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Heritability 
•  Central concept in quantitative genetics 
•  Fraction of phenotypic variance due to

 additive genetic values (Breeding values) 
–  h2 = VA/VP 

–  This is called the narrow-sense heritability 
–  Phenotypes (and hence VP) can be directly

 measured 
–  Breeding values (and hence VA) must be

 estimated  
•   Estimates of VA require known collections of

 relatives    
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Broad-sense heritability 

•  Narrow-sense heritability h2 applies when
 outcrossing,  
–   h2 = Var(A)/Var(P) 
–  =  the fraction of all trait variation due to variation

 in breeding (additive genetic) values 
•  Broad-sense heritability H2 applies when

 selecting among a series of pure lines 
–  H2 = Var(G)/Var(P) 
–     =  the fraction of all trait variation due to

 variation in Genotypic values 
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Defining H2 for Plant Populations 
Plant breeders often do not measure individual plants  
(especially with  pure lines), but instead  often measure a plot or  
a block of individuals. 

This replication can result in inconsistent measures of H2  even for  
otherwise  identical populations.   

Effect of the k-th plot 

deviations of individual 
plants within this plot 

Let zijkl denote the value of the l-th replicate in plot k of genotype i 
in environment j.  We can decompose this value as 

 zijkl = Gi + Ej + GEij + pijk + eijkl 
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If we set our unit of measurement as the average over  
all plots, the phenotypic variance for the mean of line  
i becomes 

Thus, VP, and  H2 = VG/VP, depend  on our choice of e, r, and n 

σ2 ( ) = σ2 G + σ2 E + 
σ2 G E 
e 
+ 
σ2 p 
e r + 

σ2 e 
e r n 

Suppose we replicate the genotype over e environments, 
with r plots (replicates) per environment, and n individuals 
per plot. 

In order to compare board-sense heritabilities we need to use a 
consistent design (same values of e, r, and n) 

zi 
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 Key observations 
•  The amount of phenotypic resemblance

 among relatives for the trait provides an
 indication of the amount of genetic variation
 for the trait.  

•  If trait variation has a significant genetic
 basis, the closer the relatives, the more
 similar their appearance 

•  The covariance between the phenotypic
 value of relatives measures the strength of
 this similarity, with larger Cov = more
 similarity 
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PAUSE 

–  In some lines, a small fraction of chicken eggs are 
laid without a hard shell, but rather are coated 
with a soft membrane, and hence quickly broken. 

–  A poultry scientist trying to improve this trait 
might turn to environment change (e.g., add more 
calcium to their diet) or genetic improvement. 

–  For this trait, h2 is very small, while H2 is close to 
one.  What do these observations suggest in 
terms of potential improvement strategies? 

–  Next pause at slide 20 



•   H2 close to one suggests most of the
 variation in this trait is genetic, so that
 environmental improvement (changes in
 management, such as using dietary
 supplements) is unlikely to impact the trait. 

•  h2 close to zero suggests that there is little
 ADDITIVE variation, therefore only breeding
 schemes that exploit nonadditive variation
 (dominance, epitasis) are likely to make an
 improvement. 

8 
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Genetic Covariance between relatives 

Genetic covariances arise because two related  individuals 
 are more likely to share alleles than  
are two unrelated individuals. 

Sharing alleles means having alleles that are identical by
 descent (IBD): both copies can be traced back to  a
 single copy in a  recent common ancestor.  

Father Mother 
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Father Mother 

No alleles IBD One allele IBD 

Both alleles IBD 
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Resemblance between relatives and
 variance components 

•  The phenotypic variance between relatives
 can be expressed in terms of genetic
 variance components 
–  Cov(zx,zy) = axyVA + bxyVD. 
–  The weights a and b depend on the nature of the

 relatives x and y, and are measures of how often
 they are expected to share alleles identical by
 descent  

–  These are critical in predicting selection response 
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Parent-offspring genetic covariance 
Cov(Gp, Go) --- Parents and offspring share  
EXACTLY one allele IBD 

Denote this common allele by A1 

G p = A p + D p = α1 + αx + D 1 x 

G o = A o + D o = α1 + αy + D 1 y 

IBD allele Non-IBD alleles 
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Hence, relatives sharing one allele IBD have a 
genetic covariance of Var(A)/2 

The resulting parent-offspring genetic covariance  
becomes Cov(Gp,Go) = Var(A)/2 
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Half-sibs 

1 

o 1 

2 

o 2 

The half-sibs share no alleles IBD 
 •  occurs with probability 1/2 

Each sib gets exactly one
 allele from common father, 
different alleles from the
 different mothers 

Hence, the genetic covariance of half-sibs is just  
(1/2)Var(A)/2 = Var(A)/4 
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Full-sibs 
Father Mother 

Sib 1 

Prob(Allele from father IBD) = 1/2.  Given the allele in parent
 one, prob = 1/2 that sib 2 gets same allele 

Each sib gets 
exact one allele 
from each parent 

Sib 2 

Prob(Allele from father not IBD) = 1/2.  Given the allele in
 parent one, prob = 1/2 that sib 2 gets different allele 
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Full-sibs 
Father Mother 

Full Sibs 
Paternal allele not IBD [ Prob = 1/2 ] 
Maternal allele not IBD [ Prob = 1/2 ] 
Prob(sibs share 0 alleles IBD) = 1/2*1/2 = 1/4 

Each sib gets 
exact one allele 
from each parent 
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Father Mother 

Full Sibs 

Paternal allele  IBD [ Prob = 1/2 ] 
Maternal allele  IBD [ Prob = 1/2 ] 
Prob(sibs share 2 alleles IBD) = 1/2*1/2 = 1/4 

Each sib gets 
exact one allele 
from each parent 

Prob(share 1 allele IBD) = 1-Pr(0) - Pr(2) = 1/2 
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I BD al l el es P rob a bil i ty Co n tr i but i on 

0 1/ 4 0 

1 1/ 2 V a r ( A ) / 2 

2 1/ 4 V a r ( A ) +  Va r( D ) 

Resulting Genetic Covariance between full-sibs 

Cov(Full-sibs) = Var(A)/2 + Var(D)/4 
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PAUSE 

– Suppose the parent-offspring covariance 
for a trait is 12.  What can you say about 
the additive and dominance variances? 

– Suppose that the full-sib covariance for the 
same trait is 20.  What can you say now 
about the dominance variance? 

– Next pause at slide 28 



•  Cov(P, O) = Var(A)/2, hence 
–  Var(A)/2 = 12, or Var(A) = 24 
–  Can not say anything about dominance variance 

•  Cov(full sibs) = Var(A)/2 + Var(D)/4,   
–  Hence 24/2 + Var(D)/4 = 20, or Var(D)/4 = 8, or Var(D)

 = 32 

•  Complication:  Esp. in animals, full sibs can share
 a common family environmental variance,
 Var(Em), such as a common maternal effect. 
 Hence,  
–  Cov(full sibs) = Var(A)/2 + Var(D)/4 + Var(Em) 
–  Thus, all that we can say is that Var(D)/4 + Var(Em) = 8 
–  Hence, can only say that Var(Em) < 8 or Var(D) < 32 

21 
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Genetic Covariances for General Relatives 

Let r = (1/2)Prob(1 allele IBD) + Prob(2 alleles IBD) 

Let u = Prob(both alleles IBD) 

General genetic covariance between relatives 
Cov(G) = rVar(A) + uVar(D) 

When epistasis is present, additional terms appear 
r2Var(AA) + ruVar(AD) + u2Var(DD) + r3Var(AAA) +  
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More general relationships  

•  To obtain the expected covariance for any
 set of relatives, we normally need only
 compute r and u for that set of relatives 

•  With general inbreeding, becomes more
 complex (as three other terms, in addition to
 VA and VD arise) 

•  With crosses involving inbred and/or related
 parents, values for r and u are different from
 those presented above. 
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Coefficients of Coancestry 
Suppose we pick a single allele each at random from 
two relatives.  The probability that these are IBD is  
called Θ, the coefficient of coancestry.  In terms of our 
previous notation, 2Θ = r = the coeff on Var(A) 

Θxy denotes the coefficient for relatives x and y 

Consider an offspring z from a (hypothetical) cross 
of x and y. Θxy = fz, the inbreeding coefficient of z. 
Why?  Because the offspring of x and y each get a  
randomly-chosen allele from each parent.  The probability 
fz that both alleles are IBD (the probability of inbreeding) 
is thus just Θxy. 
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 θ and the coefficient on VA 
•  The coefficient on the additive variance for

 the relatives x and y is just 2θxy.   
•  To see this,  

–  let AiAj denote the two alleles in x and AkAl those
 in y.  

–  Cov(breeding values) = Pr(Ai ibd Ak) cov(αi, αk) +
 Pr(Ai ibd Al) cov(αi,αl) + Pr(Aj ibd Ak) cov(αj, αk) +
 Pr(Aj ibd Al) cov(αj,αl)  = 4 θxyVar(α) 

–  Since Var(A) = 2Var(α), Cov = 2 θxyVar(A) 
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Θxx :  The Coancestry of an individual
 with itself  

Self x, what is the inbreeding coefficient of its offspring? 

To compute Θxx, denote the two alleles in x by A1 and A2 

Draw A1 

Draw A1 Draw A2 

Draw A2 

IBD 

IBD 

Hence, for a non-inbred individual, Θxx = 2/4 = 1/2 

If x is inbred, fx = prob A1 and A2 IBD,  

fx 

fx 

Θxx = (1+ fx)/2  
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Example 
B A D C 

E F 

G 

Consider the following pedigree 
Suppose A and D are fully-inbred,  
and related, lines with θAD = 0.5. 
Further, B and C are unrelated and 
outcrossed individuals 

Individual A B C D 

Fx 1 0 0 1 

 θxx = (1 + Fx)/2 1 1/2 1/2 1 
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PAUSE 

– Suppose  Sam’s COC is ¾. 
• What is  Sam’s level of inbreeding? 
•  If we self Sam, what is the level of inbreeding 

in Sam’s offspring?  

– Next pause at slide 45 



• ¾ = (1/2) (1+fSam),  
– or 6/4 = 1+fSam 

– Or fSam = 6/4 -1=  ½ 

•  The COC between two individuals in
 the level of inbreeding in the offspring. 
 Hence, we self Sam, the inbreeding in
 the offspring is simply Sam’s COC or
 3/4 

29 
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The Parent-offspring Coancestry 
Let A1, An denote the two alleles in the offspring, where 
An is the allele from the nonfocal parent (NP), while 
A1,Ap are the two alleles in the focal parent (P) 

Draw A1 

Draw A1 Draw An 

Draw Ap 

IBD 

ΘP,NP 

For a non-inbred individual, ΘP0 = 1/4 

fp 

ΘPO = (1 + fp + 2ΘP,NP)/4 = (1 + fp + 2fo)/4  

Offspring 

Pa
re

nt
 

A1, Ap IDB if  
parent is inbred 

Prob(An,Ap), the alleles 
from the two parents are IBD, 
i.e. , offspring is inbred 

ΘP,NP 

General: 
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Θop =  Parent & Offspring 

Mother 

Offspring 

Paternal allele 

θp o = 
1 
4 θp o = 

1 + f p 
4 

 fo 

θp o = 
1 + 2 f o 
4 

θp o = 
1 
4 
( 1 + f p + 2 θ mf ) 

Parent inbred 

Offspring inbred 

1/2 = Prob random offspring allele
 from father. Prob = θmf = fo that this
 allele is IBD to mother giving 
a contribution of fo/2 

fp 

This is just 2f0   
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B A D C 

E F 

G 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2,  
θAB = θAC = θBC = θBD =  θCD = 0 

Consider A - E (inbred parent - offspring) 
θAE = (1+fA)/4 = (1+1)/4 = 1/2.  Same value for θDF 

Consider B - E (outbred parent - offspring) 
θBE = (1+fB)/4 = (1+0)/4 = 1/4.  Same value for θCF 

Consider E - G (outbred parent - offspring) 
θEG = (1+fE)/4 = (1+0)/4 = 1/4.  Same value for θFG 
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B A D C 

E F 

G 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2,  
θAB = θAC = θBC = θBD =  θCD = 0 

What about θEF ? 

The randomly-chosen allele from E has equal chance 
of being from A or B.  Likewise for F (from C or D) 

Of these four possible combinations (A&C, A&D, B&C, B&D), only  
an allele from A and an allele from D have a chance of being 
IBD, which is θAD = 1/2.  

Hence, θEF  = θAD /4 = 1/8 
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m f 

1/2 1/2 

 (1/2)(1/2)(1/2)  (1/2)(1/2)(1/2) 

Θ = 1/8 + 1/8 = 1/4 

m f 

(1+fm)/2 
(1+ff)/2 

[(1 +fm )/2] (1/2)(1/2) [(1 +ff )/2] (1/2)(1/2) 

Θ =(2 + fm+ ff)/8 

Full sibs (x and y) from parents m and f 

Unrelated, non-inbred 
parents 

Unrelated, inbred 
parents 
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m f 

Θ mf 

 Θ mf /4 

Full sibs (x and y) from parents m and f 

m f 

Θ mf 

 Θ mf (1/2)(1/2) 

This gives  Θ = (2+fm+ff +4 Θ mf)/8 

Parents inbred & related. 
Two additional paths to add 
to Θ =(2+fm+ff)/8 
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Full sibs (x and y) from parents m and f 

Θxy =  (2 + fm + ff + 4Θmf)/8 

f m 

x y 

s f d f s m d m 

ff = Θsf,df fm = Θsm,dm 

Θxy =  (2 + Θsm,dm + Θsf,df + 4Θmf)/8 

Putting all this together gives 
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B A D C 

E F 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2, θEF = 1/8,  
θAB = θAC = θBC = θBD =  θCD = 0 

S1,S2 

 θS1S2 = (2 + 0 + 0 + 4[1/8])/8 = (4 + 1)/16 = 5/16 

Θxy =  (2 + ΘAB + ΘCD + 4ΘEF)/8 

Example 
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Half-sibs 

• Using the same arguments as above, 
θEF = (θAA + θAB + θAC + θBC)/4 
      = ([1 + fA]/2  + θAB + θAC + θBC)/4 
Hence, if B and C unrelated,  
θEF =  (1 + fA)/8 

A B C 

E F 

A is the common parent 
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Computing θxy -- The Recursive Method 
•  There is a simple recursive method for generating the elements Aij

 = 2 θij of a relationship matrix (used for BLUP selection). For ease of
 reading, we use the notation A(i,j) = Aij 
–  Basic idea is that the founding individuals of the pedigree are

 assumed to be unrelated and not inbred (although this can also
 be accommodated).  These founders are assigned values of
 A(i,i) = 1.   

–  Likewise, any unknown parent of any future individual is assumed to be
 unrelated to all others in the pedigree and not inbred, and they are
 also assigned a value of A(i,i) = 1.  

–  Let Si and Di denote the sire and dam (father and mother) of individual
 i.    For this offspring A(i,i) = 1 + A(Si, Di)/2 

–  A(i,j) = A(j,i) = [A(j,Si) + A(j,Di)]/2 = [A(i,Sj) + A(i,Dj)]/2  
–  The recursive (or tabular) method starts with the founding parents and

 then proceeds down the pedigree in a recursive fashion to fill out A for
 the desired pedigree. 
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Example 

1 

2 3 4 5 

6 7 8 

9 
10 

11 

Ancestors are 1 & 2 

A(1,1) = A(2,2) = 1 
A(1,2) = 0 

3:  S3 = 1, D3 = Unknown,  A(3,3) = 1 + A(S3,D3)/2 = 1 + A(1,unk)/2 = 1 
A(1,3) = [A(1,S3) + A(1,D3)]/2 = [A(1,1) + A(1,unk)]/2 = 1/2. 
Note also that A(1,4) = A(1,5) = 1/2, A(4,4) = A(5,5) = 1. 
A(3,4) = [A(3,S4) + A(3,D4) ]/2 = [A(3,1) + A(3,unk)]/2 = (1/2+0)/2 = 1/4. 
Same for A(3,5) = 1/4.  2 is unrelated to 3, 4, 5, giving  A(2,3) = A(2,4) = A(2,5) = 0. 

3, 4, 5, 8 all have
 unknown parents 
(only a single
 arrow to them) 
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1 

2 3 4 5 

6 7 8 

9 
10 

11 

So far 

6:  S6 = 2, D6 = 3.  A(6,6) = 1 + A(S6, D6)/2 = 1 + A(2,3)/2 = 1 
A(6,1) = [A(1, S6) + A(1, D6)]/2 =  [A(1,2) + A(1,3)]/2 = [0 + 1/2]/2 = 1/4 
A(6,2) = [A(2, S6) + A(2, D6)]/2 =  [A(2,2) + A(2,3)]/2 = [1+ 0]/2 = 1/2 
A(6,3) = [A(3, S6) + A(3, D6)]/2 =  [A(3,2) + A(3,3)]/2 = [0 + 1]/2 = 1/2 
A(6,4) = [A(4, S6) + A(4, D6)]/2 =  [A(4,2) + A(4,3)]/2 = [0 + 1/4]/2 = 1/8 
A(6,5) = [A(5, S6) + A(5, D6)]/2 = [A(5,2) + A(5,3)]/2 = (0+1/4)/2 = 1/8 

7:  S7 = 2, D7 = 4.  A(7,7) = 1 + A(S7, D7)/2 = 1 + A(2,4)/2 = 1 + 0/2 = 1 
A(6,7) = [A(6, S7) + A(6, D7)]/2 = [A(6, 2) + A(6, 4)]/2 = (1/2 +1/8)/2 = 5/16 

8:  S8 = 5, D8 = unk.  A(8,8) = 1 + A(S8, D8)/2 = 1 + A(5,unk)/2 = 1. 
A(6,8) = [A(6, S8) + A(6, D8)]/2 = [A(6, 5) + A(6, unk)]/2 = (1/8)/2 = 1/16 

9:  S9 = 7, D9 = 6.  A(9,9) = 1 + A(S9, D9)/2 = 1 + A(6,7)/2 = 1 + 5/32 = 1.156 <- inbred!  



Actual relatedness versus expected values from
 pedigrees 
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Values for the coefficient of coancestry (θ) and the 
coefficient of fraternity (Δ) obtained from pedigrees 
are expected values.  Due to random segregation of 
genes from parents, The actual value (or realization)  
can be different. 
For example, we expect 2θ to be ½ for full subs.  However, 
one pair of sibs may actually be more similar (0.6) and 
another less similar (say 0.35).  On average, 2θ is ½ 
for pairs of full sibs, but if we knew the actual value  
of θ, we have more information.  With sufficient  
dense genetic markers, we can estimate these 
relationships directly. 

Genomic selection uses this extra information. 



What about coefficient of coancestry θ ? 

43 43 
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Indiv x:  00  00  10  10  00  10  11  00  11  00

Indiv y:  10  00  11  11  10  11  11  10  11  10

Locus-specific 
θ 

0.5    1.0     0.5    0.5     0.5     0.5     1.0    0.5      1.0     0.5 

Estimated θ is the average over all ten loci, = 0.65  
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PAUSE 
– Key point:  Θ, the coefficient of coancestry, is a 

central measure of the genetic relationship, 
with 2Θ giving the expected coefficient on 
contribution of Var(A) to the phenotypic 
correlation. 
• We showed how inbreeding and relatedness all 

inflate Θ over outbred and unrelated relatives, 
• With a known pedigree, the expected value of Θ  

for any set of pedigreed individuals can be 
computed 

• With dense (> 10,000 SNPS), we can use marker 
information to obtain the realized, as opposed to 
the expected (pedigree), value of Θ . 

• Next pause is slide 57 
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The coefficient of fraternity 
•  While (twice) the coefficient of coancestry gives the

 weight on the additive variance for two relatives, a
 related measure of IDB status among relatives gives
 the weight on the dominance variance 

•  The probability that the two alleles in individual x are
 IBD to two alleles in individual  y is denoted Δxy, and
 is called the coefficient of fraternity. 

•  This can be expressed as a function of the
 coefficients of coancestry for the parents of (mx and
 fx) of x and the parents (my and fy) of y. 
–   Δxy = θmxmyθfxfy+ θmxfyθfxmy 
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The coefficient of fraternity (cont) 

•  x and y can have both alleles IBD if 
–  The allele from the father (fx) of x and the father (fy) of y are

 IDB (probability θfxfy) AND the allele from the mother (mx)
 of x and the mother (my) of y are IDB (probability θmxmy) , or
 θfxfy θmxmy  

–  OR the allele from the mother (mx) of x and the father (fy) of
 y are IDB (probability θmxfy) AND the allele from the father
 (fx) of x and the mother (my) of y are IDB (probability θfxmy) ,
 or θmxfy θfxmy   

–  Putting these together gives  
•     Δxy = θmxmyθfxfy+ θmxfyθfxmy 
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x y 

fx fy mx 
my 

Δxy = θmxmyθfxfy + θmxfyθfxmy 

θmxmy 
θfxfy 

θmxfy 

θfxmy 

Δxy, The Coefficient of Fraternity 

Δxy = Prob(both alleles in x & y IBD) 
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Examples of Δxy: Full sibs 
•  Full sibs share same mon, dad 

–   mx = my = m,  fx = fy = f 
–   Δxy = θmxmyθfxfy + θmxfyθfxmy  = θmmθff + θmf

2 

–   Δxy = (1+fm)(1+ff)/4 + θmf
2
 

•   If parents unrelated, θfm = 0, giving  
–   Δxy = (1+fm)(1+ff)/4 

•  If parents are unrelated and not inbred, 
–   Δxy = 1/4 
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Examples of Δxy: Half sibs 
•  Paternal half sibs share same dad, different

 moms 
–  fx = fy = f;  mx and my 
–   Δxy = θmxmyθfxfy + θmxfyθfxmy  = θmxmyθff + θmxf θmyf

 

–   Δxy = θmxmy (1+fm)/2 + θmxf
 θmyf

 
 

•   If mothers are unrelated to each other and to
 the common father, θmxmy = θmxf = θmyf = 0,
 giving  
–   Δxy = 0 
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When is Δ non-zero? 
•  Since Δxy = θmxmyθfxfy + θmxfyθfxmy   
• A nonzero value for Δ requires either  

– That the fathers of both x and y are related
 AND the mothers of both x and y are
 related 

– OR that the father of x is related to the
 mother of y AND the mother of x is
 related to the father of y  
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B A D C 

E F 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2, θEF = 1/8,  
θAB = θAC = θBC = θBD =  θCD = 0 

S1,S2 

What is Δ for the full sibs (S1 and S2)? 

Δxy = θmxmyθfxfy + θmxfyθfxmy = θEEθFF + θEF
2 

Giving Δxy = θEEθFF + θEF
2 

       = (1/2)(1/2) + (1/8)2 
          = 1/4 + 1/64 = 17/64 = 0.266 
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 Δxy and the coefficient on VD 

•  The coefficient on the dominance variance for the
 relatives x and y is just Δxy.   

•  To see this,  
–  let AiAj denote the two alleles in x and AkAl those

 in y. 
–  Suppose that alleles i and k come from the

 mothers of these two relatives and alleles j and l
 from their fathers.  

–  Cov(dominance values) = Pr(Ai ibd Ak; Aj ibd Al )
 cov(δij, δkl) + Pr(Ai ibd Al; Aj ibd Ak)cov(δij, δkl)  

–   = (θfxfyθmxmy + θmxfyθjxmy) Var(D) = Δxy Var(D)  



Estimating relationships using
 molecular data 

54 

With SNP data, treat identity in state (also 
called alike in state, AIS) as IBD 

Suppose the genotypes of two individual at 10 SNPs are 

3/10 loci have Δxy = 1, so average Δxy over all loci is 
0.3* 1 = 0.3 

Indiv x:  00  00  10  10  00  10  11  00  11  00

Indiv y:  10  00  11  11  10  11  11  10  11  10
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General Resemblance between
 relatives 
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Example 
B A D C 

E F 
S1,S2 

We found for full sibs S1, S2 that 
θ = 5/16, hence 2 θ  = 5/8;  Δ = 17/64  

Expected genetic covariance between this sibs is 

(5/8)Var(A) + (17/64)Var(D) + (5/8)2Var(AA) + 
 (5/8) (17/64)Var(AD) + (17/64) 2Var(DD) + … 
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PAUSE 
–  The coefficient of coancestry measures the 

fraction of alleles shared, and hence the 
contribution from additive variance (which is a 
function of the variation explained by single 
alleles) 

–  The coefficient of fraternity is the next level 
measure of relatedness, showing the fraction of 
diploid genotypes that are shared 

•  It gives the weighting on the dominance variance 
•  Can also be estimated from either pedigree of (dense) 

marker data. 
•  Many, perhaps most, relationships can a co of fraternity 

of zero (as most have common relatives on both sides 
(mother and father) of the pedigree. 

–  Last slide is #60 
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Autotetraploids 
•  Peanut, Potato, alfalfa, soybeans all examples

 of crops with at least some autotetraploid
 lines 

•  With autotetraploid, four alleles per locus,
 with a parent passing along two alleles to an
 offspring 

•  As a result, a parent can pass along the
 dominance contribution in G to an offspring 

•  Further, now there are four variance
 components assocated with each locus 
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Genetic variances for
 autotetraploids 

•  G = A + D + T + Q 
–  A (additive) and D (dominance, or digenic effects)

 as with diploids 
–  T (trigenic effects) are the three-way interactions

 among alleles at a locus 
–  Q (quadrigenic effects) are the four-way

 interactions at a locus 
•  Total genetic variance becomes 

–  VG = VA + VD + VT + VQ 
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Resemblance between
 autotetraploid relatives 

Relatives VA VD VT VQ 

Half-sibs 1/4 1/36 

Full-sibs 1/2 2/9 1/12 1/36 

Parent
-offspring 1/2 1/6 

Assumes unrelated, non-inbred parents 


