Lecture 7
 QTL and Association Mapping

Guilherme J. M. Rosa
University of Wisconsin-Madison

Introduction to Quantitative Genetics

$$
\begin{gathered}
\text { SISG, Seattle } \\
20-22 \text { July } 2020
\end{gathered}
$$

Linkage Analysis and QTL Mapping

Sequences of Base Pairs Mapping

Genetic maps: relative positions of loci in chromosomes or linkage groups. Distances in genetic maps are measured in centimorgans (cM, about 1 million base pairs)
Physical maps: overlapping collections of DNA fragments (measured in kilobases, kb) which are assembled together to build the base-by-base sequence of DNA

Crossing-Over and Recombination During Meiosis

In meiosis, the precursor cells of the sperm or ova must multiply and at the same time reduce the number of chromosomes to one full set.

During the early stages of cell division in meiosis, two chromosomes of a homologous pair may exchange segments in the manner shown above, producing genetic variations in germ cells.

Crossing Over and Recombination

An odd number of crossovers between two loci results in a recombination
 between them

Because crossing over takes place at random, the probability of recombination (r) is higher for loci that are farther apart than for loci that are closer to each other

$$
\begin{aligned}
& \text { completely } \quad 0 \leq \mathrm{r} \leq 0.5 \\
& \text { linked loci }
\end{aligned}
$$

Two Point Linkage Analysis

\Rightarrow Backcross experiment
\Rightarrow Genotypic information for two loci (A and B)
\Rightarrow Estimate the recombination rate $r_{A B}$
\Rightarrow Are these two loci linked?

Individual	A	B
1	0	0
2	0	1
\vdots	\vdots	\vdots
n	1	1

$$
\begin{array}{l|ll|l}
\mathrm{A}_{1} & \mathrm{~A}_{1} & \mathrm{~A}_{1} \\
\mathrm{~B}_{1} & \mathrm{~B}_{1} \\
\hline
\end{array}
$$

Four possible genotypes

Two Point Linkage Analysis

\Rightarrow Suppose $n=80$ and $y=16$ (recombinants)
\Rightarrow Point estimate of $r_{A B}: \quad \hat{r}_{A B}=\frac{y}{n}=0.20$
\Rightarrow Confidence interval (95\%) of $r_{A B}$:

$$
\mathrm{CI}\left(\mathrm{r}_{\mathrm{AB}} ; 95 \%\right)=[0.1189 ; 0.3044]
$$

Recombination Rate and Linkage Map

Estimates of recombination rates between pairs of markers are used to order markers and to infer their genetic distances (centimorgans; cM)

Interference

\Rightarrow Lack of independence in recombinations at different intervals on a chromosome

- If $r_{A B}$ and $r_{B C}$ are independent, the probability of double recombination is $\operatorname{Pr}(D R)=r_{A B} \times r_{B C}$
- If $r_{A B}$ and $r_{B C}$ are not independent, the above probability is given by $\operatorname{Pr}(D R)=c \times r_{A B} \times r_{B C}$ where c is called "coefficient of coincidence"
- Interference: I = 1 - c

Map Distance

The map distance x between two loci, in Morgan units, is defined as the expected number of crossovers between them

Unlike recombination rates, map distances are additive

The relationship between map distances and recombination rates is discussed next \dagger

Map Functions

Map functions provide a transformation from map distance to recombination rate. Two approaches have been used to derive map functions:
In the first case, a probability model is assumed for the number of crossovers in an interval of length x. Then, recombination rate is calculated as the probability of an odd number of crossovers in the interval

In the second approach, recombination events in two adjacent intervals are modeled, allowing for interference
Examples of map functions: Haldane, Binomial, Kosambi

Haldane Map Function

Haldane (1919) suggested that the number of crossovers in any chromosomal interval follows a Poisson distribution, with no interference

If P_{k} is the probability of k crossovers, then the probability of recombination (r) is $r=P_{1}+P_{3}+P_{5}+\ldots$
This leads to the Haldane's map function:

$$
r=\frac{1}{2}\left(1-e^{-2 x}\right)
$$

The inverse of which is: $x=\left\{\begin{array}{cl}-\frac{1}{2} \ln (1-2 r) & , \text { if } 0 \leq r<0.5 \\ \infty & , \text { if } r=0.5\end{array}\right.$

Haldane Map Function

Genetic distance (M)

Multipoint Point Linkage Analysis

\Rightarrow Instead of two loci, suppose there are M loci
\Rightarrow If order is unknown: M!/2 alternatives

Goal: Determine the order of the loci and estimate recombination fractions between neighboring loci, i.e. "Map Construction"

PAUSE

\Rightarrow Genetic map construction: ordering loci (markers) and expressing their distances in terms of genetic distance (Morgans)
\Rightarrow Experimental populations (e.g. BC, F2, RIL, etc.) use to estimate recombination rates
\Rightarrow Same sort of strategy will be used for mapping QTLs (next)

Next PAUSE, slide 26

Methods for Mapping QTL

\Rightarrow Single Marker Analysis
\Rightarrow Interval Mapping
\Rightarrow Composite Interval Mapping
\Rightarrow Bayesian Methods

QTL Mapping

\Rightarrow Methods based on linkage disequilibrium between markers and QTL (line crossing or segregating population)
\Rightarrow Requirements:
(1) Linkage (marker) maps
(2) Variation for the quantitative trait

QTL Mapping

Single Marker Analysis; Example with Backcross

QTL Mapping

Single Marker Analysis; Example with Backcross

Genotype	
\bigcirc	\bigcirc
65	68
57	55
61	59

QTL Mapping

Single Marker Analysis; Example with Backcross

Single Marker Analysis

∞ Simple example with candidate gene and $B C$ population

$$
\begin{aligned}
& \Rightarrow \mathrm{H}_{0}: \delta=0 \text { vs } \mathrm{H}_{1}: \delta \neq 0 \\
& t=\frac{m_{1}-m_{2}}{\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim t_{\left(n_{1}+n_{2}-2\right)} \\
& \mathrm{s}^{2}=\frac{\left(\mathrm{n}_{1}-1\right) \mathrm{s}_{1}^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{s}_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}
\end{aligned}
$$

$$
C I[\delta ;(1-\alpha)]:\left(m_{2}-m_{1}\right) \pm t_{\left(n_{1}+n_{2}-2 ; \alpha / 2\right)} \sqrt{\frac{s^{2}}{n_{1}+n_{2}-2}}
$$

Example with F2 Population

Single Marker Analysis

∞ QTL and marker (M); recombination frequency $=r$

Genotype	Freq.	$\mathrm{E}[\mathrm{y}]$	Marker group	Freq.	$\mathrm{E}[\mathrm{y}]$
$\mathrm{M}_{1} \mathrm{M}_{1} \mathrm{Q}_{1} \mathrm{Q}_{1}$	$(1-r) / 2$	μ_{1}	$\mathrm{M}_{1} \mathrm{M}_{1}$	$1 / 2$	$(1-r) \mu_{1}+r \mu_{2}$
$\mathrm{M}_{1} \mathrm{M}_{1} \mathrm{Q}_{1} \mathrm{Q}_{2}$	$r / 2$	μ_{2}			
$\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{Q}_{1} \mathrm{Q}_{1}$	$r / 2$	μ_{1}	$\mathrm{M}_{1} \mathrm{M}_{2}$	$1 / 2$	$\left(\mu_{1}+(1-r) \mu_{2}\right.$
$\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{Q}_{1} \mathrm{Q}_{2}$	$(1-r) / 2$	μ_{2}			

$\overbrace{\left.$$\mathrm{M}_{1}$ $\mathrm{Q}_{1}$$\left\|\begin{array}{ccc}\mathrm{M}_{1} & \mathrm{M}_{1} \\ \mathrm{Q}_{1} & \mathrm{Q}_{1}\end{array}\right\|$$\mathrm{M}_{1}$ M_{1} M_{2} Q_{2} M_{1} Q_{2} Q_{1} Q_{1} \right\rvert\, $\mathrm{M}_{2}}^{\mathrm{Q}_{2}}$	

Difference between marker group expected values

$$
\begin{aligned}
& r \mu_{1}+(1-r) \mu_{2}-(1-r) \mu_{1}-r \mu_{2} \\
& =(1-2 r)\left(\mu_{2}-\mu_{1}\right)=(1-2 r) \delta
\end{aligned}
$$

Single Marker Analysis (EXAMPLE)

\Rightarrow Brassica napus; Flowering time
$\Rightarrow 10$ Markers
(positions: $0,8.8,20.6,27.4,34.2,42.9,53.6,64.1,69.2,83.9 \mathrm{cM}$)
$\Rightarrow 104$ individuals; Double haploid

3.0204	-1	-1	-1	-1	-1	-1	-1	-1	-99	-1
2.9704	-1	-1	-1	-1	-99	-1	-1	-1	-1	1
2.7408	-1	-1	1	1	1	1	1	1	1	1
\vdots										
3.3673	1	1	1	1	-1	-1	-1	-1	-1	1
3.0681	1	1	1	1	-99	1	1	1	-1	-1
3.2771	-1	-99	-1	-1	-1	-1	-1	-1	-1	-1

(Satagopan et al. Genetics 144: 805-816, 1996) ${ }^{24}$

Chrom.	Marker	μ	τ	LRT	F	p-value
1	1	3.184	-0.202	9.379	9.624	$0.002 * *$
1	2	3.204	-0.230	11.378	11.789	$0.001 * * *$
1	3	3.232	-0.266	14.706	15.485	$0.000 * * *$
1	4	3.229	-0.259	13.885	14.562	$0.000 * * *$
1	5	3.240	-0.276	15.554	16.446	$0.000 * * * *$
1	6	3.259	-0.307	19.518	21.041	$0.000 * * * *$
1	7	3.252	-0.302	19.747	21.312	$0.000 * * * *$
1	8	3.257	-0.318	23.450	25.775	$0.000 * * * *$
1	9	3.258	-0.330	25.156	27.884	$0.000 * * * *$
1	10	3.252	-0.362	31.518	36.059	$0.000 * * * *$

PAUSE

\Rightarrow QTL mapping: similar approach as with genetic map construction, i.e. linkage analysis between pairs of loci, but with missing genotypes in one of the loci (putative QTL)
\Rightarrow Single marker analysis: confounding between position of putative QTL and its effect size

Next PAUSE, slide 39

Interval Mapping
(Lander \& Botstein, 1989)

Backcross

$$
q_{i}=\left\{\begin{array}{l}
0, \text { if qq } \\
1, \text { if } \mathrm{Qq}
\end{array}\right.
$$

Interval Mapping

$$
\text { If } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \quad \longrightarrow y_{i} \mid q_{i} \sim N\left(\mu+q_{i} \delta, \sigma^{2}\right)
$$

$$
p\left(y_{i} \mid q_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu-q_{i} \delta\right)^{2}\right\}
$$

$L\left(\mu, \delta, \sigma^{2}, \lambda, \boldsymbol{q} \mid \boldsymbol{y}\right) \propto \prod_{i=1}^{N}\left[f\left(y_{i} \mid q_{i}=0\right) \operatorname{Pr}\left(q_{i}=0\right)+f\left(y_{i} \mid q_{i}=1\right) \operatorname{Pr}\left(q_{i}=1\right)\right]$

$$
L\left(\mu, \delta, \sigma^{2}, \boldsymbol{\lambda}, \boldsymbol{q} \mid \boldsymbol{y}\right) \propto \prod_{i=1}^{N}\left[\frac{1}{\sqrt{\sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu\right)^{2}\right\} \operatorname{Pr}\left(q_{i}=0 \mid \lambda\right)\right.
$$

QTL position

$$
\left.+\frac{1}{\sqrt{\sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu-\delta\right)^{2}\right\} \operatorname{Pr}\left(q_{i}=1 \mid \lambda\right)\right]
$$

Interval Mapping

$\operatorname{Pr}\left(q_{i} \mid \lambda\right)$ is modeled in terms of recombinations between flanking markers and QTL:

Marker Genotypes	$\operatorname{Pr}\left(q_{i}=Q Q\right)$	$\operatorname{Pr}\left(q_{i}=Q q\right)$
M, N	$\left(1-r_{1}\right)\left(1-r_{2}\right) /(1-r)$	$r_{1} r_{2} /(1-r)$
M, n	$\left(1-r_{1}\right) r_{2} / r$	$r_{1}\left(1-r_{2}\right) / r$
m, N	$r_{1}\left(1-r_{2}\right) / r$	$\left(1-r_{1}\right) r_{2} / r$
m, n	$r_{1} r_{2} /(1-r)$	$\left(1-r_{1}\right)\left(1-r_{2}\right) /(1-r)$

Approximation:
(no double recombination)

Markers	$\operatorname{Pr}\left(\mathrm{q}_{\mathrm{i}}=\mathrm{QQ}\right)$	$\operatorname{Pr}\left(\mathrm{q}_{\mathrm{i}}=\mathrm{Qq}\right)$
M, N	1	0
M, n	$(1-\mathrm{p})$	p
m, N	p	$(1-\mathrm{p})$
m, n	0	1

Interval Mapping

\Rightarrow Likelihood estimation: EM algorithm to estimate parameters, including λ (position of QTL)
\Rightarrow Alternatively: Fix λ (grid search) and evaluate LOD

$$
\mathrm{LOD}_{\lambda}=\log _{10}\left[\frac{\mathrm{~L}\left(\hat{\mu}, \hat{\delta}, \hat{\sigma}^{2}, \hat{\boldsymbol{q}} \mid \boldsymbol{y}\right)}{\mathrm{L}\left(\hat{\mu}, \hat{\sigma}^{2}, \hat{\boldsymbol{q}} \mid \boldsymbol{y}, \delta=0\right)}\right]
$$

A QTL is detected whenever the LOD score gets larger than a threshold; estimated position of the QTL maximizes LOD

Interval Mapping REGRESSION APPROACH

(Haley \& Knott, 1992)

$$
\begin{aligned}
& y=X \beta+\varepsilon \\
& {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cc}
p_{11} & p_{12} \\
p_{21} & p_{22} \\
\vdots & \vdots \\
p_{N 1} & p_{N 2}
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{N}
\end{array}\right]} \\
& \hat{\beta}=\left(X^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y} \\
& \text { Residual Sum of Squares: } \\
& \mathrm{RSS}=\boldsymbol{y} \boldsymbol{y} \boldsymbol{y}-\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y} \\
& \text { Estimated position of the } \\
& \text { QTL minimizes RSS. }
\end{aligned}
$$

QTL Mapping

Interval Mapping; Example with Backcross

Interval Mapping

\Rightarrow COMMENTS:
(1) Backcross to both parental lines, or use F2 design, to estimate additive and dominance effects
(2) Threshold; multiple testing; false positives
(3) Confidence intervals
(4) Multiple QTL, ghost QTL

Composite Interval Mapping (Zeng, 1993, 1994)

\Rightarrow Interval analysis adding marker cofactors (to account for the effects of unlinked QTLs); combination of single interval mapping and multiple linear regression

Flanking markers

Composite Interval Mapping
 (Zeng, 1993, 1994)

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon \\
\hat{V} \\
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
\end{gathered}
$$

Intercept
Dummy variables

$$
y_{i}=\beta_{0}+\beta^{*} x_{i j}+\sum_{k \neq j, j+1} \beta_{k} w_{i k}+\varepsilon_{i}
$$ putative QTL

(between markers j and $\mathrm{j}+1$)

$$
\boldsymbol{X}=\left[\begin{array}{ccccc}
1 & x_{1 j} & w_{11} & \cdots & w_{1 p} \\
1 & x_{2 j} & w_{21} & \cdots & w_{2 p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N j} & w_{N 1} & \cdots & w_{N p}
\end{array}\right]
$$

Interval Mapping (Example)

\Rightarrow Brassica napus; Flowering time (Satagopan et al., 1996)

Composite Interval Mapping (Example)

\Rightarrow Brassica napus; Flowering time (Satagopan et al., 1996)

EXPRESSION QTL (eQTL)

PAUSE

\Rightarrow Interval mapping and composite interval mapping
\Rightarrow Single QTL and multiple QTL analysis
\Rightarrow Permutation and bootstrap approaches
\Rightarrow Crosses between outbred populations
\Rightarrow Pleiotropy and epistatic effects
\Rightarrow Limitations of linkage analysis
Next PAUSE, slide 59

Genome-Wide Association Analysis (GWAS)

Guilherme J. M. Rosa
University of Wisconsin-Madison

Gene Mapping

\Rightarrow Linkage Analysis (QTL Analysis)
\Rightarrow Fine Mapping Strategies (LDLA approach, Selective Genotyping, etc.)
\Rightarrow Association Analysis, Candidate Gene Approach
\Rightarrow Genome-wide Association Analysis (GWAS)

Descriptive Statistics \& Data Cleaning

\Rightarrow Measurement/recording error
\Rightarrow Genotyping error; Mendelian inconsistencies
\Rightarrow Redundancies
\Rightarrow Heterozygosity (H)
Polymorphism Information Content (PIC)
\Rightarrow Minor Allele Frequency (MAF)
\Rightarrow Hardy-Weinberg equilibrium

Single Marker Regression

\Rightarrow Series of models, one for each marker $j(j=1,2, \ldots, k)$:

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{m g}_{\mathrm{j}}+\mathbf{e}
$$

where:
y : vector of phenotypic observations (n individuals)
β : environmental covariates, such as gender, age, etc.
X : incidence matrix relating β to y
g_{j} : 'effect' of marker $j(j=1,2, \ldots, k)$
$m=\left[m_{1 j}, m_{2 j}, \ldots, m_{n j}\right]^{\top}$: vector of genotypes for marker j, with $m_{i j}=-1,0$ or 1
e: residual vector

Confounding

Accounting for Population Stratification

\Rightarrow Series of models, one for each marker $j(j=1,2, \ldots, k)$:

$$
\mathbf{y}=\mathbf{X} \beta+\psi+\mathbf{m g}_{\mathrm{j}}+\mathbf{e}
$$

where: $\boldsymbol{\Psi}$ is a population structure term (e.g. PC built from genotypes)

Mixed Model Approach

\Rightarrow The model now is expressed as:

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}+\mathbf{m g}_{\mathrm{j}}+\mathbf{e}
$$

where all terms are as before, except that a polygenic (infinitesimal) term \mathbf{u} is included to account for population sub-structure, with $\mathbf{u} \sim N\left(0, K \sigma_{u}{ }^{2}\right)$; K is a kinship matrix built from pedigree information (e.g. A) or genotypic information (e.g. G)

Note: Efficient computation, e.g. EMMA and GEMMA

Manhattan Plot with Marker Effects

Manhattan Plot with Significance Tests

Statistical Power

\Rightarrow Power is a function of:

- Significance level (α)
- Sample size (n)
- Effect size (δ), expressed as a proportion of variance in measured phenotype, subsumes allele frequency, mode of inheritance, measurement reliability, degree of LD, and all other aspects of genetic model
- Test statistic (T)

Hypothesis Testing

Significance

\Rightarrow Standard approach:
(1) Specify an acceptable type I error rate (α)
(2) Seek tests that minimize the type II error rate (β), i.e., maximize power ($1-\beta$)

The Multiple Testing Issue

Suppose you carry out 10 hypothesis tests at the 5\% level (assume independent tests)
(The probability of declaring a particular test significant under its null hypothesis is 0.05
But the probability of declaring at least 1 of the 10 tests significant is 0.401
If you perform 20 hypothesis tests, this probability increases to 0.642...
\Rightarrow Typically thousands of markers tested simultaneously
\Rightarrow Example: Suppose trait with $\mathrm{H}^{2}=0$ and association analysis considering 100 markers and $\alpha=5 \%$ (for each test)

- Expected $100 \times 0.05=5$ false associations...

The Multiple Testing Issue

$\# H_{0}$ not rejected	$\# H_{0}$ rejected	
$\#$ true H_{0}	A	B
O false H_{0}	C	D

The Multiple Testing Issue

- Family-wise error rate (FWER):

$$
\text { FWER }=\operatorname{Pr}(\mathrm{B} \geq 1)=1-\operatorname{Pr}(\mathrm{B}=0)
$$

- False discovery rate (FDR):

$$
\mathrm{FDR}=\underbrace{\mathrm{E}[\mathrm{~B} / \mathrm{R} \mid \mathrm{R}>0]}_{\text {Positive } \mathrm{FDR}(\mathrm{pFDR}) ; \text { Storey }(2002)} \operatorname{Pr}(\mathrm{R}>0)
$$

\Rightarrow Controlling the FWER at level α :

$$
\operatorname{Pr}[\mathrm{V} \geq 1]
$$

- Bonferroni: Rejects any hypothesis H_{j} with p-value less than or equal to α / m, i.e.:

$$
\tilde{\mathrm{p}}_{\mathrm{j}}=\min \left[\mathrm{mp}_{\mathrm{j}}, 1\right]
$$

adjusted p -value unadjusted p -value

- Sidák: Rejects any hypothesis H_{j} with p-value less than or equal to $1-(1-\alpha)^{1 / g}$, i.e.:

$$
\widetilde{\mathrm{p}}_{\mathrm{j}}=\min \left[1-\left(1-\mathrm{p}_{\mathrm{j}}\right)^{g}, 1\right]
$$

- Very similar to Bonferroni adjustment.
- Both are too conservative...
\Rightarrow Controlling the FDR:
Definition: $F D R=E[V / R \mid R>0] \operatorname{Pr}[R>0]$; expected proportion of false positive findings among all rejected hypotheses times the probability of making at least one rejection.

Positive FDR (pFDR); Storey (2002)

- Benjamini and Hochberg (1995) algorithm:
- Fix a value $\alpha^{*} \in(0,1)$
- Let $\mathrm{p}_{(1)}, \mathrm{p}_{(2)}, \ldots, \mathrm{p}_{(\mathrm{m})}$ be the ordered observed p -values
- Let $\hat{\mathrm{k}}=\max \left\{\mathrm{k}: \mathrm{p}_{(\mathrm{k})} \leq \alpha^{*}(\mathrm{k} / \mathrm{m})\right\}$
(If $p_{(k)}>\alpha^{*}(k / m)$ for all $k=1, \ldots, m$, let $\hat{k}=0$)
- If $\hat{k} \geq 1$, reject the hypotheses corresponding to $p_{(1)}, p_{(2), \ldots, p_{\hat{k})}}$
- If $\hat{\mathrm{k}}=1$, do not reject any hypothesis

Distribution of P-values (Histogram)

Under H_{0}

Mixture of H_{0} and H_{a}

Distribution of P-values (Q-Q Plot)

Replication

\Rightarrow Confounding factors, population structure and stratification, Type I error, etc.
\Rightarrow Biased estimates of gene effects due to significance threshold
\Rightarrow Multiple genes, with modest individual effects
\Rightarrow Gene \times gene and gene \times environment interactions
\Rightarrow Inter population heterogeneity
\Rightarrow Low statistical power
\Rightarrow Validation of association findings
\Rightarrow But what constitutes a replication?

(Maher, B. Nature 456: 18-21, 2008)

