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Heritability
Narrow vs. broad sense

Narrow sense: h2 = VA/VP

Broad sense: H2 = VG/VP

Slope of midparent - offspring regression
(sexual reproduction)

Slope of a parent - cloned offspring  regression
(asexual reproduction)

When one refers to heritability, the default is narrow-sense, h2

h2 is the measure of (easily) usable genetic 
variation under sexual reproduction
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Why h2 instead of h?
Blame Sewall Wright, who used h to denote the correlation 
between phenotype and breeding value.  Hence,  h2 is the total 
fraction of phenotypic variance due to breeding values

Heritabilities are functions of populations
Heritability values only make sense in the context of the population 
for which it was measured

Heritability measures the standing genetic variation of a population
A zero heritability DOES NOT imply that the trait is not 
genetically determined

r(A,P) = σ (A,P)
σ Aσ P

=
σ A
2

σ Aσ P

=
σ A

σ P

= h
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Heritabilities are functions of the distribution of
environmental values (i.e., the universe of E values)

Decreasing VP increases h2.

Heritability values measured in one environment
(or distribution of environments) may not be valid 
under another

Measures of heritability for lab-reared individuals
may be very different from heritability in nature
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Heritability and the Prediction of Breeding Values

If P denotes an individual’s phenotype, then best linear 
predictor of their breeding value A is

The residual variance is also a function of h2:

The larger the heritability, the tighter the distribution of 
true breeding values around the value h2(P - µP) predicted 
by an individual’s phenotype.

A = σ (P,A)
σ P
2 (P −µP )+ e = h

2 (P −µP )+ e

σ e
2 = (1− h2 )σ P

2
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Heritability and Population Divergence

Heritability is a completely unreliable predictor of 
long-term response

Measuring heritability values in two populations 
that show a difference in their means provides 
no information on whether the underlying 
difference is genetic
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Sample Heritabilities

h2

People Height 0.80
Serum IG 0.45

Pigs Back-fat 0.70
Weight gain 0.30
Litter size 0.05

Fruit Flies Abdominal Bristles 0.50
Body size 0.40
Ovary size 0.30
Egg production 0.20

Traits more 
closely associated 
with fitness tend 
to have lower 
heritabilities
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ANOVA: Analysis of Variance
• Partitioning of trait variance into within- and among-

group components

• Two key ANOVA identities
– Total variance = between-group variance + within-

group variance
• Var(T) = Var(B) + Var(W)

– Variance(between groups) = covariance (within 
groups)

– Intraclass correlation, t = Var(B)/Var(T)

• The more similar individuals are within a group (higher 
within-group covariance), the larger their between-
group differences (variance in the group means)
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Situation 1

Var(B) = 2.5
Var(W) = 0.2
Var(T) = 2.7

Situation 2

Var(B) = 0
Var(W) = 2.7
Var(T) = 2.7

t = 2.5/2.7 = 0.93 t = 0

4321 4321
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Phenotypic Resemblance Between Relatives

Relatives Covariance Regression (b) or 
correlation (t)

Offspring and 
one parent

Offspring and 
mid-parent

Half sibs

Full sibs

t =

1
2
VA +

1
4
VD +VEc
VP

t = 1
4
VA
VP

b = 1
2
VA
VP

b = VA
VP

1
2
VA

1
2
VA

1
4
VA

1
2
VA +

1
4
VD +VEc



Why cov(within) = variance(among)?

• Let zij denote the jth member of group i.
– Here zij = u + gi + eij

– gi is the group effect
– eij the residual error

• Covariance within a group Cov(zij,zik ) 
= Cov(u + gi + eij, u + gi + eik) 
= Cov(gi, gi) as all other terms are uncorrelated

– Cov(gi, gi) = Var(g) is the among-group variance
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PAUSE
ð h2 and H2

ð ANOVA

ð Variance(between groups) = 
covariance (within groups)

ð Intraclass correlation

Next PAUSE, slide 29
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Estimation: One-way ANOVA

Simple (balanced) full-sib design:  N full-sib families, 
each with n offspring:  One-way ANOVA model

zij = m + fi + wij

Trait value in 
sib j from 
family i

Common mean

Effect for family i;
deviation of mean of i from 

the common mean

Deviation of sib j 
from the family 

mean
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Covariance between members of the same group 
equals the variance among (between) groups

Hence, the variance among family effects equals the 
covariance between full sibs

σ f
2 =σ A

2 / 2+σ D
2 / 4+σ Ec

2

Cov(Full Sibs) =σ (zij , zik )
                   =σ [(µ + fi +wij ),(µ + fi +wik )]
                   =σ ( fi , fi )+σ ( fi ,wik )+σ (wij , fi )+σ (wij ,wik )

                   =σ f
2
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The within-family variance  σ2
w = σ2

P - σ2
f,

σ w(FS)
2 =σ P

2 − (σ A
2 / 2+σ D

2 / 4+σ Ec
2 )

         =σ A
2 +σ D

2 +σ E
2 − (σ A

2 / 2+σ D
2 / 4+σ Ec

2 )
         = (1 / 2)σ A

2 + (3 / 4)σ D
2 +σ E

2 −σ Ec
2
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One-way ANOVA: N families 
with n sibs, T = Nn

Factor Degrees of 
freedom, df Sum of squares (SS) Mean 

squares (MS) E[MS]

Among 
family N-1 SSf/(N-1) σ2

w + n σ2
f

Within 
family T-N SSw/(T-N) σ2w

SSf = n (zi − z)
2

i=1

N

∑

SSw = (zij − zi )
2

j=1

n

∑
i=1

N

∑
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Var( f ) =
MSf −MSw

n

Estimating the variance components:

Since

2Var(f) is an upper bound for the additive variance

Var(w) =MSw

Var(z) =Var( f )+Var(w)

σ f
2 =σ A

2 / 2+σ D
2 / 4+σ Ec

2
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Assigning standard errors ( = square root of Var)

Fun fact: Under normality, the (large-sample) variance 
for a mean-square is given by

σ 2 (MSx ) ≅
2(MSx )

2

dfx + 2

Var[Var(w(FS))] =Var(MSw) ≅
2(MSw)

2

T − N + 2

Var[Var( f )] =Var
MSf −MSw

n
⎡

⎣
⎢

⎤

⎦
⎥

                    ≅ 2
n2

(MSf )2

N +1
+

(MSw )2

T − N + 2

⎡

⎣
⎢

⎤

⎦
⎥
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Estimating heritability

tFS =
Var( f )
Var(z)

=
1
2
h2 +σ D

2 / 4+σ Ec
2

σ z
2

Hence, h2 ≤ 2 tFS

An approximate large-sample standard 
error for h2 is given by

SE(h2 ) ≅ 2(1− tFS )[1+ (n−1)tFS ] 2 / [Nn(n−1)]
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Worked Example

Factor df SS MS EMS

Among-families 9 SSf = 405 45 σ2
w  + 5 σ2

f

Within-families 40 SSw = 800 20 σ2
w

10 full-sib families, each with 5 offspring are measured

Var( f ) =
MSf −MSw

n
=
45− 20
5

= 5

Var(w) =MSw = 20

Var(z) =Var( f )+Var(w) = 25

SE(h2 ) ≅ 2(1− 0.4)[1+ (5−1)0.4] 2 / [50(5−1)] = 0.312

VA < 10

h2 < 2 (5/25) = 0.4



Full sib-half sib design: Nested ANOVA
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Estimation: Nested ANOVA

Balanced full-sib / half-sib design:  N males (sires) are 
crossed to M dams each of which has n offspring: 
Nested ANOVA model

Value of the 
kth offspring 
from the jth 
dam for sire i

Overall mean

Effect of sire i; deviation
of mean of i’s family from

overall mean

Effect of dam j of sire i; 
deviation of mean of dam j from 

sire and overall mean 

Within-family deviation of 
kth offspring from the 
mean of the ij-th family 

zijk = m + si + dij + wijk
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Nested ANOVA Model

s2
s = between-sire variance = variance in sire family means

s2
d = variance among dams within sires = variance of dam 

means for the same sire

s2
w = within-family variance

s2
T = s2

s + s2
d + s2

w

zijk = m + si + dij + wijk
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Nested ANOVA: N sires crossed to 
M dams, each with n sibs, T = NMn

Factor df SS MS E[MS]
Sires N-1 SSs SSs/(N-1)

Dams(Sires) N(M-1) SSd SSd/[N(M-1)]

Sibs(Dams) T-NM SSw SSw/(T-NM)

σ w
2 + nσ d

2 +Mnσ s
2

σ w
2 + nσ d

2

σ w
2

SSs =Mn (zi − z )
2

i=1

N

∑

SSd = n (zij − zi )
2

j=1

M

∑
i=1

N

∑ SSw = n (zijk − zij )
2

k=1

n

∑
j=1

M

∑
i=1

N

∑

where:

and
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Estimation of sire, dam, and family variances:

Var(s) = MSs −MSd
Mn

Var(d) = MSd −MSw
n

Var(e) =MSw

Translating these into the desired variance components:

� Var(Total) = Var(between FS families) + Var(within FS)

� Var(Sires) = Cov(Paternal half-sibs)

→σ w
2 =σ z

2 −Cov(FS)

σ d
2 =σ z

2 −σ s
2 −σ w

2 =σ (FS)−σ (PHS) 25



Summarizing:

Expressing these in terms of the genetic and 
environmental variances:

σ w
2 =σ z

2 −σ (FS)

σ s
2 =σ (PHS) σ d

2 =σ z
2 −σ s

2 −σ w
2

    =σ (FS)−σ (PHS)

σ w
2 ≅

σ A
2

2
+
3σ D

2

4
+σ Es

2

σd
2 ≅

σA
2

4
+
σD
2

4
+σEc

2σ s
2 ≅

σ A
2

4
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Intraclass correlations and estimating heritability

Note that 4tPHS = 2tFS implies no dominance or 
shared family environmental effects

tPHS =
Cov(PHS)
Var(z)

=
Var(s)
Var(z)

→ 4tPHS = h
2

tFS =
Cov(FS)
Var(z)

=
Var(s)+Var(d)

Var(z)
→ h2 ≤ 2tFS
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Worked Example: N = 10 sires, M = 3 dams, n = 10 sibs/dam

Factor df SS MS E[MS]
Sires 9 4,230 470

Dams(Sires) 20 3,400 170

Within Dams 270 5,400 20

σ w
2 +10σ d

2 +30σ s
2

σ w
2 +10σ d

2

σ w
2

σ w
2 =MSw = 20

σ d
2 =

MSd −MSw
n

=
170− 20
10

=15

σ s
2 =

MSs −MSd
Nn

=
470−170
30

=10

σ P
2 =σ s

2 +σ d
2 +σ w

2 = 45

σ d
2 =15= (1 / 4)σ A

2 + (1 / 4)σ D
2 +σ Ec

2

            =10+ (1 / 4)σ D
2 +σ Ec

2

σ A
2 = 4σ s

2 = 40

h2 = σ A
2

σ P
2 =

40
45

= 0.89

σ D
2 + 4σ Ec

2 = 20
28



PAUSE
ð One-way ANOVA

ð Nested ANOVA

ð ANOVA variance components and the 
desired genetic (functional) components

Next PAUSE, slide 39
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Parent-offspring Regression

Single parent - offspring regression

The expected slope of this regression is:

Residual error variance (spread around expected values)

zoi = µ + bo|p (zpi −µ)+ ei

E(bo|p ) =
σ (zo, zp )
σ 2 (zp )

≅
(σ A

2 / 2)+σ (Eo,Ep )
σ z
2 =

h2

2
+
σ (Eo,Ep )

σ z
2

σ e
2 = 1− h

2

2
⎛

⎝
⎜

⎞

⎠
⎟σ z

2

30



E(bo|p ) =
σ (zo, zp )
σ 2 (zp )

≅
(σ A

2 / 2)+σ (Eo,Ep )
σ z
2 =

h2

2
+
σ (Eo,Ep )

σ z
2

The expected slope of this regression is:

Shared environmental values

To avoid this term, typically regressions are 
male-offspring, as female-offspring more 

likely to share environmental values
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zoi = µ + bo|MP
zmi + z fi
2

−µ
⎛

⎝
⎜

⎞

⎠
⎟+ ei

Midparent-offspring 
regression:

The expected slope of this regression is h2

Residual error variance (spread around expected values)

bo|MP =
Cov[zo,(zm + z f ) / 2]

Var[(zm + z f ) / 2]

       =
[Cov(zo, zm )+Cov(zo, z f )] / 2

[Var(z)+Var(z)] / 4

       =
2Cov(zo, zp )

Var(z)
= 2bo|p

σ e
2 = 1− h

2

2
⎛

⎝
⎜

⎞

⎠
⎟σ z

2

32



Standard Errors

Single parent-offspring regression, N parents, each with n offspring

Var(bo|p ) ≅
n(t − bp|p

2 )+ (1− t)
Nn

Square regression slope

Sib correlation  t = 

Total number 
of offspring

tHS = h
2 / 4

tFS = h
2 / 2+σ D

2 +σ Ec
2

σ z
2

for half-sibs

for full-sibs

Var(h2 ) =Var(2bo|p ) = 4Var(bo|p ) 33



Midparent-offspring regression, 
N sets of parents, each with n offspring

• Midparent-offspring variance half that of single 
parent-offspring variance

Var(h2 ) =Var(bo|MP ) ≅
2[n(tFS − bo|MP

2 / 2)+ (1− tFS )]
Nn

Var(h2 ) =Var(2bo|p ) = 4Var(bo|p )
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Estimating Heritability in Natural Populations

Often, sibs are reared in a laboratory environment, 
making parent-offspring regressions and sib ANOVA 
problematic for estimating heritability

Let b’ be the slope of the regression of the values of 
lab-raised offspring regressed in the trait values of 
their parents in the wild

A lower bound can be placed of heritability using 
parents from nature and their lab-reared offspring,

hmin
2 = (b'o|MP )

2 Varn (z)
Varl (A)

Trait variance in nature

Additive variance in lab 35



Why is this a lower bound?

(b'o|MP )
2 Varn (z)
Varl (A)

=
Covl,n (A)
Varn (z)

⎡

⎣
⎢

⎤

⎦
⎥

2
Varn (z)
Varl (A)

= γ 2hn
2

γ =
Covl,n (A)

Varn (A)Varl (A)

Covariance between 
breeding value in nature 

and BV in lab

where

is the additive genetic covariance 
between environments and hence ϒ2 ≤ 1 36



Defining H2 for Plant Populations
Plant breeders often do not measure individual plants 
(especially with pure lines), but instead measure a plot 
or a block of individuals. This can result in inconsistent 
measures of H2 even for otherwise identical populations

zijkl =Gi +Ej +GEij + pijk + eijkl

Genotype i

Interaction between 
genotype i and environment j

Environment j Effect of plot k for 
genotype i in 
environment j

Deviations of 
individual plants 

within plots
37



Hence, VP, and hence H2, depends 
on our choice of e, r, and n

e = number of environments
r = (replicates) number of plots/environment
n = number of individuals per plot

zijkl =Gi +Ej +GEij + pijk + eijkl

σ 2 (zi ) =σG
2 +σ E

2 +
σGE
2

e
+
σ p
2

er
+
σ e
2

ern
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PAUSE

ð Regression approach

ð Parent-offspring variations

ð Standard errors

Next PAUSE, slide 50
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Linear Mixed Effects Model

eZuXβy ++=

÷÷
ø

ö
çç
è

æ
ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
Σ0
0G

0
0

e
u

,MVN~

responses
incidence 
matrices

random 
effects

residuals
fixed 

effects

40



Estimation of Fixed Effects

))(,(MVN~)(ˆ 11T1T11T -----= XVXβyVXXVXβ

eZuε +=

εXβy +=

with                      , such that 

è MLE of b :

where 

Var[ε]=ZGZT + Σ

ΣZGZV += T
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Prediction of Random Effects

Replacing β by its estimate:

])[E]([Var][Cov][E]|[E 1T yyyyu,uyu -+= -

)())( 1TT1T XβyΣ(ZGZGZXβyVGZ -+=-= --

)ˆ()ˆ 1TT βXyΣ(ZGZGZu -+= -
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Mixed Model Equations

)ˆ()(ˆ 1T111T βXyΣZGZΣZu -+= ----

β̂ = {XT[Σ−1 − Σ−1Z(ZTΣ−1Z+G−1)−1ZTΣ−1]X}−1

× XT[Σ−1 − Σ−1Z(ZTΣ−1Z+G−1)−1ZTΣ−1]y

BLUP and BLUE:
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BLUE and BLUP require knowledge of G and Σ
These matrices, however, are rarely known and 
must be estimated
Variance and covariance components estimation:

• Analysis of Variance (ANOVA)

• Maximum Likelihood

• Restricted Maximum Likelihood (REML)

• Bayesian Inference

Estimation of Variance Components

44



Many statistical methods for analysis of genetic 
data are specific (or more appropriate) for 
phenotypic measurements obtained from planned 
experimental designs and with balanced data sets

While such situations may be possible within 
laboratory or greenhouse experimental settings, 
data from natural populations and agricultural 
species are generally highly unbalanced and 
fragmented by numerous kinds of relationships

Mixed Models in Animal and 
Plant Breeding

45



The mixed model methodology allows efficient 
estimation of genetic parameters (such as variance 
components and heritability) and breeding values while 
accommodating extended pedigrees, unequal family 
sizes, overlapping generations, sex-limited traits, 
assortative mating, and natural or artificial selection

To illustrate such application of mixed models in 
breeding programs, we consider here the so-called 
Animal Model in situations with a single trait and a 
single observation (including missing values) per 
individual

Animal Model
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The animal model can be described as:

eZuXβy ++=

y is an (n ´ 1) vector of observations (phenotypic scores)

b is a (p ´ 1) vector of fixed effects (e.g. herd-year-
season effects)

u ~ N(0, G) is a (q ´ 1) vector of breeding values (relative 
to all individuals with record or in the pedigree file, 
such that q is in general bigger than n)

e ~ N(0, Inσe2) represents residual effects, where σe2 is 
the residual variance

Animal Model

47



The Matrix  A
The matrix G describing the covariances among the 
random effects (here the breeding values) follows 
from standard results for the covariances between 
relatives

It is seen that the additive genetic covariance 
between two relatives i and i’ is given by             , 
where       is the coefficient of coancestry between 
individuals i and i’, and       is the additive genetic 
variance in the base population

Hence, under the animal model,                , where A
is the additive genetic (or numerator) relationship 
matrix, having elements given by

2
a'ii2 sq

2
as

2
as= AG

'ii'ii 2a q=

'iiq

48



The Matrix  A

For each animal i in the pedigree (i = 1, 2,…,n), going from 
older to younger animals, compute aii and aij (j = 1, 2,…,i-1) 
as follows:

If both parents (s and d) of animal i are known:

aij = aji = (ajs + ajd)/2 and aii = 1 + asd/2

If only one parent (e.g. d) of animal i is known:

aij = aji = ajd/2 and aii = 1

If parents unknown:

aij = aji = 0 and aii = 1

49



PAUSE

ð Mixed Model approach

ð BLUE, BLUP, and REML

ð Examples to follow

Next PAUSE, slide 64 (end of lecture)
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Example

1 2

4 3

5 6

Animal Sire Dam
1 - -
2 - -
3 1 2
4 1 -
5 4 3
6 5 2



In general, in animal/plant breeding interest is 
on prediction of breeding values (for selection 
of superior individuals), and on estimation of 
variance components and functions thereof, 
such as heritability

The fixed effects are, in some sense, nuisance 
factors with no central interest in terms of 
inferences, but which need to be taken into 
account (i.e., they need to be corrected for 
when inferring breeding values)

Animal Model
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Since under the animal model                        and                   
, the mixed model equations can be 

expressed as:

2
a

11 --- s= AG
2
en

1 -- s= IR

XTX XTZ
ZTX ZTZ+ λA−1

#
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where                        , such that:2

2

2
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Animal Model
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Conditional on the variance components ratio λ, the 
BLUP of the breeding values are given then by:

These are generally referred to as Estimated Breeding 
Values (EBV)

Alternatively, some breeders associations express their 
results as Predicted Transmitting Abilities (PTA) (or 
Estimated Transmitting Abilities (ETA) or Expected 
Progeny Difference (EPD)), which are equal to half the 
EBV, representing the portion of an animal’s breeding 
values that is passed to its offspring

)ˆ()(ˆ T11T βXyZAZZu -l+= --
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The amount of information contained in an animal’s 
genetic evaluation depends on the availability of its 
own record, as well as how many (and how close) 
relatives it has with phenotypic information

As a measure of amount of information in livestock 
genetic evaluations, EBVs are typically reported 
with its associated accuracies

Accuracy of predictions is defined as the 
correlation between true and estimated breeding 
values, i.e.,                    

Instead of accuracy, some livestock species 
genetic evaluations use reliability, which is the 
squared correlation of accuracy (   )

)u,û(r iii r=

2
ir 55



The calculation of               requires the diagonal 
elements of the inverse of the MME coefficient 
matrix, represented as:

It is shown that the prediction error variance of 
EBV      is given by:

where      is the i-th diagonal element of       , 
relative to animal i. 

Prediction Accuracy

C = XTX XTZ
ZTX ZTZ+ λA−1
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Prediction Accuracy

The PEV can be interpreted as the fraction of 
additive genetic variance not accounted for by 
the prediction

Therefore, PEV can be expressed also as:

such that                             , from which the 
reliability is obtained as:

2
a

2
i )r1(PEV s-=

2
a

2
i

2
e

uu
i )r1(c s-=s
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i

2
a

2
e
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2
i c1/c1r l-=ss-=
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herd 1

herd 2

Animal Model

ú
ú
ú

û

ù

ê
ê
ê

ë

é
+

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
+ú
û

ù
ê
ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

4

3

1

5

4

3

2

1

2

1

e
e
e

u
u
u
u
u

01000
00100
00001

h
h

10
01
01

350
270
310

y   = X b +              Z u         +    e  58



),(N~ 2
usA0u

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

1125.05.0025.0
125.0125.05.05.0
5.025.0105.0
05.0010
25.05.05.001

A

Breeding values:                           , with

Animal Model

59



λ =
σe
2

σu
2 =
1− h2

h2

β̂

û
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The animal model can be extended to model multiple
(correlated) traits, multiple random effects (such as
maternal effects and common environmental effects),
repeated records (e.g. test day models), and so on

Example (Mrode 1996, pp74-76): Weaning weight (kg)
of piglets, progeny of three sows mated to two boars:

Animal Model
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A linear model with the  (fixed) effect of sex, and the 
(random) effects of common environment (related to 
each litter) and breeding values can be expressed as X:

Assuming that            ,              and            , the MME 
are as follows:

where                         and
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The BLUEs and BLUPs 
(inverting the numerator 
relationship matrix) are:
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