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Outline

• Genetics of complex traits
• Stability of distributions over time
• Hardy-Weinberg
• Multilocus Hardy-Weinberg
• Population Structure
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Mendelian basis of complex 
traits

• Classic experiment of Nilsson-Ehle 
(1908) on wheat color

• “Simple” traits (green vs. yellow peas, 
etc.) had a single-gene basis

• Do complex traits have a different 
genetic basis?
– Notion of blending inheritance (offspring = 

blended average of parents) 
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F1 in a cross of dark red pure line x white pure
line seems to support blending



However, “outbreak of variation” in the F2
rules out blending
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Stability of the phenotypic 
distribution over time
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Stability of the phenotype 
distribution
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The parental lines, F1, and F2 all differ from 
each other.  What happens to the distribution of
F2 trait values in the F3, F4, Fx?



Case 1: random mating

• Suppose the F2 are randomly mated.  What 
are the genotype frequencies in the following 
generation?

• These are given by the Hardy-Weinberg 
theorem.

• If p = freq(A) and q = freq(a), then
– freq(AA) = p2

– freq(Aa) = 2pq
– freq(aa) = q2
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• Here freq(A) = freq(a) = ½, and freq(B) = freq(b) = 
½.  Assuming the A and B loci are unlinked, then 
independent assortment gives
– Freq(dark red) = Freq(AABB) = freq(AA)*freq(BB) = 

(1/4) (1/4) = 0.0625
– Freq(white) = freq(aabb) = freq(aa)*freq(bb) = 0.0625
– Freq(med red) = freq(AAbb or AaBb or aaBB)

• = (1/4)*(1/4) + (1/2)*(1/2) + (1/4)*(1/4) = 0.375

• Hence, the distribution of phenotypes in the F3 is 
the same as the F2.  What about in the F4? F5?
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Case 2: Inbred lines
• Suppose instead that each F2 is used to form 

an inbred line, and continually  selfed over 
many generations.  What happens to the 
distribution after complete selfing?

• Now each locus is a homozygote, with 
Freq(AA) = freq(aa) = freq(BB) = freq(bb) = ½
– AABB = dark red (25%)
– AAbb,  aaBB = medium red (50%)
– aabb = white (25%)
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During selfing
• During selfing, an AA or aa line only produces AA /aa.  

However, an Aa line has probablity ¼: ½ : ¼ of producing AA : 
Aa : aa

• Hence, after one generation of selfing
– Freq(AA) = Freq(AA | parent AA) + Freq(AA | parent Aa) = 

1*(1/4) + (1/4)*(1/2) = 3/8
– Freq(aa) = 3/8, freq(Aa) = 1/4
– Same for the B locus

• Resulting phenotypic (seed color) frequencies are
– Freq(dark red) = Freq(AABB) = freq(AA)*freq(BB) = (3/8) 

(3/8) = 0.1406
– Freq(white) = freq(aabb) = freq(aa)*freq(bb) = 0.1406
– Freq(med red) = freq(AAbb or AaBb or aaBB)

• = (3/8)*(3/8) + (2/8)*(2/8) + (3/8)*(3/8) = 0.344
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Hardy-Weinberg
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Importance of HW

• HW states that the distribution of 
genotypes in a population are stable 
under random mating, provided no
– Drift (i.e., pop size is large)
– Migration (i.e., no input of individuals from 

other populations/breeding programs)
– Selection (no forces to systemically change 

allele frequencies)
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Derivation of the 
Hardy-Weinberg result

• Consider any population, where
– Freq(AA) = X
– Freq(Aa) = Y
– Freq(aa) = Z
– freq(A) = p = freq(AA) + (1/2) freq(Aa) = X + ½ Y

• What happens in the next generation from 
random mating?
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Frequency of matings



Genotype frequencies in next generation

Freq(AA) = 1* X2 + ½*2XY + (1/4) Y2 = (X + ½ Y) 2 = p2. 

Freq(aa) = 1* Z2 + ½*2YZ + (1/4) Y2 = (Z + ½ Y) 2 = q2. 



What about the next generation?
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Freq(AA) = 1* p4 + ½*4p3q + (1/4) 4p2q2 = p2 (p+q)2 = p2. 

Genotype frequencies unchanged



Hardy-Weinberg

After one generation of random mating, genotype frequencies 
remain unchanged and are given by HW proportions

Assuming random mating, no migration, drift, or selection, then
allele frequencies remain unchanged

More generally, for any number of alleles, freq(AiAi) = pi
2,

freq(AiAj) = 2pipj. 



Hybridization

• Hardy-Weinberg assumes allele frequencies are the 
same in both sexes.  If not, then after one generation 
of random mating, the frequencies of autosomal 
alleles is the same in both sexes, and HW is obtained 
on the second generation

• Suppose Freq(A in males) = pm, Freq(A in females) = 
pf.  Average allele frequency p = (pm+ pf)/2.

• In generation one,
– Freq(AA) = pm* pf which is different from p2 if pm & pf differ
– Freq(Aa) = pm (1-pf) + (1-pm) pf
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Example
• Cross females from a pop where pf = 0.4 with 

males from a pop where pm = 0.6.  Average 
frequency = 0.5.
– Under random-mating, freq(Aa) = 0.5
– Here, Freq(Aa) = pm (1-pf) + (1-pm) pf = 0.4*0.4 + 

0.6*0.6 = 0.52
– Hence, with crosses between populations where 

allele frequencies differ, we see an excess of 
heterozygotes.  

– Excess in F1, Hardy-Weinberg values in F2.
– Implications for persistence of heterosis.
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Crosses vs. synthetics

• In a cross, males and females are 
always from different populations. 
Example of nonrandom mating!

• In a synthetic, all individuals are 
randomly-mated, therefore F2 is in HW

• Example:  equal mix of P1 X P2

– In a synthetic, 25% of crosses are P1 X P1, 
50% P1 x P2, 25% P2 x P2.
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Multi-locus Hardy-Weinberg
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Multi-locus HW

• When following multiple loci, we need 
to considers gametes, rather than 
alleles
– For example, an AaBb parent gives four 

distinct gametes AB, Ab, aB, ab
– While allele frequencies do not change 

under random mating, gamete frequencies 
can.

– Concept of linkage disequilibrium
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Genotypic frequencies under 
HW

• Under multi-locus HW,
– Freq(AABB) = Freq(AA)*Freq(BB)
– i.e., can use single-locus HW on each 

locus, and then multiply the results

• When D is non-zero (LD is present), 
cannot use this approach
– Rather, must follow gametes
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Linkage Disequilibrium
• Under linkage equilibrium, the frequency of gametes 

is the product of allele frequencies,
– e.g. Freq(AB) = Freq(A)*Freq(B)
– A and B are independent of each other

• If the linkage phase of parents in some set or 
population departs from random (alleles not 
independent) , linkage disequilibrium (LD) is said to 
occur

• The amount DAB of disequilibrium for the AB gamete 
is given by
– DAB = Freq(AB) gamete - Freq(A)*Freq(B)
– D > 0 implies AB gamete more frequent than expected
– D < 0 implies AB less frequent than expected



The Decay of Linkage Disequilibrium

The frequency of the AB gamete is given by

If recombination frequency between the A and B loci
is c, the disequilibrium in generation t is

Note that D(t) -> zero, although the approach can be
slow when c is very small 28
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Dynamics of D

• Under random mating in a large population, 
allele frequencies do not change.  However, 
gamete frequencies do if there is any LD

• The amount of LD decays by (1-c) each 
generation
– D(t) = (1-c)t D(0)

• The expected frequency of a gamete (say AB) 
is
– Freq(AB) = Freq(A)*Freq(B) + D
– Freq(AB in gen t) = Freq(A)*Freq(B) + (1-c)t D(0)
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AB/ab

Excess of 
parental
gametes 

AB, ab

linkage

Ab/aB

Excess of 
parental
gametes 

Ab, aB

AB/ab

Excess of 
parental
gametes 

AB, ab

Ab/aB

Excess of 
parental
gametes 

Ab, aB

Pool all gametes:  AB, ab, Ab, aB equally frequent

No LD:  random distribution of linkage phases
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AB/ab

Excess of 
parental
gametes 

AB, ab

linkage

AB/ab

Excess of 
parental
gametes 

AB, ab

AB/ab

Excess of 
parental
gametes 

AB, ab

Ab/aB

Excess of 
parental
gametes 

Ab, aB

Pool all gametes:  Excess of AB, ab due to an excess
of AB/ab parents

With LD, nonrandom distribution of linkage phase



Example
• Suppose Freq(A) = 0.4, freq(B) = 0.3, D =  0.1
• Freq(AB) gamete is freq(A)*freq(B) + D

– Freq(AB) = 0.4*0.3 + 0.1 = 0.22

• Freq(AABB) = Freq(AB)*Freq(AB) = 0.222 = 
0.0484

• At multilocus HW, 
– Freq(AABB) = Freq(AA)*freq(BB) = 0.42*0.32= 

0.0192

• Suppose c = 0.2.  In next generation,
– D(1) = (1-0.2)*D(0) = 0.8*0.1 = 0.08,
– Freq(AB) – 0.20; freq(AABB) = 0.04 
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Population structure
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Population Structure
Populations often show structure, with an apparently
single random-mating population instead consisting
of a  collection of several random-mating subpopulations

Suppose there are n subpopulations, and let wk be the
probability that an random individual is from population k

Let pik denote the frequency of allele Ai in subpopulation
k.

The overall frequency of allele Ai is
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The frequency of AiAi in the population is just 

Expressed in terms of the population frequency of
Ai, 

Thus, unless the allele has the same frequency in
each population (Var(pi) = 0), the frequency of
homozygotes exceeds that predicted from HW
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Similar logic gives the frequency of heterozygotes
as

Hence, when the population shows structure,
homozygotes are more common
than predicted from HW, while heterozygotes can
be more (or less) common than expected under HW,
as the covariance could be zero, positive, or negative
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Population structure also generates disequilibrium

Again suppose there are k subpopulations, each in
linkage equilibrium

The population frequency of AiBj gametes is

The population-wide disequilibrium becomes
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Consider the simplest case of k = 2 populations

Let pi be the frequency of Ai in population 1,
pi + di in population 2.

Likewise, let qj be the frequency of Bj in population 1,
qj + dj in population 2.

The expected disequilibrium becomes

Here, w1 is the frequency of population 1
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• One measure of population structure is given by Wright’s FST
statistic (also called the fixation index)

• Essentially, this is the fraction of genetic variation due to 
between-population differences in allele frequencies

• Changes in allele frequencies can be caused by evolutionary 
forces such as genetic drift, selection, and local adaptation

• Consider a biallelic locus (A, a). If p denotes overall population 
frequency of allele A, 
– then the overall population variance is p(1-p)
– Var(pi) = variance in p over subpopulations
– FST = Var(pi)/[p(1-p)]

FST, a measure of population structure
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Population Freq(A)

1 0.1

2 0.6

3 0.2

4 0.7

Assume all subpopulations
contribute equally to
the overall metapopulation

Overall freq(A) = p =
(0.1  + 0.6 + 0.2 + 0.7)/4 = 0.4 

Var(pi) = E(pi
2) - [E(pi)]2 = E(pi

2) - p2

Var(pi) = [(0.12 + 0.62 + 0.22 + 0.72)/4] - 0.42 = 0.065

Total population variance =  p(1-p) = 0.4(1-0.4) = 0.24

Hence, FST = Var(pi) /[p(1-p) ] = 0.065/0.24 = 0.27  

Example of FST estimation
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P1

P2

p=0.5
q=0.5

p=0.5
q=0.5

FST = 0

Graphical example of FST

Homozygous
Diploid

No population differentiation 
41

Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395



P1

P2

p=0.9
q=0.1

p=0.25
q=0.75

FST=0.43
Homozygous
Diploid

Graphical example of FST

Strong population differentiation 
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Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395



P1

P2

Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395

p=1
q=0

p=0
q=1

FST = 1

Homozygous
Diploid

Complete population differentiation 

Graphical example of FST
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Unrooted neighbor-joining tree based on C.S. Chord (Cavalli-Sforza and Edwards 1967) based on 169 nuclear
SSRs. The key relates the color of the line to the chloroplast haplotype based on ORF100 and PS-ID sequences.

Garris et al. 2005. Genetics 169:1631-1638

Rice population structure

*Admixed individuals

FST = 0.25

FST = 0.43
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Liu et al. 2003. Genetics 165:2117-2128

Phylogenetic tree for 260 inbred lines using the log-transformed proportion of shared alleles distance 

Maize population structure

Non-Stiff Stalk

Tropical/Subtropical

Stiff-Stalk

Teosinte
FST =
0.18

Flint-Garcia et al. 2005. Plant J. 144:1054-1064

FST = 0.22
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Selection
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Genotype AA Aa aa

Frequency
(before selection)

p2 2p(1-p) (1-p)2

Fitness WAA WAa Waa

Frequency
(after selection)

p2 WAA 2p(1-p) WAa (1-p)2Waa

One locus with two alleles

W W W

W
is the mean population fitness, the fitness of an random
individual, e.g.      = E[W]

Where = p2 WAA + 2p(1-p) WAa + (1-p)2WaaW
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The new frequency p’ of A is just 
freq(AA after selection) + (1/2) freq(Aa after selection)

The fitness rankings determine the ultimate fate
of an allele

If WAA > WAa > Waa, allele A is fixed, a lost

If WAa > WAA, Waa, selection maintains both A & a
Overdominant selection
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General expression for selection with n allelles

Let pi = freq(Ai), Wij = fitness AiAj

If Wi > W, allele Ai increases in frequency

If a selective equilibrium exists, then Wi = W 
for all segregating alleles. 49



• Suppose fitnesses are 1: 1.2:1.4 for the 
genotypes qq: Qq:QQ and p =freq(Q)=0.2
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qq qQ QQ

Freq 0.82 = 0.64 2*0.8*0.2 = 0.32 0.22 = 0.04

Fitness 1 1.2 1.4

Freq*fit 0.64 0.384 0.056

Mean fitness = 0.64 + 0.384 + 0.056 = 1.08

Freq(Qq after selection) = 0.384/1.08 = 0.356

Freq(QQ after selection) = 0.04/1.08 = 0.037

New freq (Q) = (1/2)* 0.356 + 0.037 = 0.215


