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Associative effects models

e A very powerful recent development in quantitative genetics
(although the idea dates back to Griffin's work in the 1960s) is

the notion of direct vs. associative (or social, or indirect genetic)
effects

e This idea unifies kin and group selection, offers models for the

evolution of social (group-level) traits, and shows why selection
can often fail

e The basic idea is that the phenotype of a target individual is a
function of some intrinsic direct value and also the phenotypes
of those individuals with which it interacts.



Direct & Associative effects

e Consider egg production from chickens
raised in cages. Production is a function of
both a chicken’s own genetics and the
environment (her other cage-mates)

— Direct effects = intrinsic egg production
— Associative effects = competitive ability

* Suppose our focal individual (i) interacts with
n-1 others in a group

n
2i = 1)(3.'.‘ + E ,1)J~
NEak:



Direct and associative effects
can be antagonistic

e Consider a plant with a trait that allows it to
more efficiently garner resources

e This gives it a high direct effect but a
negative associative effect --- it reduces the
trait values in those individuals with which it
Interacts

* Thus, the best performing single plants can
have very low average plot performance



Example 20.1. This point was made in a classic paper by Weibe et al (1976), who examined
yield in mixed- versus single-genotype plots of barley. They observed that genotypes which
yielded well in mixed stands had poorer yield in pure stands, while those genotypes that did
poorly in mixed stands had the highest yield in pure stands. In our framework, we could
imagine that lines which do well in mixed stands have both high direct effects and high
negative associative effects, suppressing the phenotypes of their neighbors. When grown in
a pure strand, the high negative associative effects suppress plot yield. Conversely, lines that
perform poorly inmixed strands might have low direct effects but high positive associative
effects, so that the phenotypes of their neighbors are enhanced (or atleast not hindered). When
grown as a pure strand, these high positive associative effects more than compensate for the

low direct effects, increasing yield.



Roots of associative-effects models
trace to maternal effects

* Maternal effects are a classic example of
associative effects (maternal performance).

 Two different approaches to model maternal

effects

— Falconer model: an observed trait value (e.g., litter
size) influences offspring. Trait-based

— Willham model: Maternal performance is a latent
(unobserved) variable, and hence we don’t need to
specify it. Variance-component based. We focus
on these models here.



Trait-based vs. variance-
component models

® Trait based:

— Trait values of associative effects in group
members are observed

* Variance-component models

— A composite latent (unmeasured) variable
for associative effects is created



Variance components

Mother Offspring
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Trait-based models

Mother Offspring

@ Aij /EdJ
K
@ / z = observed value

Maternal  Zoq1 =W+ A1+ E1+W, 2, W1 jZmj+ Wk Zmi
Traits




Decomposition

Consider the phenotype of a focal individual

Sum of a direct effect and an associative
effect

Both of these can have a breeding value and
an environment (residual) deviation

The breeding values of the direct &
associative effects can be correlated

This is a multiple-traits problem
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n
i = I_)d.‘i T E [)]~
i

* i's phenotype z; is the sum of its direct effect (Py )
plus the sum of the associative (or social) effects
(Ps,) from its n-1 group members

pd,lp
Y

W
ps,’l T
PS.3 @

Zy= pd,l + pS,?, + pS,3 + pS,4 3



Breeding values for direct (A) and
associative (A,) effects

e Can express the phenotype of i in terms of its
direct breeding value (A4;) and the
associative breeding values (A, ) of its group
mates

2 = p+ (Aa; + Ea,) +Z . + Es;)

v=p+Ag+ Y A te,  e;=Eg +Y E
' JF1

771
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Total response

The trait mean equals the mean of the direct effects
plus the means of the associative effects,

fo =pa, +(n—1)ua.

Total response is the sum of the response Ry in the direct
breeding values plus the sum of the responses R, in the
associative effects breeding values,

R,=Ry+ (n—1)R.

13



Total breeding value

The key to predicting response is the
total breeding value of an individual, where

44']’_,' — ‘4(1..‘; T ('Il. — 1 ):1.\

Note that part (A, )
Adl of the total breeding value

o' of i never appears in its
/ \\ phenotype. Must either
use informative from relatives
or the group to estimate it.

AT 1=Aq ] +3Ag) iy



h2 and 12

e 12, the analog for h?, is the ratio of the total
breeding value to the individual phenotypic
variance
— 12 =Var(A7)/Var(z)

e Note that, unlike h?, 12 can exceed one,

e Why? A potentially large fraction of At never
appears in z, and hence Var(z)
— Var(A7) = Var(Ay) + (n-1)Var(A)
— 12 =Var(Ayg) /Var(z) + (n-1)Var(A,)/Var(z)
— =h?+ (n-1)Var(A)/Var(z)
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BLUP estimation

e \While the total breeding value cannot be
estimated directly from an individual'’s

phenotype, using an appropriate mixed
model, we can obtain

— BLUPs of Direct breeding values (A)
— BLUPs of Associative (or social) BVs (A,)

— REML estimates of 62(Ay), c4(A,), and the
direct-associate effects covariance o(A4,A,)

16



This works: Muir's result

e Bill Muir (Purdue University) selection on
six-week weight in Japanese quail over 23
generations using two different schemes
— BLUP selection on estimated direct BV (D)

® Denoted by D-BLUP

— BLUP selection on estimated total BV
® Denoted by C-BLUP

17
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Under BLUP selection on direct BV (D), significant
decline in the mean social value, which over-rode

the positive response in the direct value

Under BLUP selection of total BV (C), both increase
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The mixed model

ZZXﬁ‘I' Zdad+ Zsas + e

Example: Individuals 1-4 and 5-8 are half sibs
from unrelated families

( | 0.25 0.25 025 0 0 0 0
0.25 1 0.25 0.25 0 0 0 0
0.25 025 1 0.25 0 0 0 0
A 0.25 025 0.25 1 0 0 0 0
() 0 0 0 | 0.25 0.25 0.25
0 0 0 0 025 1 0.25 0.25
0 0 0 0 025 025 |1 (.25
\ 0 0 0 0 025 025 025 1




Filling out Z,

e Suppose group one contains individuals 1, 2, 5,
6. The resulting values for these individuals
become

—zr=m+ Ay +t A+ A+ Ayt €
—Zr=m+Ap+Aq+As+ AL+ €
—zZs=m+ Ags + Ay + Ay + Ay + €
—zs=m+ Ay + A+ Ay + A + €
— The result Z4 and Z, incident matrices become

21
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Lots of hidden variation to exploit

* Bergsma et al. (2008) examined four
traits in 14,000 pigs grown in pens of 6-
12 animals.

e Heritability for these traits was
estimated in a model without social

effects,
Growth Bacl fat Muscle Intalce
a?( A) 2583 2.83 7.94 41,275
h? 37 0.36 0.25 041
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Next, amodel was fitallowing forheritable soaal effects, z = X3 + Zgaq + Z.a, + Z.c + e, which
gave estimates of

Growth Back fat Muscle Intake
a?( Aq) 1,522 2.75 6.68 16,950
h? 0.21 0.35 0.21 0.17
o2 Ay) 51 0.01 0.03 596
a?( Ar) 5,208 3.19 10.35 68,687
T2 0.71 041 0.32 0.70
Here h% = o0?(Ag)/o%(2), while 72 = o%( Ay )/o%(2). h% measures the response potential under
phenotypic selechaon, whﬂe r% = h% measures the total genetic potential for improvement under

specialized selechon designs.

Growth Baclk fat Muscle Intale
a?( A) 2583 2.83 7.94 41,275
h? 0.37 0.36 0.25 041

Hence, for growth and food intake, lots of
additional genetic variation for trait response
lies "hidden” in associative effects.
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Consequences

* How can we exploit this variation in
breeding?

* What are the consequences for
evolutionary biologists?

* Need to consider selection response

— Has both a direct and associative effects
component

25



% =p+ (Ag + Ba) + ) (Ao, + E.y) (20.1h)
j#i

We can write this compactly as
% =+ Ag + ZASJ +e;. where ¢ = Eg, + ZESJ (20.1¢)
i i

Since the environmental values have expected value zero, the mean phenotypicvalue in the
group is just
o =, +(n—1)pa, (20.1d)

Furthey, the change in the mean trait value within a group following selection is

total .- 5> Ape = Apa, + (n—1)Apa, (20.1¢)
...... i o
response :
Associative
Direct response
response
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Example 20.2. Consider atrait in a group of four (unrelated) individuals, where (for illus-
trative purposes) we assume no environmental values so that P; = Ay and P, = A,.The
populationmean is 20, and the four group members have the following breeding values for
direct, associative, and total effects:

Individual ~ Ag A, Ar LA,
1 9 -4 3 4 33
2 5 -1 2 1 26
3 -6 2 0 -2 12
4 -8 3 1 3 9

Sincen = 4, Ay = Az + 3 A.. The sum Zj#i Asj represents the contribution of the
associative effects of the other three individuals to i’s value. For example, for individual 1,
the contributions from individuals 2 through 415 -1 + 2 + 3 = 4. From Equation 20.1¢ the
phenotypicvalue we would observe is

% =204 Ag, + Y Ay

j#

Individual one has the largest direct effect (¥) and the largest observed trait value (33). This
individual also has themost unfavorable associative value(-4), and the smallest total breeding
vaue (-3). Conversely, it has the largest contribution (4) to its trait val ue from the associative
effects of the other group members. Its high trait value is due to this combination of a high
direct effect and a high contribution from the associative effects of the other group members.
Its unfavorable associative effects do notappear inits own phenotype, butrather are expressed
in the trait val ues of the other group members. As aresult, its own phenotypicvalueis a poor
predictor of Ar.



Individual ~ Ag As Ar YA, 2

1 9 -4 -3 = 33
2 5 -1 2 1 26
3 -6 2 0 -2 12
1 -8 3 1 -3 9

[f the next generation is formed by crossing the two individuals (1and 2) with thelargest trait
values, the expected offspringmean is 20 + (-3+2)/2 = 19.5, the mean plus their average total
breeding values. Although the two largest individuals were chosen, the pop ulationmean de-
creases. Conversely, crossing the two smallest individuals gives an expected offs pring mean of
20+ (0+1)/2 = 20.5, increasing themean. While the two smallest ind ividuals have the smallest
direct effects, they also have the most favorable associative effects, and hence give a more
favorable response. The greatest expected response occurs by crossing the two individuals (2
and 4) with the largest total breeding val ues, for an expected mean of 20 + (2+1)/2 = 21.5.
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Response: It's about covariances

Selection response is a function of the

covariance between our unit u of selection and

the total breeding value, o(A+, u)

- R=1%*0o(At, u) / o(u) (generalized breeder’s Eq.)
The “"unit” could be a

— single individual (individual selection)

— The group mean (group selection)

— Some index of these

Members ot a group can be
— Unrelated
— Related (kin selection)

All these considerations influence (A, u)

29



The covariance between an individual’s phenotype and total breeding value is

(T(:z .41_; ) _ 0'([1 + "4di -+ ZASj + €;. .-44,- -} (H — 1).--135)

: J#i
General expression

- a(Ad,.. Ag, + (n — 1)..48,.) +y a(Asj.Ad, +(n — 1)..43,.) (20.4a)
i

For now, we assume unrelated group members, in which case the covariances in the sum-
mation are all zero, giving Group members unrelated (r = 0)

o(2 Ap) = 02(A ) + (n — Do (Ag AL) (20.41)

If the direct and associative effects are uncorrelated, this reduces to ourstandard result that
the covariance between an individual’s phenotype and breeding value is just the additive
genetic variance (in this case, of direct effects). By contrast, the variance of the total breeding

value becomes
o?(Ar) = a?[Ag+ (n — 1) A,]
= 02(Ay) +2(n —1)a(Az A + (n —1)%02%(A,) (20.4¢c)
=a(z2. Ar)+ (n — 1) [‘20 (Ag. Ag) +(n — 1)(.72(..43)] (20.4d)

Group members unrelated (r = 0) 30



Now consider the ph'enotypic variance,
g2 = g2 (Pd,. +- Z st). (20.5a)
i

Assuming (for now) that the group members are unrelated, so that o(Fy,. P.;) = 0. For a
group of size n Equation 20.5a reduces to

02 = 02(Py) + (n — 1)0%(P,) (20.5b)
— 02(Aa) + (n = 1)0%(As) + 02 (Ea) + (n — 1) 0 *(E,) (20.5¢)
— 02(Ag) + (n — 1)a2(A,) + a2(e) (20.5d)

where ¢ is given by Equation 20.1c. With the phenotypicvariance in hand, we can detine the
heritability of the direct and associative effects as

. .
oAe) g gz ) (20.62)
72 as

-~ -~

2 _
h =

31



Example 20.3. Consider a traitin a group of 10 unrel ated ind ividuals, with rrP =10, 0%, =
1, and both direct and ass ociative effects have modest heritabilities measured on the sccale of

the effect themselves (hd = (.4 h = 00.3). To simplify matters, assume 7(A4. As) = 0.
Applying Equation 20.5b, the res u]tmg phenotypicvariance is

a2 = crfpd +9'”§’, =104+9.-1=19
From Equation 20.4¢ the variance in total breeding val ue becomes

P2 =0k 90k = h2ok 0P N20% — 44 81.0.3 =283,

e
giving 7% = 28.3/18= 157.

Areal world example oflmge potential differences in 1% versus 72 is survival days in chickens
(Bljm'-x et al. 2007b). Igno 11ng associative effects gives '-1 heritability hd of 6.7%, while when
using a mixed model that incorporates associative effects (detailed later in the chapter), the

estimate of 72 was 20%, a threefold increase. Hence, under the conditions in the stu dy, roughly
two-thirds of the heritable variation in the trait arises from interactions between individuals

and 15 thus hidden from standard analyses which ignore these. As discussed below, this
component is only fully accessible under individual selection if the group incdudes relatives.
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One of the key results when associative effects are present is that individual selection can
result in a reversed response, while group selection always results in a positive response
(although it may be far from optimal). These points were clearly made by Griftfing (1967)
for the simple case of two interacting, and unrelated, individuals within each group. For
selection on individual phenotype, the response becomes

R=—[0*(Aa) + 0(Aa. A)] (20.11a)

2
T,
A negative covariance between direct and associative effects reduces the efficiency of se-
lection, and if sufticiently negative, gives a reversed response. This loss of efficiency occurs
because the only information anindividual’s phenotype contains about theirbreeding value
for associative effects is that provided by the covariance between direct and associative
breeding values (which can be negative). Conversely, if we select based on the mean of a
group, we are selecting on both direct and associative effects to improve trait value. For the

case of n = 2, Grifting obtained the expected response as
! L 2(Ag) (20.11b)
20 (%) AT AR50

It = 25 (%)

[0%(Aa) + 20 (Aa. Ao) + 0*(A,)] =

While groupselection always give anon-negative response, if the associative effects arewealk,
this approach is very 1neft1c1ent1e1at1ve to individual selection. For example in the absence
of associative effects, 72(%) = ¢2(2)/2, and Equation 20.11b reduces to 7o (A,) ) /[V2a(2)], 0

1/v/2 = 0.701 of the response under individual selection.



Covariances with related
group members

1

o(2. Ar) = ra*(Ar) + (1 —r) [0%(Aa) + (n — 1)o(Aq. Ap)]
0%(2) = 0*(Ag) + 0 (Ea) + (n — 1) [0%(As) + 0*(E.)]
+(n—1)r[20(A.. Ag) + (n —2)a%(Ay)]

— a2z |lr=0)4+(n—1)r [20(As. Ag) + (n — 2)(.72(:.-44')]

N

Group members related (r > 0)

The response to selection is simply the change in the mean total breeding value, which
(from Chapter 10) is the within-generation change in the phenotypic mean after selection
(the selection differential S) times the slope of the regression of Ay on phenotype 2,

po tGdr) o o Ar) (20.14)

72 .

with the second formulation following from the standard identity that S = 7.7 (Equation
10.6a). Forn = 2and r = (), we recover Griffin’s result (Equation 20.11a).



Example 20.4. Muir (2005) estimated variance components for six-week body weight in
Japanese quail (Cofinmix cotumix japomca) housed in gmups of n = 16 per cage. REML esti-
mqtes of the genetic variances were 02(Ay4) = 33.Tand 2(A,) = 2.87, while 7 (A4. A,) =
—5.5. Under these values, the predicted response to individual selection in a group of 16
unrel '-1ted individuals is

R=—[0%(Ag) +(n — 1)o(Ag A)] = — [33 7415 (=5.5)] — —48.8 —

(7. .,

The strong negative covariance between direct and social (competitive) effects results in an
expected reversed response if directional selection is used, as the positive gain from improve-
mentof direct effects is swamped by the negative effects from the correl ated response in social

values.

The presence of relatives within the group results in some fraction of 72 (A) being incorpo-
rated into the response under individual selection. Suppose the group of 16 consists of two
hal f-s1b families. In this case, the average relationship 1s 0.125, and from Equation 20.12d the
res ulting covariance between phenotype and total breeding val ues becomes

a(z2. Ap) =0a(z. Ap |r=10) 1)1 [(T (A, Ay + (n —1)e? (.‘43)]
:—48.4+1.) ()12)( 54+ 15-2.87) =216

Simply by using groups of relatives (as opposed to groups of unrelated individuals) allows
individual selection to give an expected positive response.



Individual selection: Direct vs. Associate response

Here unit of selection u = z, the phenotype ot an individual

,. .. a(Ag. 2) _ a(A,. 2) _ PR
R.=Rqg+ (n—1)R.. where Ry = ~ 7 and R, = - 7 (20.15a)
Here
g(Ag.2) =0 (--1d. Az + Z Ag;+ () —a2(A) +r(n —1ea(Ay AL) (20.15b)
1 #7
while
0(Aq. 2) = n(-ls. Ag+ Z Ay + :) = o(Ag A +r(n —1)a?(A,) (20.15¢)
v #7

Unless (i) A, Ay correlated OR (ii) group members are
relatives, value of z provides information on Ay, but NOT on
its A value
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Example 20.6. Consider the response in a family of hal f-sibs from Example 20.5, where the
expected total response was 15.39 7. What were the contributions from the direct and social
response? Forthe values used in that example,

0(Ag.2) = 02(Ag) + r(n — Do (Aq. A) = 500+ 0.25 - 5. (—39.5) = 450.63

and
(Ae.2) = 0(Ag. A+ r(n —1)e?(A.) = =395+ 0.24- 5. 50 = 23.0

Recalling (for half-sibs) that 72 = 1350.6, Equation 20.15 gives the two components of re-
P 450.63 23

Ri= ——==7=12.267. and R, = ——

T V13506 V1350.6

Hence, 809 (1226/ 15.39) of the total response was due to response in direct effects, while
20% was from the response in social effects (5-0.63/ 15.39). Under individual selection on hal
sib families, both the mean direct and mean social values improved. By contrast, if group
members are unrelated, then (Example 20.5) (rﬁ — 1150, while

7=0.637

a(Ag.2) = c2(Ay) =500, (A, 2) =a(A,; A) = —39.5
giving responses of

o . ’l'
Ry— 2 o 4747 and R, — —o20
V1150 1150




While the total response in this case was positive, thelarge direct response (1474) was sig-
nificantly offsetby a decrease in the mean social environment (5- [—1.16] = —5.83), giving

the total resgqnse as (1474- 5.82)7 = 8.927. The lack of relatedness implies no direct selection

involving 0<(A,), and hence the social breeding val ues only change through their correlation
with the direct val ues, which in this example was negative.
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Maternal effects

Z; = Pd; + IJmJ' (2()1():1)

In the absence of inbreeding, r = 1/2 for this group (motheroffspring) with n = 2. From
Equation 20.12¢, the covariance between phenotype and total breeding value (Ar = Ag +
Am),

7(2 Ar) = 0%(Ag) + (3/2)0 (Ag. A) + (1/2)0? (A,n). (20.16D)

while Equation 20.13a gives the phenotypic variance as

o2(2) = 02(Ag) + 0 (Ag. AL) +02(A) + o2 (20.16¢)

e

giving the resulting response to selection as

7. VAL + o(Ag. A,) + 02(A,) + 02
. a(Ag. 2) . o?(Ag) + (1/2)a(Ag. Ay, - Direct response

T, o,

a(A,,.2) _  o(Ag. An) + (1/2)0%
Rvn. = 1= —= 7
a a

> >
~ ~

Maternal response




Group selection

Unit of selection u = group mean

T (AT,' . Z Zj) = (T(AT'. . Z(AT-’ + (‘j)) S Z T (AT," AT;,') = 0'2(.41-") Z Iis

i=1 i=1 i=1

_ ﬁz(..xr)(1 Y rz,-) (20.19)

37

If group members are unrelated, then

o (.4T,..Z .:j) = a2(Ar) (20.19b)

7=1

which implies #(Ar,.7) = ¢%(Ar)/n. Hence, group selection actson the totalbreeding value
of anindividual, rather than on only part of this as is the case with individual selection (e.g.,
Equation 20.12e). The associative effects contribution to the total breeding value does not
influence the phenotype of the focal individual, but does influence the phenotype of other

group members. Group selection directly targets these effects. If all members have the same
degree of relationship r,

"(4:- > :j) — 2(Ar)[1+ (n —1)7] (20.19¢)

1=1
Key: group mean always correlated with Ag 0



Group selection -- role of relatives

A

1. . l —r
g(Ar,.2) = —a?(Ar) 1+ (n—1)r|= a?(Ar) (r + ] )
n

I

Group of size n, with r = average
relatedness among group members

Note that zbar directly correlated with
A;. Correlation increases if members are
related (r > 0)
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Response under group selection

CT J‘l ? . 02 *4 ,n a
P (.)T_ ) ¢ _ (Ar) 5
o%(Z) o2 (AT)rn + 0 pn
- o(Ar.7) = 02(‘4T)-rn -
o(Z) Vo2 (Ar)r, + o2p,
| — 1 —
r, =1+ " and P = P P
n n

r = genetic correlation

p = environmental correlation among group members



Example 20.7. Consider group selection using Muir’s quail data from Example 20.4. Here
0(Ay) = 33.7,0%(A,) = 2.87,0(Ay, A,) = —5.5.n = 16. Muir estimated the residual
variance as 0'2 = 69.0, while Muir’s model assumed p = 0, giving p, = 1/n and hence

ngn = 69.0/16 = 4.32. Applying Equation 20.4 gives the total additive variance as
o2 (Ar) = 0%(Ag) + 2(n — 1)o(Ag. Ay) + (n — 1)%0%(Ay)
=337+ 30-(-5.5) + 307 . 2.87 = 2451.7.

while Equation 20.26b gives the response as

B a?(Ar)r, - 2451.7 - r,, .
- R(Ar)r, + o2p,  V2ALT v, 432
For groups of unrelated individuals, r = 0 and r,, = 0.0625, and the response becomes =

12.27%. For half- and full-sibs, r,, = 0.297 and 0.531, with responses of 26.97 and 36.07, a two-

and three-hold increase relative to a group of unrelated individuals.
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Group + kin selection

Unit of selection [ o
, , i= 21t g Zj
u=11is an index

This index can also be written as

[; = +JZ i+ gnz

g = group selection

U(I, AT) 7 r = kin selection

==

o(Ar.I)=[g+7r+ (n—2)gr]o?(Ar)+(1—g)(1—7) [02(‘4(1) +(n—1)o(A,. Ad)]
g & r have symmetric roles

Key: Use group + relatives to maximize Cov(u, Af)
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Consequences: Evolution of fitness

Examining the expected change in mean fitness is straightfoward. Using previous re-
sults, we simply talce the trait being followed as individ ual fitness (z = 117). From Equation
20.1¢, the fitness of individ ual ¢ becomes

Wi=p+Ag + Y Ay, + e (20.47a)

=

Ag 15 the direct breed ing value of fitness, while A, is the socal breed ing value (how a focal
individ ual influences the fitness of others in its group). As above, A,, does not contribute
to W, while ASJ for j # 7 does. Likewise, as before the total breed ingvalue for fitness of an
individ ual is simply

AT, = Ay, + (n — 1) Ag, (20.47h)

with variance
o (Ap) = a2 (A + 2(n — Da(Ag. A + (n— 1)2a%(A) (20.47¢)

The first term 1s the classical additive geneticvariance in fitness in the absenceof associative
effects. When interactions are present, there is the potential for substantiall y more heritable
variation in fitness. Indeed, the total geneticvariance in fitness has the potential to exceed
the actual variance in individual fitness (0%(A) > o3,.), as much of the variation is hidden
in interactions with others, which do not appear in one’s individ ual fitness.



Mean fitness can decrease
when associative effects are
strong

Applying Equation 20.12¢ gives the response in terms of the variance components as

1 2 2 92 -
Ry = T [n“( A+ (n =01+ nma(Ag. A +r(n— 1) 0° ( Ag ]] (20.48¢)
Just as wehave seen forother traits, whenr = 0, the possibility of areversed response occurs
if the breed ing value for direct and social effects on fitness are sufficiently negatively corre-
lated. Hence, under rather realistic conditions, individ ual selection can result in a decrease
(and a potentiall y rather significant one at that) in mean fitness.

It the BVs of direct and associative effects
on fitness are sufficiently negatively-correlated,
can get a reversed response -- fitness goes down
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Ironically, even though a negative response can occur in the presence of associative
effects thene 15 actually more total variance potentially available when they are present, as
a*(Ar) = 0*( Ay). However, only a fraction of this may be accessible to mdividual selection,
and this fraction (being a covariance rather than a variance) can be negative. The key for
exploiting the available variance is either selection among groups and/or the presence of
rel atives in one’s group of interacting individ uals.

To see this, note from Equation 20.12e that we can express Equation 20.48¢c as

Rw —%(IU[41]-}—[1—1)[0[4(1]-}-[1!—1)0[4(1 q)]) (20.48d)

The term in square bradecets represents the res ponse in a group of non-rel atives. When inter-
actions occur among kin ( > (), then for sufficiently close relatives, the response becomes
positive (mean fitness increases) even if it is negative when r = (. At the extreme, when
r = 1 (al interactions are among clones), the response in mean fitness is simply o?( A4) /W
and all of the heritable variance in fitness is utilized. Conversely, when interactions occur
among unrel ated individ uals, only a fraction of this genetic potential is exploited. This ob-
servationlead Bipna (2010a) to suggest that when heritable fitness interactions are present,
thekey to evolutionary success is interacting with rel atives. The reason for this is clear from
our previous discussions. With interactions among unrelated individ uals, one’s phenotype
(here fitness) provides very little information about their socal breed ing value. With inter-
acting kin, the breeding values of the kin's soaal effects influences your fitness, and these
are positively correlated (viakinship) with your ownbreedingvalue for soaal effects.

a4/



Direct and social effects
responses

Finally, we can decompose the total response in fitness into response from changes in
the mean of the direct effects and response from changes in the mean of the soaal effects.
Equation 20.15a gives

Rw =Rwa+(n—1)Rws (20.49a)
Recalling Equation 20.483, Equations 20.15b,c give these res ponse components as

a?(Ag) +rin— Dol Ag. AL

= (20.49b)

RH'.d =

and | | | L
Riy — al Ag. Ag) + z‘lTn — 1o Ag) (20.49¢)
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Altruistic traits: An example of a
reversed response

Example 20.16. Haldane (1932) cained the term altruistictrait to denote abehawvior (ortrait)
thathams an individual, butbenefits others. The classic example are alarm calls — others in
a group are wamed (increasingly theirfitness), butat some expense to the individual malang
the call (a direct effect decreasing fitness). Note that the increase in an altruste traitis an
example of a reversed response, as the trait lowers the fitness of the individual that bearsit.
Whatare the conditions for such traits to spread? Intemms of ourfitness model wathassociative
effects (Equation 2047a), we can rephrase this as the conditions for the mean value of A, to
increase, which are given by Equation 20.4%. Fram the definihon of altruism, o Aq. A) < 0,
as performing an altruishc act decreases your direct fitness while increasing the fitness of
those in your group. Equation 20.4% shows that anecessary (butnot sufficient!) condition for
altnism to evalve under individual selechonis » = (), 1.e,, individuals interact in groups of
relatives.

As painted out by Bijma and Wade (2008), we can view o( A,. A,) as the cost (—¢) for an
altnushe act towards others in your group. Caonversely, the altnushe contnbuton to you
from others in your groupis (n — 1)o?(A,) = 0, which we denote as the benefit . With
these definihons, from Equation 204% the condition foraltruism to evalve underindividual
selechionis just

—c+rb=0, or r=>bfec

This 15 the classic Hamiltoxw's rule (Hamilton 1963; 1964a,b).



Inclusive Fitness

As Equation 20.47a dlustrates, when heritable interactions are present, the fitness of anindi-
vidual depends on both their own genes as well as the genes in others. Hamilton (1964a,b)
suggested that the focus should shift from individual fitness to what he called inclusive
fitness — that component of fitness influenced only by the alleles carried by the focal in-
divid ual. Hamilton argued that individ uals strive to increase their inclusive, as opposed to
individ ual, fitness (also see Michod and Abugov 1980, Grafen 2006). Fommally, the incdlusive
fitness of an individual 15 context-specific, and 15 defined as individual fitness minus any
contributionto that fitness from the group environment plus the effect of that individ ual on
the fitness of others, weighted by relatedness. While sounding rather abstract, when placed
in an associative effect framewode, this definitionis quite clear.

From Equation 20.47a, for individual 7, A,, is the heritable component of individ ual
fitness ; remaining when the socal contributions from others have been removed. The
focal individual’s social breeding value A, does not influence their own fitness, but the
social effects of other group members do, with the (heritable) contribution to individ ual #'s
fitness from individual j being A, . The correlation between the breeding value A, carried
by ¢ and the contribution to #'s fitness from j is their relatedness r;;, so that ri; A, is the
predicted value of A, given A,,. Putting these together gives the heritable component (i.e.,
breedingvalue) ofi’s inclusive fitness as

Aincri = Aa, + A, rij = Aa; +r(n—1)A,, (20.51a)
i

where thelast equality makes our stand ard assumption that all group members are equally

related (which i1s easily relaxed). The resulting variance in the breed ing value for indusive
fitness becomes

02 Ainer) = 02 Ag) + 2r(n — Do(Ag. Ag) + ri(n — 1)*o*(Ay) (20.51b)



In theabsence of heritable associative effects (o A, ) = () this simply reduces to theadditive
variance in direct fitness. Importantly, note that the heritable component of incdlusive fitness
1s not the same as the total breed ingvalue Ay for fitness, as

A'Il = Aineri + (1 —1r)(n — 1)“1% (20.51c)

Just as Equation 20.49 decomposed the total response into components from direct and
associative effects, we can similarly decompose the change in mean individual fitness into
change inmean inclusive fitness plus the residual response. From Equation 20.51¢

Rw = Rwine+ (1 —r)(n—1)Rw. (20.52a)

so that total response in fitness is the change in incdusive fitness plus any response in the
residual of the mean soaal value (after the effects of group relatives are absorbed into in-
clusive fitness). From Equation 20.48b, the response in the mean incusive fitness 1s given

by

R“".‘i.n('l = % (7( ‘I. :"1.,""(.() (2()-521))
where
a(W. Aipet) = 0 | p+ Ag, + Z .483. + ei.Ag. +r(n—1)A,,
i

= a?(Ag) + 2r(n — Do(Ag. Ag) + r¥(n — 1)20?(A,) (20.52¢)
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The last line follows by eval uating the covariance in a similar fashion as done throughout
this chapter. Noteby comparison with Equation 20.51b, that this is simply 0% ( Ain), vielding

20 A.
Rwinet = % (20.52d)

Hence (under our simple model), the response in mean inclusive fitness is proportional to
the additive variance in incdusive fitness, so that mean incdlusive fitness is non-decreasing.

Why, then, can the mean of individial fitness decline despite the continual increase in mean
inclusive fitness? The reason is an even faster decline in the mean (residual) social value.
Recalling Equation 20.49¢, Equation20.51abecomes

(I —r)(n—1)
W

Rw — Rwiinct = ((r( Ag. Ag) +r(n — 1)02(.43)) (20.52¢)

Hence, if the covariance between direct and associative effects is sufficiently negative, any
increase in inclusive fitness is more than countered by the decline in the mean social envi-
ronment. Note that increasingly the relatedness of group members decreases the residual
res ponsebetween meanindivid ual and incdusive fitness, which in turn increases the chances
that individ ual mean fitness increases.

Key: mean inclusive fitness (unlike individual

fitness) is non-decreasing .



