declared to be statistically significant 
significantly overestimate their true effects.

– This effect can be very large (order of magnitude) 
when power is low.

Limitations of QTL mapping (cont)
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Beavis Effect

True value

Distribution of
the realized value of an
effect in a sample

Significance 
threshold

High power setting:  Most realizations are to the
right of the significance threshold.  Hence, the
average value given the estimate is declared significant 
(above the threshold) is very close to the true value.

Taken as significant
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True value

In low power settings, most realizations are below 
the significance threshold, hence most of the time 

the effect is scored as being nonsignificant

Significance 
threshold

However, the mean of those declared significant
is much larger than the true mean

Mean among 
significant results

Taken as 
significant
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Outbred populations
• When we move from the simple framework of an 

inbred line cross QTL design to a set of parents from 
an outbred population, complications arise as the 
parents don’t all have the same genotypes
– Differences in linkage phase
– Many uninformative as to linkage (varies over 

makers)
– Possibility of multiple alleles

• Result: express marker effects in terms of the 
variance in trait value it explains, rather than in terms 
of mean marker effects
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General Pedigree Methods
Random effects (hence, variance component) method
for detecting QTLs in general pedigrees

The model is rerun for each marker
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The covariance between individuals i and j is thus

Fraction of chromosomal 
region shared IBD

between individuals i and j.

Resemblance 
between 
relatives

correction

Variance 
explained by 
the region of 

interest

Variance 
explained by 

the background 
polygenes
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Assume z is MVN, giving the covariance matrix as

A significant sA
2 indicates a linked QTL.
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Association & LD mapping

Mapping major genes (LD mapping) vs. trying to
Map QTLs (Association mapping)

Idea:  Collect random sample of individuals, contrast
trait means over marker genotypes

If a dense enough marker map, likely population level
linkage disequilibrium (LD) between closely-linked 
genes
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Fine-mapping genes

Suppose an allele causing an effect on the trait
arose as a single mutation in a closed population

New mutation arises on 
red chromosome

Initially, the new mutation is
largely associated with the
red haplotype

Hence, markers that define the red haplotype are
likely to be associated (i.e. in LD) with the mutant allele
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Background:  Association mapping
• If one has a very large number of SNPs, then new 

mutations (such as those that influence a trait) will be in LD 
with very close SNPs for hundreds to thousands of 
generations, generating a marker-trait association.
– Association mapping looks over all sets of SNPs for trait-

SNP associations.  GWAS = genome-wide association 
studies.

– This is also the basis for genomic selection
• Main point from extensive human association studies

– Almost all QTLs have very small effects
– Marker-trait associations do not fully recapture all of the 

additive variance in the trait (due to incomplete LD)
– This has been called the “missing heritability problem” 

by human geneticists, but not really a problem at all 
(more shortly).
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Association mapping
• Marker-trait associations within a population of unrelated 

individuals
• Very high marker density (~ 100s of markers/cM) required

– Marker density no less than the average track length of 
linkage disequilibrium (LD)

• Relies on very slow breakdown of initial LD generated by a 
new mutation near a marker to generate marker-trait 
associations
– LD decays very quickly unless very tight linkage
– Hence, resolution on the scale of LD in the population(s) being 

studied ( 1 ~ 40 kB)
• Widely used since mid 1990’s.  Mainstay of human 

genetics, strong inroads in breeding, evolutionary genetics
• Power a function of the genetic variance of a QTL, not its 

mean effects



Manhattan plots
• The results for a Genome-wide Association study (or 

GWAS) are typically displayed using a Manhattan 
plot.
– At each SNP, -ln(p), the negative log of the p 

value for a significant marker-trait association is 
plotted. Values above a threshold indicate 
significant effects

– Threshold set by Bonferroni-style multiple 
comparisons correction

– With n markers, an overall false-positive rate of p 
requires each marker be tested using p/n.

– With n = 106 SNPs,  p must exceed 0.01/106 or 
10-8 to have a control of 1% of a false-positive  

27
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Gm+ Total % with diabetes

Present 293 8%

Absent 4,627 29%

When population being sampled actually consists of  several distinct 
subpopulations we have lumped together, marker alleles may provide 
information as to which group an individual belongs.  If there are other 
risk factors in a group, this can create a false association btw marker 
and trait

Example.  The Gm marker was thought (for biological reasons) to be 
an excellent candidate gene for  diabetes in the high-risk population 
of Pima Indians in the American Southwest.  Initially a very strong 
association was observed:

Population Stratification
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Gm+ Total % with diabetes

Present 293 8%

Absent 4,627 29%

Problem:  freq(Gm+) in Caucasians (lower-risk diabetes
Population) is 67%, Gm+ rare in full-blooded Pima

Gm+ Total % with diabetes

Present 17 59%

Absent 1,764 60%

The association was re-examined in a population of Pima
that were 7/8th (or more) full heritage:
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Linkage vs. Association

The distinction between linkage and association
is subtle, yet critical

Marker allele M is associated with the trait if
Cov(M,y) = 0
While such associations can arise via linkage, they
can also arise via population structure.

Thus, association DOES NOT imply linkage, and 
linkage is not sufficient for association



Accounting for population structure

• Three classes of approaches proposed
– 1) Attempts to correct for common pop structure 

signal (regression/PC methods) 
– 2) Attempts to first assign individuals into 

subpopulations and then perform association 
mapping in each set (Structure)

– 3) Mixed models that use all of the marker 
information (Tassle, EMMA, many others)

• These can also account for cryptic relatedness in the 
data set, which also causes false-positives.

32
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Regression Approaches

One approach to control for structure is
simply to include a number of markers, outside
of the SNP of interest, chosen because they
are expected to vary over any subpopulations

How might you choose these in a sample?  Try
those markers (read STRs) that show the largest
departure from Hardy-Weinberg, as this is expected
in markers that vary the most over subpopulations.
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Variations on this theme (eigenstrat) --- use all of the 
marker information to extract a set of significant
PCs, which are then included in the model as cofactors
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Structured Association Mapping

Pritchard and Rosenberg (1999) proposed
Structured Association Mapping, wherein
one assumes k subpopulations (each in Hardy-
Weinberg).

Given a large number of markers, one then attempts
to assign individuals to groups using an MCMC 
Bayesian classifier 

Once individuals assigned to groups, association mapping
without any correction can occur in each group.



Mixed-model approaches

• Mixed models use marker data to 
– Account for population structure
– Account for cryptic relatedness

• Three general approaches:
– Treat a single SNP as fixed

• TASSLE, EMMA

– Treat a single SNP as random
• General pedigree method

– Fit all of the SNPs at once as random
• GBLUP 36
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Structure plus Kinship Methods
Association mapping in plants offer occurs by first taking 
a large  collection of lines, some closely related, others 
more distantly related.  Thus, in addition to this collection 
being a series of subpopulations (derivatives from a 
number of founding lines), there can also be additional 
structure within each subpopulation (groups of more 
closely related lines within any particular  lineage). 

Y = Xb + Sa + Qv + Zu + e

Fixed effects in blue, random effects in red

This is a mixed-model approach. The program TASSEL
runs this model. 
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Q-K method

Y = Xb + Sa + Qv + Zu + e

b = vector of fixed effects

a = SNP effects  (fits SNPs one at a time)

v = vector of subpopulation effects (STRUCTURE)
Qij = Prob(individual i in group j).  Determined
from STRUCTURE output

u = shared polygenic effects due to kinship.  
Cov(u) = var(A)*A, where the relationship matrix
A estimated from marker data matrix K, also called a
GRM – a genomic relationship matrix



Which markers to include in K?

• Best approach is to leave out the marker 
being tested (and any in LD with it) when 
construction the genomic relationship matrix
– LOCO approach – leave out one chromosome 

(which the tested marker is linked to)

• Best approach seems to be to use most of 
the markers

• Other mixed-model approaches along these 
lines 

39
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Treat Single SNP as random:  General Pedigree  method

A significant sA
2 indicates a linked QTL.



GBLUP
• The Q-K method tests SNPs one at a time, 

treating them as fixed effects
• The general pedigree method (slides 24-26) 

also tests one marker at a time, treating them 
as random effects

• Genomic selection can be though of as 
estimating all of the SNP effects at once and 
hence can also be used for GWAS

41



BLUP, GBLUP, and GWAS

• Pedigree information gives EXPECTED value 
of shared sites (i.e., ½ for full-sibs)
– A matrix in BLUP
– The actual realization of the fraction of shared 

genes for a particular pair of relatives can be 
rather different, due to sampling variance in 
segregation of alleles

– GRM (or K or marker matrix M) 
– Hence “identical” relatives can differ significantly 

in faction of shared regions
– Dense marker information can account for this

42



The general setting

• Suppose we have n measured individuals (the n x 1 
vector y of trait values) 

• The n x n relationship matrix A gives the relatedness 
among the sampled individuals, where the elements 
of A are obtained from the pedigree of measured 
individuals

• We may also have p (>> n) SNPs per individual, 
where the n x p marker information matrix M
contains the marker data, where Mij = score  for SNP 
j (i.e., 0 for 00, 1 for 10, 2 for 11) in individual i. 



Covariance structure of random effects

• A critical element specifying the mixed model is the 
covariance structure (matrix) of the vector u of 
random effects

• Standard form is that Cov(u) = variance component 
* matrix of known constants
– This is the case for pedigree data, where u is typically the 

vector of breeding values, and the pedigree defines a 
relationship matrix A, with Cov(u) = Var(A) * A, the additive 
variance times the relationship matrix

– With marker data,  the covariance of random effects are 
functions of the marker information matrix M (that is nxp).

• If u is the vector of p marker effects, then Cov(u) = 
Var(m) * MTM, the marker variance times the covariance 
structure of the markers.



Y = Xb + Zu + e

Pedigree-based BV estimation:  (BLUP)  
unx1 = vector of BVs, Cov(u) = Var(A) Anxn

Marker-based BV estimation:  (GBLUP)
unx1 = vector of BVs, Cov(u)  = Var(m) MMT (n x n)

GWAS:  upx1 = vector of marker effects,
Cov(u)  = Var(m) MTM (p x p)

Genomic selection: predicted vector of breeding values 
from marker effects, GBVnx1 = Mnxpupx1. 
Note that Cov(GBV)  = Var(m) MMT (n x n) 

Lots of variations of these general ideas by adding
additional assumptions on covariance structure.



GWAS Model diagnostics
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The “Genomic Control” parameter l

Devlin and Roeder (1999).  Basic idea is that association tests (marker 
presence/absence vs. trait presence/absence) is typically done with a 
standard 2 x 2 c2 test.

When population structure is present, the test statistic now follows 
a scaled c2, so that if S is the test statistic, then S/l ~ c2

1 (so S ~ 
lc2

1) .  Hence, population structure should inflate all of the
tests (on average) by a common amount l.

A robust estimator for l is offered from the medium
(50% value) of the test statistics, so that for m tests

Hence, if we have suitably corrected for population structure, the
estimated inflation factor l among tests should be ~ 1.



Genomic control l as a diagnostic tool

• Presence of population structure will inflate the l
parameter

• A value above 1 is considered evidence of additional 
structure in the data
– Could be population structure, cryptic relatedness, or both
– A lambda value less that 1.05 is generally considered benign

• One issue is that if the true polygenic model holds (lots of 
sites of small effect), then a significant fraction will have 
inflated p values, and hence an inflated l value.

• Hence, often one computes the l following attempts to 
remove population structure.  If the resulting value is 
below 1.05, suggestion that structure has been largely 
removed.

48



P – P plots

• Another powerful diagnostic tool is the p-p plot.
• If all tests are drawn from the null, then the 

distribution of p values should be uniform.
– There should be a slight excess of tests with very 

low p indicating true positives
• This gives a straight line of a log-log plot of 

observed (seen) and expected (uniform) p values 
with a slight rise near small values
– If the fraction of true positives is high (i.e., many 

sites influence the trait), this also bends the p-p 
plot

49
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A few tests
are significant Great excess of

Significant tests

Price et al. 2010 Nat Rev Gene 11: 459
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Great excess of
Significant tests

As with using l, one should construct p-p following 
some approach to correct for structure & relatedness
to see if they look unusual. 
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Association mapping (power)
Q/q is the polymorphic site contributing to trait
variation, M/m alleles (at a SNP) used as a marker

Let p be the frequency of M, and assume that
Q only resides on the M background (complete
disequilibrium)

Haloptype Frequency effect

QM rp a

qM (1-r)p 0

qm 1-p 0
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Haloptype Frequency effect

QM rp a

qM (1-r)p 0

qm 1-p 0

Genetic variation associated with Q = 2(rp)(1-rp)a2 

~ 2rpa2  when Q rare. Hence, little power if Q rare

Genetic variation associated with marker M is
2p(1-p)(ar)2 ~ 2pa2r2

Effect of m = 0

Effect of M = ar 

Ratio of marker/true effect variance is ~ r

Hence, if Q rare within the A class, even less power, as M only
captures a fraction of the associated QTL.
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Common variants
• Association mapping is only powerful for common 

variants
– freq(Q) moderate
– freq (r) of Q within M haplotypes modest to large

• Large effect alleles (a large) can leave small signals.
• The fraction of the actual variance accounted for by 

the markers is no greater than ~ ave(r), the average 
frequency of Q within a haplotype class

• Hence, don’t expect to capture all of Var(A) with 
markers, esp. when QTL alleles are rare but markers 
are common (e.g. common SNPs, p > 0.05)

• Low power to detect G x G, G x E interactions
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“How wonderful that we have met with a paradox.  Now we 
have some hope of making progress”   -- Neils Bohr

Infamous figure from Nature on the angst of human geneticists over 
the finding that all of their discovered SNPs still accounted for only 
a fraction of relative-based heritability estimates of human disease. 



• “There is something simultaneously 
remarkable and encouraging about the 
fact that a centuries-old method 
requiring no more than a ruler, a pencil 
and (I suppose) a slide rule out 
performed, by an order of magnitude, 
the fruits of the genomic revolution” 

• --Ben Sheldon (2013)
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The “missing heritability” paradox

• A number of GWAS workers noted that the sum of their 
significant marker variances was much less (typically 
10%) than the additive variance estimated from 
biometrical methods

• The “missing heritability” problem was birthed from this 
observation.

• Not a paradox at all
– Low power means small effect (i.e. variance) sites are unlikely to 

be called as significant, esp. given the high stringency associated 
with control of false positives over tens of thousands of tests

– Further, even if all markers are detected, only a fraction ~ r (the 
frequency of the causative site within a marker haplotype class) 
of the underlying variance is accounted for.



No “missing heritability”
– Low power because sites of small effect  are unlikely 

to be called as significant, esp. given the high 
stringency associated with control of false positives 
over tens of thousands of tests.

Only these markers
Included  (as they are
declared significant)

Huge number of important,
but small effect, markers
not declared significant

Further, even with
all markers included, 
only  a fraction r of 
variation explained
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