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Linkage Analysis
and QTL Mapping

> 4 ::',.'




Sequences of Base Pairs Mapping
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Genetic maps: relative positions of loci in chromosomes or
linkage groups. Distances in genetic maps are measured
in centimorgans (cM, about 1 million base pairs)

Physical maps: overlapping collections of DNA fragments
(measured in kilobases, kb) which are assembled
together to build the base-by-base sequence of DNA
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Crossing-Over and Recombination
During Meiosis

same time reduce the
number of chromosomes
to one full set.
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In meiosis, the precursor (€
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During the early stages of cell
division in meiosis, two chromo-
somes of a homologous pair may
exchange segments in the manner
shown above, producing genetic
variations in germ cells.

Gametes




Crossing Over and Recombination

| An odd number of
=) =) crossovers between two loci
results in a recombination
between them

Because crossing over takes place at random, the
probability of recombination (r) is higher for loci that are
farther apart than for loci that are closer to each other

O<r=0.5
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linked loci unlinked loci



Two Point Linkage Analysis

= Backcross experiment
= Genotypic information for two loci (A and B)

= Estimate the recombination rate r,;

. 5
= Are these two loci linked: Al A, A, A,
Individual sl ‘ B2

Al A, AlA,

B,| B, ‘ B, |B,

[ Four possible genotypes J




Two Point Linkage Analysis

= Suppose n = 80 and y = 16 (recombinants)
= Point estimate of ryg: =2 =0.20
n

= Confidence interval (95%) of r,p :

Cl(r,y; 95%)=[0.1189; 0.3044]
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. Estimates of recombination rates between pairs
of markers are used to order markers and to

infer their genetic distances (centimorgans; cM)



Interference

= Lack of independence in recombinations at different
intervals on a chromosome

A B C

\ J \. J
Y Y

PAB Pec

* If r g and ry. are independent, the probability
of double recombination is Pr(DR) = r,p x rp,

* If r g and ry. are not independent, the above
probability is given by Pr(DR) = ¢ x rp * g,
where c is called "coefficient of coincidence”

- Interference: I=1-c¢



Map Distance

The map distance x between two loci, in
Morgan units, is defined as the expected
number of crossovers between them

Unlike recombination rates, map distances
are additive

The relationship between map distances
and recombination rates is discussed next
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Map Functions

Map functions provide a transformation from map
distance to recombination rate. Two approaches have
been used to derive map functions:

In the first case, a probability model is assumed for the
number of crossovers in an interval of length x. Then,
recombination rate is calculated as the probability of an
odd number of crossovers in the interval

In the second approach, recombination events in two
adjacent intervals are modeled, allowing for interference

Examples of map functions: Haldane, Binomial, Kosambi

11



Haldane Map Function

Haldane (1919) suggested that the number of
crossovers in any chromosomal interval follows a
Poisson distribution, with no interference

If Py is the probability of k crossovers, then the
probability of recombination (r)isr=P;+P;+Ps+ ..

This leads to the Haldane’ s map function:

Coped

—%ln(l—2r) . if 0=r<0.5

The inverse of which is: x =+

o , 1 r=0.5
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Haldane Map Function
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Multipoint Point Linkage Analysis

= Instead of two loci, suppose there are M loci

= If order is unknown: M!/2 alternatives

P12 Fa3 P34 Fouyo-1y Ty

A A A A A
s Y Y D r Y N

| | | | |

| | | | |

locl loc2 loc3 loc(M-1)  locM

Goal: Determine the order of the loci and estimate
recombination fractions between neighboring loci, i.e.
“Map Construction”
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PAUSE

= Genetic map construction: ordering loci
(markers) and expressing their distances
in ferms of genetic distance (Morgans)

= Experimental populations (e.g. BC, F2,
RIL, etc.) use to estimate recombination
rates

= Same sort of strategy will be used for
mapping QTLs (hext)

Next PAUSE, slide 26
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Methods for Mapping QTL

= Single Marker Analysis
= Interval Mapping
= Composite Interval Mapping

= Bayesian Methods
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QTL Mapping

= Methods based on linkage disequilibrium
between markers and QTL (line crossing
or segregating population)

= Requirements:
® Linkage (marker) maps

@ Variation for the quantitative trait
?

Fik-2) k1)
A A
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QTL Mapping

Single Marker Analysis; Example with Backcross




QTL Mapping
Single Marker Analysis; Example with Backcross
= H .......... L
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QTL Mapping
Single Marker Analysis; Example with Backcross
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& Simple example with candidate gene and BC population

Single Marker Analysis

Qﬁzr_f_Csz ) }
o)
A& Q@ ke
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Example with F2 Population

Y
A
H = / Additive
¢ Dominance
) S T
= (i us)/2 beZ
QR Qq qq

QTL genotypes
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Single Marker Analysis

- QTL and marker (M);

recombination frequency = r

Genotype Freq. E[y] | Marker group | Freq. Ely]
MM, Q,Q, | (1-r)/2 M M, M, 72 A-r)u, +ru,
M1M1Q1Q2 r2 Wo

MMQ,Q, | (1-n2 |

M, | M, M, M, Difference between marker
QlQ | QlQ group expected values

o — N

MM, M,|M, M,|M, M,|M, rig+ (1 =r)u, —(-r)u, —ru,

Ql Ql Ql Q2 Ql Ql Ql Q2 — (1 - 2],-)(#2 - Ml) — (1 - 2,,-)5
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Single Marker Analysis
(EXAMPLE)

= Brassica napus, Flowering time

= 10 Markers
(positions: O, 8.8, 20.6,27.4,34.2,42.9,53.6,64.1,69.2,83.9 cM)

= 104 individuals; Double haploid

302z 1 1 -1 -1 1 1 -1 -1 -9 -1
29704 1 1 1 -1 9 1 -1 -1 -1 1
27408 -1 -1 1 1 1 1 1 1 1 1
3.3673 1 1 1 T 1 1 1 1 -1 1

3.0681 1 1 1 1 -99 1 1 1 -1 A1
32711 1 -9 1 1 1 1 1 1 -1 -1

(Satagopan et al. Genetics 144: 805-816, 1996) *



Chrom. Marker u T LRT F p-value

1 | 3.184 -0.202 9.379 9.624 0.002 *x*

1 2 3.204 -0.230 11.378 11.789 0.001 **»
1 3 3.232 -0.266 14.706 15.485 0.000 **»
1 4 3.229 -0.259 13.885 14.562 0.000 **»
1 5 3.240 -0.276 15.554 16.446 0.000 *#**%
1 6 3.259 -0.307 19.518 21.041 0.000 *#**%
1 7 3.252 -0.302 19.747 21.312 0.000 *#**%
1 8 3.257 -0.318 23.450 25.775 0.000 *#**x*
1 9 3.258 -0.330 25.156 27.884 0.000 *#**%
1 10 3.252 -0.362 31.518 36.059 0.000 *#**%
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PAUSE

= QTL mapping: similar approach as with
genetic map construction, i.e. linkage
analysis between pairs of loci, but with
missing genotypes in one of the loci
(putative QTL)

= Single marker analysis: confounding
between position of putative QTL and its
effect size

Next PAUSE, slide 39
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Interval Mapping Backcross

(Lander & Botstein, 1989) @
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Interval Mapping

It giNN(Oaaz) - yi|qz'NN(ﬂ+qi5902)

4 N\
1 1 ,
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. \ 270 20° )
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N
1
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o

QTL pOSiTiOH + \/—2 exp{— 2(172 (y,—u _5)2}Pr(qi =1| /1)]
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Interval Mapping

Pr(q,| 1) is modeled in terms of recombinations

between flanking markers and QTL:

Marker Genotypes Pr(g, = QQ) Pr(g, = QQq)
M,N (1-r)(1-r)l(1-7) rir/(1—=r)
M,n (1-r)ry/r r(1-r,)r
m,N r(1-r)r (1-ry)ry/r
m,n rir/(1-r) (1-r)(1-r)(1-7)
Markers | Pr(g, = QQ) Pr(q, = QQ)
Approximation: M.N 1 0
(no double recombination) M.n (-p) b —
m,N p (1-p)
m,n 0 1

29



Interval Mapping

= Likelihood estimation: EM algorithm to estimate
parameters, including A (position of QTL)

= Alternatively: Fix A (grid search) and evaluate LOD

LOD. - log, | LA:0:6%d1 )

- A QTL is detected whenever the LOD score gets
larger than a threshold; estimated position of the

QTL maximizes LOD
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Interval Mapping

REGRESSION APPROACH

y=Xp+¢
Py Do
Py Px
| Pn1 Pwa

B=(X'X)"'X"y

(Haley & Knott, 1992)

U,
U,

alternatively

o

)

N

_yN -

1 p,

_1 Pna

o

\

Residual Sum of Squares:

RSS=y'y-f'X'y

Estimated position of the
QTL minimizes RSS.

/
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Test statistics
(evidence for QTL)

QTL Mapping

Interval Mapping' Example with Backcross

o o n e e e

>

A A A A A A
M, M, M, M, M; M

Chromosome, marker positions (cM) 392



Interval Mapping

= COMMENTS:
@ Backcross to both parental lines, or use F2 design,
to estimate additive and dominance effects
@ Threshold; multiple testing; false positives

® Confidence intervals
@ Multiple QTL, ghost QTL

33



Composite Interval Mapping
(Zeng, 1993, 1994)

= Interval analysis adding marker cofactors (to account
for the effects of unlinked QTLs); combination of
single interval mapping and multiple linear regression

Cofactors Cofactors
<—\ QTL ]—'
M] 1 Mj l Iv|]+1 Iv|]+2
g }\’V J

Flanking markers
34



Composite Interval Mapping
(Zeng, 1993, 1994)

y=Xf+¢

J

p=(X'X)"'X'y

1 X Wi

1 Xy Wy

1 xy  wy

Dummy variables

/
/
[ Vi =ﬁ0+ﬁ*xij+ Eﬁkwik-l_gi }

k=j,j+1

Intercept Genetic effect of the
putative QTL
(between markers j and j+1)
W,
W,
e 35




Interval Mapping
(Example)

= Brassica napus; Flowering time (Satagopan et al., 1996)

40

35 -

30 -

25 -

LRT

20 -

15

10 +

0 10 20 30 40 50 60 70 80 90
Position (cM)

36



Composite Interval Mapping
(Example)

= Brassica napus; Flowering time (Satagopan et al., 1996)

18

16

14

12 1

o N L (e} oo
1 1 1 1

0 10 20 30 40 50 60 70 80 90
Position (cM)
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Darvasi (2003)

EXPRESSION QTL (eQTL)

Gene-expression /¥

analysis

!' Parents |

| Whole-genome
genotyping

Gene

Representation of results
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f o0 o0 ©o
g o ©o
h4 @ i (o)
g e 8

Location of major-effect QTL
Exprassion variation of genes
a-i mapped to major-effect QTI

(T00Z) den pue uasuer
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PAUSE

= In’rer.val mapping and composite interval
mapping

= Single QTL and multiple QTL analysis

= Permutation and bootstrap approaches

= Crosses between outbred populations

= Pleiotropy and epistatic effects

= Limitations of linkage analysis

Next PAUSE, slide 59
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Genome-Wide Association
Analysis (GWAS)

Guilherme J. M. Rosa
University of Wisconsin-Madison



Gene Mapping

= Linkage Analysis (QTL Analysis)

= Fine Mapping Strategies (LDLA approach,
Selective Genotyping, etc.)

= Association Analysis, Candidate Gene
Approach

= Genome-wide Association Analysis (GWAS)

41



Descriptive Statistics
& Data Cleaning

= Measurement/recording error
= Genotyping error; Mendelian inconsistencies
= Redundancies

= Heterozygosity (H)
Polymorphism Information Content (PIC)

= Minor Allele Frequency (MAF)
= Hardy-Weinberg equilibrium

42



Single Marker Regression

= Series of models, one for each marker j (j=1, 2,..., k):

y=X|3+mgj+e

where:
y: vector of phenotypic observations (n individuals)

/3 : environmental covariates, such as gender, age,
etfc.

X: incidence matrix relating 5 toy
g;: effect’ of mar'ker'j (j=1,2,.,k)

= [my;, my;,..., my;, 172 vector of genotypes for

mar'ker'J with m =-1,00r1
e: residual vecTor ®



1c value

Confounding

Phenotyp

........................................................................................................... S
................................................................ L
*
L J
A ™
*
P *
® z ¢
_______________________________________________________________ S S,
$ . ¢
* *
.................... oo me ]

qd Qq QQ

= True model: y; = u + Group; + e;

Group | ° o
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Accounting for Population
Stratification

= Series of models, one for each marker j (j=1, 2

y=X[3+1p+mgj+e

where: ¥ is a population structure term (e.g. PC
built from genotypes)

o, K):
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Mixed Model Approach

= The model now is expressed as:
y=X|3+u+mgj +e

where all ferms are as before, except that a
polygenic (infinitesimal) ferm u is included to account
for population sub-structure, with u ~ N(O, Ko 2); K
is a kinship matrix built from pedigree information
(e.g. A) or genotypic information (e.g. 6)

Note: Efficient computation, e.g. EMMA and GEMMA
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Manhattan Plot with Marker Effects
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ith Significance Tests

Manhattan Plot w

Net_Mer

BFGL

DGAT
O

ABCG2

I I [
02 Sl oL

(enjeA-d [9pON 9AINPPY)0LBOI-

48

Chromosome



Statistical Power

= Power is a function of:
- Significance level (o)
- Sample size (h)

- Effect size (3), expressed as a proportion of
variance in measured phenotype, subsumes
allele frequency, mode of inheritance,
measurement reliability, degree of LD, and
all other aspects of genetic model

- Test statistic (T)

49



Hypothesis Testing -
ignificance
# level

Ho is not rejected | Hjis rejec’re?/

Ho is true No error (1-a) |(Type I error (o)

Hy is false | Type IT error (B) W
=

Power
=» Standard approach:

® Specify an acceptable type I error rate (o)

@ Seek tests that minimize the type II error rate (),

i.e., maximize power (1 - ) 50



The Multiple Testing Issue

Suppose you carry out 10 hypothesis tests at the 5% level
(assume independent tests )

[ The probability of declaring a particular test
significant under its null hypothesis is 0.05

y But the probability of declaring at least 1 of
the 10 tests significant is|0.401

If you perform 20 hypothesis tests, this
__ Probability increases to 0.642...

1-0.95%0

=» Typically thousands of markers tested simultaneously

» Example: Suppose trait with H? = O and association analysis
considering 100 markers and o = 5% (for each test)

* Expected 100 x 0.05 = 5 false associations..



The Multiple Testing Issue

# H, not rejected | # H, rejected
# true H, A B
# false H, C D

Observable quantity (n° rejected H,)

known quantity

(number of tests)

52



The Multiple Testing Issue

* Family-wise error rate (FWER):

FWER =Pr(B=1) =1-Pr(B = 0)

* False discovery rate (FDR):

FDR = E[B/R|R > 0]Pr(R > 0)

- _/
e

Positive FDR (pFDR); Storey (2002)

53



®» Controlling the FWER at level a:

.

Pr[V = 1]

- Bonferroni: Rejects any hypothesis H; with p-value less
than or equal to a/m, i.e..

adjusted p-value unadjusted p-value

+ Siddk: Rejects any hypothesis H; with p-value less
than or equal to 1-(1-a)9, i.e.:

5]' = min[l—(l—pj)g,l]

- Very similar to Bonferroni adjustment.

- Both are too conservative...
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®» Controlling the FDR:

Definition: FDR r[R>O]; expected proportion of
false positive findings among all rejected hypotheses
times the probability of making at least one rejection.

Positive FDR (pFDR); Storey (2002)

e Benjamini and Hochberg (1995) algorithm:

- Fix a value o™ € (0,1)
- Let pg1y, P2y Pm) D€ the ordered observed p-values
- Let k = max{k: py, = a*(k/m)}
(If pyy > a’(k/m) for all k = 1,..,m, letk = 0)
- If1A< = 1, reject the hypotheses corresponding to p(iy, P(2y,--/Pg)
- If k = 1, do not reject any hypothesis 55



Distribution of P-values
(Histogram)

Under H, Mixture of Hy and H,
2.57 10
'2.01-- --------------- 8
'Em- 'E‘ 6
8 o)
o O
= |
&Jw.o- &J -
3.5 )
DD 0.t 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 | 0[) 0.1 [)TQ DJB Dj4 DTS DTB Di? [)‘;8 019 1
P-value P-value
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F Test

Distribution of P-values

(Q-Q Plot)

Under H,

F Test

Quantile

Mixture of Hy and H,

20 4
.
)
10
&
.
0 os®
L ]

Quantile 57



Replication

= Confounding factors, population structure and
stratification, Type I error, efc.

= Biased estimates of gene effects due to
significance threshold

= Multiple genes, with modest individual effects

= Gene x gene and gene x environment interactions
= Inter population heterogeneity

= Low statistical power

= Validation of association findings

= But what constitutes a replication?
58



The case of the missing heritability '

(Maher, B. Nature 456: 18-21, 2008)
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