
How to listen to the recorded lectures 
•  I’ll be closely following the online notes, but will

 often skip (or speed) through some of the technical
 details (you can read these) and instead try to
 emphasize the key concerns/points. 

•  There are several places with “PAUSE” slides.  Here,
 stop the lecture, and look over the questions and
 perhaps go back and review the notes for the
 material just covered. 

•  Also, at the PAUSE slides, you might want to take a
 quick 2-5 minute break (but no more).  This will keep
 you a bit fresher, but if you take too long a break, it
 may be harder to get back into the material. 

•  You can also use these PAUSE slides as bookmarks if
 you want to go back to review material again. 

•  First PAUSE at slide 10 1 
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Basic model of Quantitative Genetics 

Basic model:  P = G + E 

Phenotypic value -- we will occasionally 
also use z for this value 

Genotypic value 

Environmental value 

G = average phenotypic value for that genotype 
if we are able to replicate it over the universe 
of environmental values, G = E[P] 

Hence, genotypic values are functions of the  
environments experienced. 
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Basic model of Quantitative Genetics 
Basic model:  P = G + E 

G = average phenotypic value for that genotype 
if we are able to replicate it over the universe 
of environmental values, G = E[P] 

G x E interaction --- The performance of a particular 
genotype in a particular environment differs from 
the sum of the average performance of that 
genotype over all environments  and the average 
performance of that environment over all genotypes. 
Basic model now becomes  P = G + E + GE 

G = average value of an inbred line over a series 
of environments 
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East (1911)  data 
on US maize 

crosses 
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Each sample (P1, P2, F1) has same G,  all variation in 
P is due to variation in E 

Same G, Var(P) = Var(E) 
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All same G, hence 
Var(P) = Var(E) 

Variation in G 
Var(P) = Var(G) +
 Var(E) 

Var(F2) > Var(F1) due to Variation in G 



Johannsen (1903) bean data 

•  Johannsen had a series of fully inbred
 (= pure) lines. 

•  There was a consistent between-line
 difference in the mean bean size 
– Differences in G across lines 

• However, within a given line, size of
 parental seed independent of size of
 offspring speed 
– No variation in G within a line 
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PAUSE 

•  Questions for consideration: 
– What the difference between genotypic 

and environmental effects? 
– How might you distinguish these 

• Using a set of clones 
• Using a set of (outbred) related 

individuals 
– We will return to these issues later (and in 

the breakout groups) 
– Next pause at slide 13 
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KEY 

•  Relatives share alleles, and this idea was 
exploited by R. A. Fisher (1918)  

•  If a trait has a genetic basis, the more genes 
that two individuals share (i.e., the closer the 
degree of relationship), the more similar they 
should be in trait value 
– The covariance in phenotypic trait values 

should be an increasing function of the 
amount of relatedness 

– E.g., Identical twins (clone) more 
similar than two non-identical sibs 
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The transmission of genotypes versus 
alleles 

•  With fully inbred lines, offspring have the same genotype as 
their parent, and hence the entire parental genotypic value G is 
passed along 
–  Hence, favorable interactions between alleles (such as with 

dominance) are not lost by randomization under random mating 
but rather passed along. 

•  When offspring are generated by crossing (or random mating), 
each parent contributes a single allele at each locus to its 
offspring, and hence only passes along a PART of its genotypic 
value 

•  This part is determined by the average effect of the allele 
–  Downside is that favorable interaction between alleles are NOT 

passed along to their offspring in a diploid (but, as we will see, are 
in an autoteraploid) 
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PAUSE 

•  Think about the implications of the last slide 
•  CLONES pass on their entire genotype 

(genotypic value G) to their offspring 
•  Sexual progeny pass on SINGLE alleles at 

each locus underlying the trait 
–  Leads to the importance concepts of 

• Average effects of an allele 
• The Breeding value of an individual 
• The additive genetic variance 

• We now address these in turn 
• Next pause at slide 22 
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Genotypic values 
It will prove very useful to decompose the genotypic 
value into the difference between homozygotes (2a) and 
a measure of dominance (d or k = d/a)  

aa Aa AA 

C - a C + d C + a 

Note that the constant C is the average value of 
the two homozygotes. 

If no dominance, d = 0, as heterozygote value equals 
the average of the two parents.  Can also write d = ka, 
so that G(Aa) = C + ak 
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Computing a and d 

Genotype aa Aa AA 

Trait value 10 15 16 

Suppose a major locus influences plant height, with 
the following values  

C = [G(AA) +  G(aa)]/2 = (16+10)/2 = 13 
a = [G(AA) - G(aa)]/2 = (16-10)/2 = 3 
d = G(Aa)]  - [G(AA) + G(aa)]/2   
   = G(Aa)]  - C = 15 - 13 = 2 
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Population means: Random mating 
Let p = freq(A), q = 1-p = freq(a).  Assuming  
random-mating (Hardy-Weinberg frequencies),    

Genotype aa Aa AA 

Value C - a C + d C + a 

Frequency q2 2pq p2 

Mean = q2(C - a) + 2pq(C + d) + p2(C + a) 
       µRM   = C + a(p-q) + d(2pq) 

Contribution from 
homozygotes 

Contribution from 
heterozygotes 
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Population means: Inbred cross F2 
Suppose two inbred lines are crossed. If A is fixed 
in one population and a in the other, then p = q = 1/2  

Genotype aa Aa AA 

Value C - a C + d C + a 

Frequency 1/4 1/2 1/4 

Mean = (1/4)(C - a) + (1/2)(C + d) + (1/4)( C + a) 
       µRM   = C  +   d/2 

Note that C is the average of the two parental lines, so when d
 > 0, F2 exceeds this.  Note also that the F1 exceeds 
this average by d, so only half of this passed onto F2. 
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The average effect of an allele 

•  The average effect αA of an allele A is defined by the 
difference between offspring that get allele A and a 
random offspring. 
–   αA = mean(offspring value given parent transmits 

A) - mean(all offspring) 
–  Similar definition for αa. 

•  Note that while C, a, and d (the genotypic 
parameters) do not change with allele frequency, αx 
is clearly a function of the frequencies of alleles with 
which allele x combines. 
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Random mating 
Consider the average effect of allele A when a parent is randomly- 
mated to another individual from its population 

Allele from other 
parent 

Probability Genotype Value 

A p AA C + a 

a q Aa C + d 

Suppose parent contributes A 

Mean(A transmitted) = p(C + a) + q(C + d) = C + pa + qd 

  αA = Mean(A transmitted) - µ = q[a + d(q-p)] 
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Random mating 

Allele from other 
parent 

Probability Genotype Value 

A p Aa C + d 

a q aa C - a 

Now suppose parent contributes a 

Mean(a transmitted) = p(C + d) + q(C - a) = C - qa + pd 

  αa = Mean(a transmitted) - µ = -p[a + d(q-p)] 
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 α, the average effect of an 
allelic substitution 

•   α = αA - αa is the average effect of an allelic 
substitution, the change in mean trait value when an 
a allele in a random individual is replaced by an A 
allele 
–   α = a + d(q-p). Note that  

•   αA = qα   and αa   =-pα. 
• E(αX) = pαA + qαa =  pqα - qpα = 0,  
• The average effect of a random allele is zero, 

hence average effects are deviations from the 
mean 
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PAUSE 
•  Key concept  from the last few slides 

– The average effect of an allele 
• For a given population, how much of a 

deviation from the mean in a trait is generated 
by getting the target allele 

• Property of a particular trait in a particular 
population.   

–  The average effect of the same allele will change 
over traits 

–  The average effect of the same allele will change 
over background populations. 

– The average effects of a substitution 
(swapping one allele for another) 

– Next pause at slide 33 
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Dominance deviations 
•  Fisher (1918) decomposed the contribution 

to the genotypic value from a single locus as  
Gij = µ + αi + αj + δij 
–  Here, µ is the mean (a function of p) 
–   αi are the average effects 
–  Hence, µ + αi + αj is the predicted genotypic 

value given the average effect (over all 
genotypes) of alleles i and j. 

–  The dominance deviation  associated with 
genotype Gij is the difference between its true 
value and its value predicted from the sum of 
average effects (essentially a residual) 
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Fisher’s (1918) Decomposition of G 
One of Fisher’s key insights was that the genotypic value 
consists of a fraction that can be passed from parent to 
offspring and a fraction that cannot. 

Mean value   µG = Σ Gij Freq(AiAj) 

Average contribution to genotypic value for allele i 

Consider the genotypic value Gij resulting from an  
AiAj individual 

In particular, under sexual reproduction, parents only 
pass along SINGLE ALLELES to their offspring 

Gij = µG + αi + αj + δij 
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Since parents pass along single alleles to their 
offspring, the αi (the average effect of allele i) 
represent these contributions 

The genotypic value predicted from the individual 
allelic effects is thus 

The average effect for an allele is POPULATION- 
SPECIFIC, as it depends on the types and frequencies  
of alleles that it pairs with 

Gij = µG + αi + αj + δij 

Gij = µG + αi + αj 
^ 
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Dominance deviations --- the difference (for genotype 
AiAj) between the genotypic value predicted from the 
two single alleles and the actual genotypic value, 

Gij = µG + αi + αj + δij 

The genotypic value predicted from the individual 
allelic effects is thus Gij = µG + αi + αj 

^ 

Gij - Gij = δij 
^ 
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N = # Copies of Allele 2 0 1 2 

G11 

G21 

G22 

µ + 2α1 

µ + α1 + α2 

µ + 2α2 

δ12 

δ11 

δ22 

Slope = α = α2 - α1  

1 

α

11 21 22 Genotypes 
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Fisher’s decomposition is a Regression 

Predicted value 
Residual error 

A notational change clearly shows this is a regression, 

Independent (predictor) variable N = # of A2 alleles 

Note that the slope α2 - α1 = α, the average effect 
of an allelic substitution 

Gij = µG + αi + αj + δij 

Gij = µG + 2α1 +(α2 – α1) N + δij 
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Regression slope Intercept 

A key point is that the average effects change with 
allele frequencies.  Indeed, if overdominance is present 
they can change sign with allele frequencies. 

Gij = µG + 2α1 + (α2 – α1) N + δij 



30 

0 1 2 
N 

G G22 

G11 

G21 

Allele A2 common, α1 > α2 

The size of the circle denotes the weight associated with 
that genotype.  While the genotypic values do not change, 
their frequencies (and hence weights) do. 
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0 1 2 
N 

G G22 

G11 

G21 

Allele A1 common, α2 > α1 

Slope = α2 - α1  

Again, same genotypic values as previous slide, but 
different weights, and hence a different slope 
(here a change in sign!) 
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0 1 2 
N 

G G22 

G11 

G21 

Both A1  and  A2 frequent, α1 = α2 = 0 

With these allele frequencies,  both alleles have the same  
mean value when transmitted, so that all parents have the  
same average offspring value  -- no response to selection 
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PAUSE 

•  The last several slides were the technical  
details, so don’t be too concerned (for now).  

•  We now examine the key concepts (related 
to these developments) 
– Average effects 
– Breeding (or additive-genetic) values 
– Genetic variances (such as the additive and 

dominance variance) 
– These are the quantities we work with in 

QG. 
– Next pause slide 38 
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Average Effects and Additive Genetic Values 

A ( G ij ) = αi + 

The α values are the average effects of an allele 

A key concept is the Additive Genetic Value (A) of 
an individual 

A is called the Breeding value or the Additive genetic 
value 

αi
(k) = effect of allele i at locus k  

A ( G ij ) = αi + αj 

j!
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Why all the fuss over A? 

Suppose pollen parent has A = 10 and seed parent has  
A = -2 for plant height 

Expected average offspring  height is (10 - 2)/2  
= 4 units above the population mean.  Offspring A = 
average of parental A’s 

KEY:  parents only pass single alleles to their offspring. 
Hence, they only pass along the A part of their genotypic 
value G 

j !
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Genetic Variances 
Writing the genotypic value as 

The genetic variance can be written as 

This follows since 

Gij = µG + (αi + αj) + δij 

As Cov(α,δ) = 0 
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Key concepts (so far) 
•   αi = average effect of allele i 

–  Property of a single allele in a particular population 
(depends on genetic background) 

•  A = Additive Genetic Value (A)  
–  A = sum (over all loci) of average effects 
–  Fraction of G that parents pass along to their offspring 
–  Property of an Individual in a particular population 

•  Var(A) = additive genetic variance 
–  Variance in additive genetic values 
–  Property of a population 

•  Can estimate A or Var(A) without knowing any of the 
underlying genetical detail (forthcoming) 
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PAUSE 
• What is the expected breeding value 

for a random individual from a 
population? 
– Hint:  A is a deviation from the mean 

•  You cross a single sire (male) to a large 
number of unrelated dams (females), 
with one daughter per cross 
– These are a collection of half-sibs 
– Suppose the mean milk yield of daughters 

from a given sire has a value of 10 units 
above the mean.  What is the sire’s BV? 

–  Last PAUSE slide (last slide = 46) 



•  The BV for a randomly-chosen
 individual has an expected value of
 zero 

•  The expected offspring mean is  
– Overall mean + (1/2) BV(sire) + (1/2)

 BV(dam) 
– Hence, the expected mean with random

 dams is overall mean + (1/2) BV(Sire) + 0 
– Hence, if offspring are 10 units above the

 mean, then (1/2) BV(sire) = 10, or sire BV
 is 20. 

39 
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Genetic Variances 

σ2 
G = 

2 
A + 

2 
D 

Additive Genetic Variance 
(or simply Additive Variance) Dominance Genetic Variance 

(or simply dominance variance) 

Hence, total genetic variance = additive + dominance 
variances, 

σ σ
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One locus, 2 alleles: 

Q1Q1      Q1Q2        Q2Q2 

0        a(1+k)          2a            

When dominance present,  Additive variance is an 
asymmetric function of allele  frequencies 

Since E[α] = 0,  
Var(α) = E[(α -µa)2] = E[α2]  
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Q1Q1      Q1Q2        Q2Q2 

0        a(1+k)          2a            

This is a symmetric function of 
allele frequencies 

Dominance variance 

Can also be expressed in terms of d = ak 
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Additive variance, VA,  with no dominance (k = 0) 

Allele frequency, p 

VA 



44 

Complete dominance (k = 1) 

Allele frequency, p 

VA 

VD 
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Epistasis 

These components are defined to be uncorrelated, 
(or orthogonal), so that 
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Additive x Additive interactions -- αα, AA 
interactions between a single allele 
at one locus with a single allele at another 

Additive x Dominance interactions -- αδ, AD 
interactions between an allele at one 
locus with the genotype at another, e.g. 
allele Ai and genotype Bkj 

Dominance x dominance interaction --- δδ, DD 
the interaction between the dominance 
deviation at one locus with the dominance 
deviation at another. 


