# Lecture 7 <br> QTL and Association Mapping 

## Guilherme J. M. Rosa

University of Wisconsin-Madison

Introduction to Quantitative Genetics

$$
\begin{gathered}
\text { SISG, Seattle } \\
18-20 \text { July } 2022
\end{gathered}
$$

## Linkage Analysis and QTL Mapping



## Sequences of Base Pairs Mapping



Genetic maps: relative positions of loci in chromosomes or linkage groups. Distances in genetic maps are measured in centimorgans (cM, about 1 million base pairs)
Physical maps: overlapping collections of DNA fragments (measured in kilobases, kb) which are assembled together to build the base-by-base sequence of DNA

## Crossing-Over and Recombination During Meiosis

In meiosis, the precursor cells of the sperm or ova must multiply and at the same time reduce the number of chromosomes to one full set.

During the early stages of cell division in meiosis, two chromosomes of a homologous pair may exchange segments in the manner shown above, producing genetic variations in germ cells.

## Crossing Over and Recombination



An odd number of crossovers between two loci results in a recombination between them

Because crossing over takes place at random, the probability of recombination $(r)$ is higher for loci that are farther apart than for loci that are closer to each other

$$
0 \leq \mathrm{r} \leq 0.5
$$

completely linked loci

## Two Point Linkage Analysis

$\Rightarrow$ Backcross experiment
$\Rightarrow$ Genotypic information for two loci ( $A$ and $B$ )
$\Rightarrow$ Estimate the recombination rate $r_{A B}$
$\Rightarrow$ Are these two loci linked?


$$
\begin{array}{l|l|l|l}
\mathrm{A}_{1} & \mathrm{~A}_{1} & \mathrm{~A}_{1} \\
\mathrm{~B}_{1} & \mathrm{~A}_{1} \\
\mathrm{~A}_{2} \\
\mathrm{~B}_{1} & \mathrm{~B}_{2}
\end{array}
$$

Four possible genotypes

## Two Point Linkage Analysis

$\Rightarrow$ Suppose $\mathrm{n}=80$ and $\mathrm{y}=16$ (recombinants)
$\Rightarrow$ Point estimate of $r_{A B}$ : $\quad \hat{r}_{A B}=\frac{y}{n}=0.20$
$\Rightarrow$ Confidence interval (95\%) of $r_{A B}$ :

$$
\mathrm{CI}\left(\mathrm{r}_{\mathrm{AB}} ; 95 \%\right)=[0.1189 ; 0.3044]
$$

## Recombination Rate and Linkage Map



Estimates of recombination rates between pairs of markers are used to order markers and to infer their genetic distances (centimorgans; $c M$ )

## Interference

$\Rightarrow$ Lack of independence in recombinations at different intervals on a chromosome


- If $r_{A B}$ and $r_{B C}$ are independent, the probability of double recombination is $\operatorname{Pr}(D R)=r_{A B} \times r_{B C}$
- If $r_{A B}$ and $r_{B C}$ are not independent, the above probability is given by $\operatorname{Pr}(D R)=c \times r_{A B} \times r_{B C}$ where $c$ is called "coefficient of coincidence"
- Interference: $I=1$ - c


## Map Distance

The map distance $\times$ between two loci, in Morgan units, is defined as the expected number of crossovers between them

Unlike recombination rates, map distances are additive

The relationship between map distances and recombination rates is discussed nex $\dagger$

## Map Functions

Map functions provide a transformation from map distance to recombination rate. Two approaches have been used to derive map functions:
In the first case, a probability model is assumed for the number of crossovers in an interval of length $x$. Then, recombination rate is calculated as the probability of an odd number of crossovers in the interval

In the second approach, recombination events in two adjacent intervals are modeled, allowing for interference
Examples of map functions: Haldane, Binomial, Kosambi

## Haldane Map Function

Haldane (1919) suggested that the number of crossovers in any chromosomal interval follows a Poisson distribution, with no interference
If $P_{k}$ is the probability of $k$ crossovers, then the probability of recombination ( $r$ ) is $r=P_{1}+P_{3}+P_{5}+\ldots$
This leads to the Haldane's map function:

$$
\mathrm{r}=\frac{1}{2}\left(1-\mathrm{e}^{-2 \mathrm{x}}\right)
$$

The inverse of which is: $x=\left\{\begin{array}{cl}-\frac{1}{2} \ln (1-2 r) & \text { if } 0 \leq r<0.5 \\ \infty, & \text { if } r=0.5\end{array}\right.$

## Haldane Map Function



## Multipoint Point Linkage Analysis

$\Rightarrow$ Instead of two loci, suppose there are M loci
$\Rightarrow$ If order is unknown: $M!/ 2$ alternatives


Goal: Determine the order of the loci and estimate recombination fractions between neighboring loci, i.e. "Map Construction"

## PAUSE

$\Rightarrow$ Genetic map construction: ordering loci (markers) and expressing their distances in terms of genetic distance (Morgans)
$\Rightarrow$ Experimental populations (e.g. BC, F2, RIL, etc.) use to estimate recombination rates
$\Rightarrow$ Same sort of strategy will be used for mapping QTLs (next)

Next PAUSE, slide 26

## Methods for Mapping QTL

$\Rightarrow$ Single Marker Analysis
$\Rightarrow$ Interval Mapping
$\Rightarrow$ Composite Interval Mapping
$\Rightarrow$ Bayesian Methods

## QTL Mapping

$\Rightarrow$ Methods based on linkage disequilibrium between markers and QTL (line crossing or segregating population)
$\Rightarrow$ Requirements:
(1) Linkage (marker) maps
(2) Variation for the quantitative trait


## QTL Mapping

Single Marker Analysis; Example with Backcross


BC



## QTL Mapping

Single Marker Analysis; Example with Backcross


## QTL Mapping

Single Marker Analysis; Example with Backcross


## Single Marker Analysis

os Simple example with candidate gene and $B C$ population



| Genotype | Obs. | Mean | STD |
| :---: | :---: | :---: | :---: |
| $\mathrm{Q}_{1} \mathrm{Q}_{1}$ | $n_{1}$ | $m_{1}$ | $s_{1}$ |
| $\mathrm{Q}_{1} \mathrm{Q}_{2}$ | $n_{2}$ | $m_{2}$ | $s_{2}$ |

$$
\begin{aligned}
& \Rightarrow \mathrm{H}_{0}: \delta=0 \text { vs } \mathrm{H}_{1}: \delta \neq 0 \\
& t=\frac{m_{1}-m_{2}}{\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim t_{\left(n_{1}+n_{2}-2\right)} \\
& \mathrm{s}^{2}=\frac{\left(\mathrm{n}_{1}-1\right) \mathrm{s}_{1}^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{s}_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}
\end{aligned}
$$

$$
C I[\delta ;(1-\alpha)]:\left(m_{2}-m_{1}\right) \pm t_{\left(n_{1}+n_{2}-2 ; \alpha / 2\right)} \sqrt{\frac{s^{2}}{n_{1}+n_{2}-2}}
$$

## Example with F2 Population



## Single Marker Analysis

$\hookleftarrow$ QTL and marker (M); recombination frequency $=r$

| Genotype | Freq. | $\mathrm{E}[\mathrm{y}]$ | Marker group | Freq. | $\mathrm{E}[\mathrm{y}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{1} \mathrm{M}_{1} \mathrm{Q}_{1} \mathrm{Q}_{1}$ | $(1-r) / 2$ | $\mu_{1}$ | $\mathrm{M}_{1} \mathrm{M}_{1}$ | $1 / 2$ | $(1-r) \mu_{1}+r \mu_{2}$ |
| $\mathrm{M}_{1} \mathrm{M}_{1} \mathrm{Q}_{1} \mathrm{Q}_{2}$ | $r / 2$ | $\mu_{2}$ |  |  |  |
| $\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{Q}_{1} \mathrm{Q}_{1}$ | $r / 2$ | $\mu_{1}$ | $\mathrm{M}_{1} \mathrm{M}_{2}$ | $1 / 2$ | $r \mu_{1}+(1-r) \mu_{2}$ |
| $\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{Q}_{1} \mathrm{Q}_{2}$ | $(1-r) / 2$ | $\mu_{2}$ |  |  |  |

$$
\begin{array}{l|ll}
\mathrm{M}_{1} & \mathrm{M}_{1} & \mathrm{M}_{1} \\
\mathrm{Q}_{1} & \mathrm{M}_{1} \\
\mathrm{M}_{2} \\
\hline
\end{array}
$$

$\mathrm{M}_{1}\left|\begin{array}{lll}\mathrm{M}_{1} & \mathrm{M}_{1}\left|\begin{array}{ll}\mathrm{M}_{1} & \mathrm{M}_{1}\end{array}\right| \mathrm{M}_{2} & \mathrm{M}_{1}\end{array}\right| \mathrm{M}_{2}$
$\mathrm{Q}_{1}\left|\mathrm{Q}_{1} \mathrm{Q}_{1}\right| \mathrm{Q}_{2} \quad \mathrm{Q}_{1}\left|\mathrm{Q}_{1} \mathrm{Q}_{1}\right| \mathrm{Q}_{2}$

Difference between marker group expected values

$$
\begin{aligned}
& r \mu_{1}+(1-r) \mu_{2}-(1-r) \mu_{1}-r \mu_{2} \\
& =(1-2 r)\left(\mu_{2}-\mu_{1}\right)=(1-2 r) \delta
\end{aligned}
$$

## Single Marker Analysis

## (EXAMPLE)

$\Rightarrow$ Brassica napus, Flowering time
$\Rightarrow 10$ Markers
(positions: $0,8.8,20.6,27.4,34.2,42.9,53.6,64.1,69.2,83.9 \mathrm{cM}$ )
$\Rightarrow 104$ individuals; Double haploid

| 3.0204 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -99 | -1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.9704 | -1 | -1 | -1 | -1 | -99 | -1 | -1 | -1 | -1 | 1 |
| 2.7408 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\vdots$ |
|  |  |  |  |  |  |  |  |  |  |  |
| 3.3673 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 |
| 3.0681 | 1 | 1 | 1 | 1 | -99 | 1 | 1 | 1 | -1 | -1 |
| 3.2771 | -1 | -99 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |

(Satagopan et al. Genetics 144: 805-816, 1996) ${ }^{24}$

| Chrom. Marker | $\mu$ | $\tau$ | LRT | F | p-value |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 3.184 | -0.202 | 9.379 | 9.624 | $0.002 * *$ |
| 1 | 2 | 3.204 | -0.230 | 11.378 | 11.789 | $0.001 * * *$ |
| 1 | 3 | 3.232 | -0.266 | 14.706 | 15.485 | $0.000 * * *$ |
| 1 | 4 | 3.229 | -0.259 | 13.885 | 14.562 | $0.000 * * *$ |
| 1 | 5 | 3.240 | -0.276 | 15.554 | 16.446 | $0.000 * * * *$ |
| 1 | 6 | 3.259 | -0.307 | 19.518 | 21.041 | $0.000 * * * *$ |
| 1 | 7 | 3.252 | -0.302 | 19.747 | 21.312 | $0.000 * * * *$ |
| 1 | 8 | 3.257 | -0.318 | 23.450 | 25.775 | $0.000 * * * *$ |
| 1 | 9 | 3.258 | -0.330 | 25.156 | 27.884 | $0.000 * * * *$ |
| 1 | 10 | 3.252 | -0.362 | 31.518 | 36.059 | $0.000 * * * *$ |

## PAUSE

$\Rightarrow$ QTL mapping: similar approach as with genetic map construction, i.e. linkage analysis between pairs of loci, but with missing genotypes in one of the loci (putative QTL)
$\Rightarrow$ Single marker analysis: confounding between position of putative QTL and its effect size

Next PAUSE, slide 39

## Interval Mapping

(Lander \& Botstein, 1989)

## Backcross





$$
q_{i}=\left\{\begin{array}{l}
0, \text { if qq } \\
1, \text { if Qq }
\end{array}\right.
$$

## Interval Mapping

$$
\begin{aligned}
& \text { If } \varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \rightarrow y_{i} \mid q_{i} \sim N\left(\mu+q_{i} \delta, \sigma^{2}\right) \\
& p\left(y_{i} \mid q_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu-q_{i} \delta\right)^{2}\right\}
\end{aligned}
$$

$L\left(\mu, \delta, \sigma^{2}, \lambda, \boldsymbol{q} \mid \boldsymbol{y}\right) \propto \prod_{i=1}^{N}\left[f\left(y_{i} \mid q_{i}=0\right) \operatorname{Pr}\left(q_{i}=0\right)+f\left(y_{i} \mid q_{i}=1\right) \operatorname{Pr}\left(q_{i}=1\right)\right]$
$L\left(\mu, \delta, \sigma^{2}, \lambda, \boldsymbol{q} \mid \boldsymbol{y}\right) \propto \prod_{i=1}^{N}\left[\frac{1}{\sqrt{\sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu\right)^{2}\right\} \operatorname{Pr}\left(q_{i}=0 \mid \lambda\right)\right.$
QTL position $\left.+\frac{1}{\sqrt{\sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu-\delta\right)^{2}\right\} \operatorname{Pr}\left(q_{i}=1 \mid \lambda\right)\right]$

## Interval Mapping

## $\operatorname{Pr}\left(q_{i} \mid \Lambda\right)$ is modeled in terms of recombinations between flanking markers and QTL:

| Marker Genotypes | $\operatorname{Pr}\left(q_{i}=Q Q\right)$ | $\operatorname{Pr}\left(q_{i}=Q q\right)$ |
| :---: | :---: | :---: |
| $M, N$ | $\left(1-r_{1}\right)\left(1-r_{2}\right) /(1-r)$ | $r_{1} r_{2} /(1-r)$ |
| $M, n$ | $\left(1-r_{1}\right) r_{2} / r$ | $r_{1}\left(1-r_{2}\right) / r$ |
| $m, N$ | $r_{1}\left(1-r_{2}\right) / r$ | $\left(1-r_{1}\right) r_{2} / r$ |
| $m, n$ | $r_{1} r_{2} /(1-r)$ | $\left(1-r_{1}\right)\left(1-r_{2}\right) /(1-r)$ |

Approximation:
(no double recombination)

| Markers | $\operatorname{Pr}\left(\mathrm{q}_{\mathrm{i}}=\mathrm{QQ}\right)$ | $\operatorname{Pr}\left(\mathrm{q}_{\mathrm{i}}=\mathrm{Qq}\right)$ |
| :---: | :---: | :---: |
| $\mathrm{M}, \mathrm{N}$ | 1 | 0 |
| $\mathrm{M}, \mathrm{n}$ | $(1-\mathrm{p})$ | p |
| $\mathrm{m}, \mathrm{N}$ | p | $(1-\mathrm{p})$ |
| $\mathrm{m}, \mathrm{n}$ | 0 | 1 |$\quad p=\frac{r_{1}}{r}$

## Interval Mapping

$\Rightarrow$ Likelihood estimation: EM algorithm to estimate parameters, including $\lambda$ (position of QTL)
$\Rightarrow$ Alternatively: Fix $\lambda$ (grid search) and evaluate LOD

$$
\mathrm{LOD}_{\lambda}=\log _{10}\left[\frac{\mathrm{~L}\left(\hat{\mu}, \hat{\delta}, \hat{\sigma}^{2}, \hat{\boldsymbol{q}} \mid \boldsymbol{y}\right)}{\mathrm{L}\left(\hat{\mu}, \hat{\sigma}^{2}, \hat{\boldsymbol{q}} \mid \boldsymbol{y}, \delta=0\right)}\right]
$$

$\sigma$ A QTL is detected whenever the LOD score gets larger than a threshold; estimated position of the QTL maximizes LOD

## Interval Mapping <br> REGRESSION APPROACH <br> (Haley \& Knott, 1992)

$$
\begin{aligned}
& \left.\begin{array}{cc}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
y_{1} \\
y_{2}
\end{array} \quad \begin{array}{ll}
p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{1}
\end{array}\right] \quad\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & p_{12} \\
1 & p_{22} \\
\vdots & \vdots \\
1 & p_{N 2}
\end{array}\right]\left[\begin{array}{c}
\mu \\
\delta
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{N}
\end{array}\right] \\
& \text { Residual Sum of Squares: } \\
& \mathrm{RSS}=\boldsymbol{y}^{\prime} \boldsymbol{y}-\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y} \\
& \text { Estimated position of the } \\
& \text { QTL minimizes RSS. }
\end{aligned}
$$

## QTL Mapping

Interval Mapping; Example with Backcross



## Interval Mapping

## $\Rightarrow$ COMMENTS:

(1) Backcross to both parental lines, or use F2 design, to estimate additive and dominance effects
(2) Significance threshold; multiple testing; false positives
(3) Confidence intervals
(4) Multiple QTL, ghost QTL

## Composite Interval Mapping

(Zeng, 1993, 1994)
$\Rightarrow$ Interval analysis adding marker cofactors (to account for the effects of unlinked QTLs); combination of single interval mapping and multiple linear regression


Flanking markers

## Composite Interval Mapping <br> (Zeng, 1993, 1994)

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
\xi \\
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
\end{gathered}
$$

Intercept
Dummy variables

Genetic effect of the putative QTL

$$
\boldsymbol{X}=\left[\begin{array}{ccccc}
1 & x_{1 j} & w_{11} & \cdots & w_{1 p} \\
1 & x_{2 j} & w_{21} & \cdots & w_{2 p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N j} & w_{N 1} & \cdots & w_{N p}
\end{array}\right]
$$

## Interval Mapping <br> (Example)

$\Rightarrow$ Brassica napus, Flowering time (Satagopan et al., 1996)


## Composite Interval Mapping (Example)

$\Rightarrow$ Brassica napus, Flowering time (Satagopan et al., 1996)


## EXPRESSION QTL (eQTL)



## PAUSE

$\Rightarrow$ Interval mapping and composite interval mapping
$\Rightarrow$ Single QTL and multiple QTL analysis
$\Rightarrow$ Permutation and bootstrap approaches
$\Rightarrow$ Crosses between outbred populations
$\Rightarrow$ Pleiotropy and epistatic effects
$\Rightarrow$ Limitations of linkage analysis
Next PAUSE, slide 59

# Genome-Wide Association 

## Analysis (GWAS)

Guilherme J. M. Rosa
University of Wisconsin-Madison

## Gene Mapping

$\Rightarrow$ Linkage Analysis (QTL Analysis)
$\Rightarrow$ Fine Mapping Strategies (LDLA approach, Selective Genotyping, etc.)
$\Rightarrow$ Association Analysis, Candidate Gene Approach
$\Rightarrow$ Genome-wide Association Analysis (GWAS)

## Descriptive Statistics \& Data Cleaning

$\Rightarrow$ Measurement/recording error
$\Rightarrow$ Genotyping error; Mendelian inconsistencies
$\Rightarrow$ Redundancies
$\Rightarrow$ Heterozygosity (H)
Polymorphism Information Content (PIC)
$\Rightarrow$ Minor Allele Frequency (MAF)
$\Rightarrow$ Hardy-Weinberg equilibrium

## Single Marker Regression

$\Rightarrow$ Series of models, one for each marker $j(j=1,2, \ldots, k)$ :

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{m} g_{\mathrm{j}}+\mathbf{e}
$$

where:
$y$ : vector of phenotypic observations ( $n$ individuals)
$\beta$ : environmental covariates, such as gender, age, etc.
$X$ : incidence matrix relating $\beta$ to $y$
$g_{j}$ : 'effect' of marker $j(j=1,2, \ldots, k)$
$m=\left[m_{1 j}, m_{2 j}, \ldots, m_{n j},\right]^{\top}$ : vector of genotypes for marker $j$, with $m_{i j}=-1,0$ or 1
e: residual vector

## Confounding



## Accounting for Population Stratification

$\Rightarrow$ Series of models, one for each marker $j(j=1,2, \ldots, k)$ :

$$
\mathbf{y}=\mathbf{X} \beta+\psi+\mathbf{m g}_{\mathrm{j}}+\mathbf{e}
$$

where: $\boldsymbol{\Psi}$ is a population structure term (e.g. PC built from genotypes)


## Mixed Model Approach

$\Rightarrow$ The model now is expressed as:

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{u}+\mathbf{m} g_{\mathrm{j}}+\mathbf{e}
$$

where all terms are as before, except that a polygenic (infinitesimal) term $\mathbf{u}$ is included to account for population sub-structure, with $\mathbf{u} \sim \mathrm{N}\left(\mathbf{O}, \mathrm{K} \sigma_{\mathbf{u}}{ }^{2}\right.$ ); $K$ is a kinship matrix built from pedigree information (e.g. A) or genotypic information (e.g. G)

Note: Efficient computation, e.g. EMMA and GEMMA

## Manhattan Plot with Marker Effects

Net_Merit


Chromosome

## Manhattan Plot with Significance Tests



## Statistical Power

$\Rightarrow$ Power is a function of:

- Significance level ( $\alpha$ )
- Sample size (n)
- Effect size ( $\delta$ ), expressed as a proportion of variance in measured phenotype, subsumes allele frequency, mode of inheritance, measurement reliability, degree of LD, and all other aspects of genetic model
- Test statistic (T)


## Hypothesis Testing

Significance

$\Rightarrow$ Standard approach:
(1) Specify an acceptable type I error rate ( $\alpha$ )
(2) Seek tests that minimize the type II error rate ( $\beta$ ), i.e., maximize power ( $1-\beta$ )

## The Multiple Testing Issue

Suppose you carry out 10 hypothesis tests at the $5 \%$ level (assume independent tests )
(The probability of declaring a particular test significant under its null hypothesis is 0.05
But the probability of declaring at least 1 of the 10 tests significant is 0.401 If you perform 20 hypothesis tests, this probability increases to 0.642...
$\Rightarrow$ Typically thousands of markers tested simultaneously
$\Rightarrow$ Example: Suppose trait with $\mathrm{H}^{2}=0$ and association analysis considering 100 markers and $\alpha=5 \%$ (for each test)

- Expected $100 \times 0.05=5$ false associations...


## The Multiple Testing Issue

|  | \# Ho not rejected | $\# H_{0}$ rejected |
| :---: | :---: | :---: |
| \# true $H_{0}$ | $A$ | $B$ |
| \# false $H_{0}$ | $C$ | $D$ |

Observable quantity ( n o rejected $\mathrm{H}_{0}$ ) known quantity (number of tests)

## The Multiple Testing Issue

- Family-wise error rate (FWER):

$$
\text { FWER }=\operatorname{Pr}(\mathrm{B} \geq 1)=1-\operatorname{Pr}(\mathrm{B}=0)
$$

- False discovery rate (FDR):

$$
\operatorname{FDR}=\underbrace{\mathrm{FDR}(\mathrm{pFDR}) ; \text { Storey }(2002)}_{\text {Positive }} \mathrm{E}[\mathrm{~B} / \mathrm{R} \mid \mathrm{R}>0] \quad \operatorname{Pr}(\mathrm{R}>0)
$$

$\Rightarrow$ Controlling the FWER at level $\alpha$ :

$$
\operatorname{Pr}[B \geq 1]
$$

- Bonferroni: Rejects any hypothesis $H_{j}$ with $p$-value less than or equal to $\alpha / m$, i.e.:

$$
\widetilde{\mathrm{p}}_{\mathrm{j}}=\min \left[\mathrm{mp}_{\mathrm{i}}, 1\right]
$$

adjusted p -value
unadjusted p -value

- Sidák: Rejects any hypothesis $H_{j}$ with $p$-value less than or equal to $1-(1-\alpha)^{1 / g}$, i.e.:

$$
\widetilde{\mathrm{p}}_{\mathrm{j}}=\min \left[1-\left(1-\mathrm{p}_{\mathrm{j}}\right)^{\mathrm{g}}, 1\right]
$$

- Very similar to Bonferroni adjustment.
- Both are too conservative...


## $\Rightarrow$ Controlling the FDR:

Definition: $\mathrm{FDR}=\mathrm{E}[\mathrm{B} / \mathrm{R} \mid \mathrm{R}>0] \mathrm{Pr}[\mathrm{R}>0$; expected proportion of false positive findings among all rejected hypotheses times the probabNity of making at least one rejection.

Positive FDR (pFDR); Storey (2002)

- Benjamini and Hochberg (1995) algorithm:
- Fix a value $\alpha^{*} \in(0,1)$
- Let $\mathrm{p}_{(1)}, \mathrm{p}_{(2)}, \ldots, \mathrm{p}_{(\mathrm{m})}$ be the ordered observed p -values
- Let $\hat{k}=\max \left\{k: p_{(k)} \leq \alpha^{*}(k / m)\right\}$
(If $\mathrm{p}_{(k)}>\alpha^{*}(\mathrm{k} / \mathrm{m})$ for all $\mathrm{k}=1, \ldots, \mathrm{~m}$, let $\hat{\mathrm{k}}=0$ )
- If $\hat{k} \geq 1$, reject the hypotheses corresponding to $p_{(1)}, p_{(2)}, \ldots, p_{\hat{k})}$
- If $\hat{\mathrm{k}}=1$, do not reject any hypothesis


## Distribution of $P$-values (Histogram)

Under $\mathrm{H}_{0}$


Mixture of $H_{0}$ and $H_{a}$


## Distribution of $P$-values (Q-Q Plot)

Under $\mathrm{H}_{0}$


Quantile

Mixture of $\mathrm{H}_{0}$ and


Quantile

## Replication

$\Rightarrow$ Confounding factors, population structure and stratification, Type I error, etc.
$\Rightarrow$ Biased estimates of gene effects due to significance threshold
$\Rightarrow$ Multiple genes, with modest individual effects
$\Rightarrow$ Gene $\times$ gene and gene $\times$ environment interactions
$\Rightarrow$ Inter population heterogeneity
$\Rightarrow$ Low statistical power
$\Rightarrow$ Validation of association findings
$\Rightarrow$ But what constitutes a replication?


## The case of the missing heritability

(Maher, B. Nature 456: 18-21, 2008)

