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Heritability

e Central concept in quantitative genetics

* Fraction of phenotypic variance due to
additive genetic values (Breeding values)

— h2 — VA/VP
— This is called the narrow-sense heritability

— Phenotypes (and hence V;) can be directly
measured

— Breeding values (and hence V,) must be
estimated

® Estimates of V, require known collections of
relatives



Broad-sense heritability

* Narrow-sense heritability h? applies when
outcrossing,
— h2 = Var(A)/Var(P)
— = the fraction of all trait variation due to variation
in breeding (additive genetic) values
e Broad-sense heritability H? applies when
selecting among a series of pure lines
— H2 = Var(G)/Var(P)
— = the fraction of all trait variation due to
variation in Genotypic values



Defining H? for Plant Populations

Plant breeders often do not measure individual plants
(especially with pure lines), but instead often measure a plot or
a block of individuals.

This replication can result in inconsistent measures of H2 even for
otherwise identical populations.

Let z;,, denote the value of the I-th replicate in plot k of genotype i
in environment j. We can decompose this value as

Zyy = G+ B+ GE; + pjy + e
/ h
deviations of individual

Effect of the k-th plot plants within this plot
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Suppose we replicate the genotype over e environments,
with r plots (replicates) per environment, and n individuals

per plot.

It we set our unit of measurement as the average over
all plots, the phenotypic variance for the mean of line
i becomes

9) 2 9)
2, =y 2 2 OGE Op Oc
6 (Z)= oGt ot + —
e er ern

Thus, Vp, and H? = V/Vp, depend on our choice of e, 1, and n

In order to compare board-sense heritabilities we need to use a
consistent design (same values of e, r, and n)



Key observations

* The amount of phenotypic resemblance
among relatives for the trait provides an
indication of the amount of genetic variation

for the trait.

* |f trait variation has a significant genetic
basis, the closer the relatives, the more
similar their appearance

* The covariance between the phenotypic
value of relatives measures the strength of
this similarity, with larger Cov = more
similarity



Genetic Covariance between relatives

Sharing alleles means having alleles that are identical by
descent (IBD): both copies can be traced back to a single
copy in a recent common ancestor.

Genetic covariances arise because two related
individuals are more likely to share alleles than
are two unrelated individuals.




@ S (o

No alleles IBD One allele IBD

Both alleles IBD



Resemblance between relatives and
variance components

* The phenotypic variance between relatives
can be expressed in terms of genetic
variance components
- Cov(z,,z) = a3,V + b, Vp.

— The weights a and b depend on the nature of the
relatives x and y, and are measures of how often

they are expected to share alleles identical by
descent

— These are critical in predicting selection response



Parent-ottspring genetic covariance

Cov(G,, G,) --- Parents and oftspring share
EXACTLY one allele IBD

Denote this common allele by A,

Go=A0+D/Z‘+ Dy

IBD allele Non IBD alleles
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Cov(Go,Gp) = Cov(ay + az + Diz,a1 + ay + D1y

= Cov(a1,0) + C ay) +C D1y)
+Co a;)+Co ay) T :Dly)
+ T al) + 1:1:,Ofy) + MLDH})

All blue covariance terms are zero.

- By construction, a and D are uncorrelated

* By construction, o from non-IBD alleles are
uncorrelated

» By construction, D values are uncorrelated unless
both alleles are IBD
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Con ) {0 if x #y, i.e., not IBD
ov(Qz,y) = . .
/ Var(A)/2 ifx =y, ie.,IBD

Var(A) = Var(og + ay) = 2Var(a;)

so that
Var(ay) =Cov(ag,aq) = Var(A)/2

Hence, relatives sharing one allele IBD have a
genetic covariance of Var(A)/2

The resulting parent-offspring genetic covariance
becomes Cov(Gp,GO) = Var(A)/2
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Hah‘-sibs

/..\

Each sib gets exactly one
allele from common father,
different alleles from the
different mothers

()10 O 02

The half-sibs share no alleles IBD
* occurs with probability 1/2

Hence, the genetic covariance of half-sibs is just
(1/2)Var(A)/2 = Var(A)/4
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Full-sibs

Father Mother

Each sib gets
exact one allele
from each parent

Sib 1 Sib 2

Prob(Allele from father IBD) = 1/2. Given the allele in parent
one, prob = 1/2 that sib 2 gets same allele

Prob(Allele from father not IBD) = 1/2. Given the allele in
parent one, prob = 1/2 that sib 2 gets different allele "



Full-sibs

Father Mother

Each sib gets
exact one allele
from each parent

&

Paternal allele not IBD [ Prob = 1/2 ]
Maternal allele not IBD [ Prob = 1/2 ]
Prob(sibs share O alleles IBD) = 1/2*1/2 = 1/4
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Each sib gets
exact one allele
from each parent

Paternal al
Maternal a

Prob(share

Father Mother

&

ele IBD [ Prob =1/2]
lele IBD [ Prob =1/2]

Prob(sibs share 2 alleles IBD) = 1/2*1/2 = 1/4

1 allele IBD) = 1-Pr(0) - Pr(2) = 1/2

16



Resulting Genetic Covariance between full-sibs

| BD alleles

0
1

2

Probability Contr ibution
1/4 0
1/2 Var(A)/2
1/4 Var(A) + Var( D)

Cov(Full-sibs) = Var(A)/2 + Var(D)/4
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Genetic Covariances for General Relatives

Let r = (1/2)Prob(1 allele IBD) + Prob(2 alleles IBD)
Let u = Prob(both alleles IBD)

General genetic covariance between relatives
Cov(G) = rVar(A) + uVar(D)

When epistasis is present, additional terms appear
r2Var(AA) + ruVar(AD) + u?Var(DD) + r3Var(AAA) +
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More general relationships

* To obtain the expected covariance for any
set of relatives, we normally need only
compute r and u for that set of relatives

e \With general inbreeding, becomes more
complex (as three other terms, in addition to
V, and Vp arise)

e \With crosses involving inbred and/or related
parents, values for r and u are different from
those presented above.
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Coefticients of Coancestry

Suppose we pick a single allele each at random from
two relatives. The probability that these are IBD is
called ©, the coefficient of coancestry. In terms of our
previous notation, 20 = r = the coeff on Var(A)

®,, denotes the coefficient for relatives x and y

Consider an offspring z from a (hypothetical) cross

of xandy. ®,, = 1,, the inbreeding coefficient of z.

Why? Because the offspring of x and y each get a
randomly-chosen allele from each parent. The probability
f, that both alleles are IBD (the probability of inbreeding)

is thus just ©,,.
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0 and the coefficient on V,

e The coefficient on the additive variance for
the relatives x and y is just 20,,.

e To see this,

— let AA, denote the two alleles in x and A/A, those

iny.

— Cov(breedmg values) = Pr(A ibd A)) cov(a, o) +
Pr(A; ibd A) cov(a;, o) + Pr(A, |bd A,) cov(ay, ay) +
Pr(A, A ibd A) cov(oy,ay) =4 6 ,Var(a)

— Slnce Var(A) = 2Var( ), Cov =26, Var(A)
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®,.,: The Coancestry of an individual
with itself

Self x, what is the inbreeding coefficient of its offspring?

To compute 0,,, denote the two alleles in x by A; and A,

Draw A,  Draw A,
Draw A, IBD o

Draw A, f IBD

X

Hence, for a non-inbred individual, ©,, = 2/4 = 1/2

If x is inbred, f, = prob A, and A, IBD, O, = (1+ 1,)/2
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Example

D Consider the following pedigree
Suppose A and D are fully-inbred,

F and related, lines with 6,5 = 0.5.
Further, B and C are unrelated and
G / outcrossed individuals
Individual A | B C D
. 0 0
0.,=(1+F)/2 1/2 | 1/2
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The Parent-oftspring Coancestry

Let A,, A, denote the two alleles in the offspring, where
A, is the allele from the nontfocal parent (NP), while
Ay A, are the two alleles in the focal parent (P)

Offspring
Draw A;  Draw A,
-|GC—)J Draw A1 | BD ®Fi,\_NP
= Prob(A,,A,), the alleles
(8 oo n
o Draw Ap fp ®P,<NP from the two parents are IBD,

i.e. , offspring is inbred

A,, AIO IDB if
parent is inbred

For a non-inbred individual, ®yy = 1/4

General: Opo = (1 +1,+ 20p\p)/4 = (1 +1,+ 20)/4 | 2




®,, = Parent & Offspring

Parent inbred

Paternal allele

( fpw Offspring inbred

M ot h er ° P ) ® I ®
Offspring i h i { f_
— l _ I+ 1 1+2f,
epo 4 Gpo — 4 epo = 4

1/2 = Prob random offspring allele
from father. Prob = 0_; = f, that this
allele is IBD to mother giving

a contribution of f_/2

Opo = éll(lJr fp +29n‘1f )
“.. This is just 2f, e



A

B C D

\ Y/
E
N

Consider A - E (inbred parent - offspring)

eAE

(1+1,)/4 =

From before

\”/ 0aa= Opp = 1; Ogg = Occ = 1/2;
Orp=1/2,
F

9AB eAC 9BC eBD eCD

(14+1)/4 = 1/2. Same value for 65

Consider B - E (outbred parent - offspring)

eBE

(1+15)/4 =

(14+0)/4 = 1/4. Same value for 6.¢

Consider E - G (outbred parent - offspring)

O =

(1+12)/4 =

(1+0)/4 = 1/4. Same value for Og;

0
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From before

A B C D 0us Op = 1 0o = O = 172

\ / \ / =172,
E § eA Oac = Ogc = Ogp= Bcp =0
\G/

What about O ?

The randomly-chosen allele from E has equal chance
of being from A or B. Likewise for F (from C or D)

Of these four possible combinations (A&C, A&D, B&C, B&D), only
an allele from A and an allele from D have a chance of being

Heﬂce, OEF = GAD/4 = 1/8
27



Full sibs (x and y) from parents m and f

®=1/8+1/8=1/4 O =2 +f +1)/8
1/2 (1+£)/2

CC%Q (%@

|
ollie .

(1/2)(1/2)(1/2) (1/72)(1/2)(1/2) (1 +f..)/2] (1/2)(1/2) [(1 +£:)/2] (1/2)(1/2)

Unrelated, non-inbred Unrelated, inbred
parents parents
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Full sibs (x and y) from parents m and f

®mf ®mf
/\q ’/’\4

CI‘D @>< f
O
£(1/2)(1/2) O ./

.[.'
O O O
Parents inbred & related.

Two additional paths to add
to ©@ =(2+f_+1)/8

®

m

This gives |® = (2+f _+fi+4 0 /8
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Full sibs (x and y) from parents m and f

0, = 2+, +f+40,,)/8

\/ \/

Sf df / ®sm,dm
y

Putting all this together gives

0, =2+06 + Oy 4 + 40,,9/8

sm,dm
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Example

From before

A B C D g 0 =1 0,=00=1/2
\ / \/ Opn = 1/2, 00 = 1/8,

E\ F Ops = Oac=05c =0z = O0cp=0
S.,S,

®xy — (2 + ®AB + ®CD + 4®E|:)/8

01, =(2+0+0+4[1/8])/8=(4 + 1)/16 =5/16
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Half-sibs

A C A is the common parent

B
\ N
E F

e Using the same arguments as above,
Or = (0an + Opp + Opc + 050)/4

= ([1 + 1Al/2 + 0,5 + 05 + 05.)/4
Hence, it B and C unrelated,
O = (1 +1,)/8
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Computing 0,, -- The Recursive Method

There is a simple recursive method for generating the elements A,
= 2 0, of a relationship matrix (used for BLUP selection). For ease of

readmg, we use the notation A(i,j) = A;

J

Basic idea is that the founding individuals of the pedigree are
assumed to be unrelated and not inbred (although this can also
be accommodated). These founders are assigned values of A(i,i)
= 1.

Likewise, any unknown parent of any future individual is assumed to be
unrelated to all others in the pedigree and not inbred, and they are
also assigned a value of A(i,i) = 1.

Let S; and D, denote the sire and dam (father and mother) of individual
i. For this offspring A(i,i) = 1 + A(S;, D)/2

AlLj) = AGD = [AGS) + AGDIV2 = [AG,S) + AG,D)/2

The recursive (or tabular) method starts with the founding parents and
then proceeds down the pedigree in a recursive fashion to fill out A for
the desired pedigree.
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Example
1

/ Lord Raglan Ancestors are 1 & 2
\
3 2 Champion of Duchess of 5 A(1 11) A(2,2) =
Mistletoe England The Czar A(1 ,2) O
v / |

7 Grand Duke

6 Mimulus of Gloster 3, 4, 5, 8 a|| have
/ unknown parents

Pr;nce,ss (Only a Siﬂgle

O | Royal Duke > arrow to them)

of Gloster \ /
‘ Roan ‘

g

A,

1 1 Gauntlet

3: S3=1, D3 = Unknown, A(3,3) =1+ A(S35,D3)/2 = 1 + A(1,unk)/2 = 1

A(1,3) = [A(1,S3) + A(1,D35))/2 = [A(1,1) + A(T,unk)]/2 = 1/2.

Note also that A(1,4) = A(1,5) = 1/2, A(4,4) = A(5,5) = 1.

A(3,4) = [AQ,S) + A(3,D,) 172 = [A(3,1) + AB,unk)]/2 = (1/2+0)/2 = 1/4.

Same for A(3,5) = 1/4. 2 is unrelated to 3, 4, 5, giving A(2,3) = A(2,4) = A(2,5) = 0.
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6

Lord Raglan

/

\ \
4 Duchess of 5
Gloster, 9th The Czar

!
P o>
0
Royal

Champion of
@ England
Grand Duke
@ of Gloster
9 Royal Duke
of Gloster
\ Roan
Gauntlet
6: S, =2,D,=3. Ab,6)=
A6,1) = [A(1, Sg) + A1, Dy)
A(6,2) = [A(2, Sg) + A(2, Dy) )
A(6,3) = [A3, Sy) + A@, Dy)I/2 = [A(3,2)
A(6,4) = [A(4,S,) + A4, Dy) )
A(6,5) = [A(5, Sy) + A5, Dy)l/2 =
7.S,=2,D,=4. A7,7) =
A(6,7) = [A6, S;) + A6, D [A(6, 2)

8: Sg =5, Dg=unk. A8,

[A(6, 5)

1

=1+ AS, DY2=1+A@23)/2="1
1/2 = [A(1,2) + A(1,3)/2 = [0 + 1/2)/2 = 1/4
1/2 = [AQ2,2) + AR,3))/2 = [1+0/2 = 1/2

+AQ@BI/2=[0+1)/2=1/2

/12 = [A@4,2) + A@4,3)]/2=[0+ 1/4]/2 = 1/8
[A(5,2) + A(5,3)]/2 = (0+1/4)/2 = 1/8

=1+AS;,D)2=1+A24)/2=1+0/2="1
N2 =
8) =1+ A(Sg,
A(6,8) = [A(6, Sg) + A(6, Dg)l/2 =

+ A6, 4)/2=(1/2 +1/8)/2 = 5/16

Dg)/2 = 1 + A(G,unk)/2 = 1.

+ A6, unk)l/2 = (1/8)/2 = 1/16

U WD

| SR SR SN}

OO = O N

9: So=7,Dg=6. AQ,9) =1 +ASy, Do)/2 = 1 + A(6,7)/2 =1+ 5/32 = 1.156 <- inbred!
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Actual relatedness versus expected values from
pedigrees

Values for the coefficient of coancestry (6) and the
coefficient of fraternity (A) obtained from pedigrees
are expected values. Due to random segregation of
genes from parents, The actual value (or realization)
can be different.

For example, we expect 20 to be V2 for full subs. However,
one pair of sibs may actually be more similar (0.6) and
another less similar (say 0.35). On average, 20 is V2

for pairs of full sibs, but if we knew the actual value

of 0, we have more information. With sufficient

dense genetic markers, we can estimate these
relationships directly.

Genomic selection uses this extra information. 34



What about coefficient of coancestry 0 ?

Genotype of ¢
Genotype of 3 11 10 00
11 1 0.5 0
10 0.5 0.5 0.5
00 0 0.5 1

One computes the coefficient of coancestry for each SNI, taking the average value over all
loci as the coetficient of coancestry for that pair of individuals. Toro et al. (2002) refer to this
as molecular coancestry. Note that we can compare an individual with itself (7 = j), which
returns 1 for each homozygouslocus and 1/2 for each heterozygous loci.
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Genotype of ¢

Genotype of 11 10

11 1 0.5

10 0.5 0.5

00 0 0.5
Indivx: 00 00 10 10 00 10
Indivy: 10 00 11 11 10 11

Locus-specific
0

05 10 05 05 0.5 0.5

00
0
0.5
1
11 00 11 00
11 10 11 10
1.0 05 1.0 05

Estimated O is the average over all ten loci, = 0.65
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The coefticient of fraternity

e While (twice) the coefficient of coancestry gives the
weight on the additive variance for two relatives, a
related measure of IDB status among relatives gives
the weight on the dominance variance

* The probability that the two alleles in individual x are

IBD to two alleles in individual y is denoted A, and
is called the coefficient of fraternity.

® This can be expressed as a function of the
coefficients of coancestry for the parents of (mx and
fx) of x and the parents (my and fy) of y.

Xy !

- Axy - emxmyefxfy+ emxfyefxmy
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The coefticient of fraternity (cont)

e x and y can have both alleles IBD it

— The allele from the father (fx) of x and the father (fy) of y are
IDB (probability 05,5) AND the allele from the mother (mx) of
x and the mother (my) of y are IDB (probability 6 , Or
efxfy emxmy

— OR the allele from the mother (mx) of x and the father (fy) of
y are IDB (probability 0,,4) AND the allele from the father
(fx) of x and the mother (my) of y are IDB (probability Omy)
or emxfy 6fxmy

— Putting these together gives

mxmy)

* Axy - emxmyefxfy_l_ emxfyefxmy

40



A, The Coeflicient of Fraternity

A,y = Prob(both alleles in x & y IBD)

0
Ot by g

o MO O
N/
O O

+ 0

.F

X

A, =0

Xy mxmyefxfy mxfyefxmy 21



Examples of A, : Full sibs

e Full sibs share same mon, dad
- my=m,=m, f,=1 =1
— Axy = emxmyefxfy + 9mxfyefxmy = emmeﬁ‘ + emfz
- A, = 1+ )(1+)/4 + 0,
* |f parents unrelated, 0;,,= 0, giving
— Axy — (1 +fm)(1 +ff)/4
* |t parents are unrelated and not inbred,
- A, =1/4

y
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Examples of A, : Half sibs

e Paternal half sibs share same dad, different
moms
- f,=1,=1, m,and m,
— Ay = Oy Oty T Oty Otxmy = Orrxmy Ot T Ot Oyt
- Axy - emxmy (1 'Hcm)/2 T emx1c emy1c

e |f mothers are unrelated to each other and
to the common father, 0, = 06 = 0,5 =
0, giving

- Ay, =0
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When is A non-zero?

¢ Since Axy = OmxmyGfxfy + 0
* A nonzero value for A requires either

— That the fathers of both x and y are related
AND the mothers of both x and y are
related

— OR that the father of x is related to the
mother of y AND the mother of x is related
to the father of y

mxfyefxmy
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From before

Oan=Opp = 1; Ogg = Occ = 1/2;
N/ N\ Ous = 1/2, Oge = 1/8,

E F Ops = Oac = Opc = Ogp = Ocp =
pd
S.,5,

What is A for the full sibs (S, and S,)?

— — 2
Axy _ emxmyefxfy T emxfyefxmy o eEEeFF T eEF

Giving Axy — OEEGFF + OEFZ
= (1/2)(1/2) + (1/8)%
= 1/4 + 1/64 = 17/64 = 0.266

0
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A, and the coefficient on Vg

Xy
e The coefficient on the dominance variance for the
relatives x and y is just A, .

 To see this,
- let AA denote the two alleles in x and A/A, those

iny.

— Suppose that alleles i and k come from the
mothers of these two relatives and alleles j and |
from their fathers.

— Cov(dominance values) = Pr(A; ibd A A ibd A))
cov(s;;, 8y + Pr(A; ibd A, A |bd Ak)cov(8 Or)
= (O Ormxmy T Orxty 9; Var(D) A, Var(D)

mxfy Jxmy)
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Estimating relationships using
molecular data

With SNP data, treat identity in state (also
called alike in state, AIS) as IBD

Suppose the genotypes of two individual at 10 SNPs are

Indivx: 00 00 10 10 00 10 11 00 11 00

Indivy: 10 00 11 11 10 11 11 10 11 10

t t t

3/10 loci have A,, = 1, so average A, over all loci is
0.3*1=0.3 4



General Resemblance between
relatives

28$y — Ta:yv ’u,xy — ACL'y

COU(GfL" Gy) — 26myVA + A:cyVD

Cov(Gz, Gy) = 202yVa + Ay VD
+ (202y)?Vaa + 262yA 2y Vap + A2, VDD + -+
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Example

A B C D
\/ \ / We found for full sibs S;, S, that
E F 9 =5/16 hence 26 =5/8 A =17/64
N v
TP

Expected genetic covariance between this sibs is

(5/8)Var(A) + (17/64)\Var(D) + (5/8)2Var(AA) +
(5/8) (17/64)\Var(AD) + (17/64) *Var(DD) + -
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Autotetraploids

Peanut, Potato, alfalfa, soybeans all examples
of crops with at least some autotetraploid
ines

With autotetraploid, four alleles per locus,
with a parent passing along two alleles to an

offspring
As a result, a parent can pass along the
dominance contribution in G to an offspring

Further, now there are four variance
components assocated with each locus
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Genetic variances for
autotetraploids

e G=A+D+T+Q

— A (additive) and D (dominance, or digenic effects)
as with diploids

— T (trigenic effects) are the three-way interactions
among alleles at a locus

— Q (quadrigenic effects) are the four-way
interactions at a locus

e Total genetic variance becomes
— Vg =V, +Vy +V:+V,

)



Resemblance between
autotetraploid relatives

Relatives | V), | Vp | V¢ | Vg

Half-sibs 1/4 | 1/36

Full-sibs 1/2 | 2/9 | 1/12 | 1/36

Parent-

offspring 172 176

Assumes unrelated, non-inbred parents



