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Basic model of Quantitative Genetics

Phenotypic value -- we will occasionally
also use z for this value

\

Basic model: P=G + E_ Environmental value

y

Genotypic value

G = average phenotypic value for that genotype
if we are able to replicate it over the universe
of environmental values, G = E[P]

Hence, genotypic values are functions of the
environments experienced.



Basic model of Quantitative Genetics
Basic model: P=G + E

G = average phenotypic value for that genotype
if we are able to replicate it over the universe
of environmental values, G = E[P]

G = average value of an inbred line over a series
of environments

G x E interaction --- The performance of a particular
genotype in a particular environment differs from
the sum of the average performance of that
genotype over all environments and the average
performance of that environment over all genotypes.
Basic model now becomes P =G + E + GE
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Same @G, Var(P) = Var(E)
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Each sample (P4, P,, Fy) has same G, all variation in
P is due to variation in E
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Johannsen (1903) bean data

e Johannsen had a series of fully inbred
(= pure) lines.
e There was a consistent between-line
difference in the mean bean size
— Differences in G across lines
 However, within a given line, size of
parental seed independent of size of
offspring speed

— No variation in G within a line
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Figure 1.4 Mean offspring seed size as a function of parental seed size for some
of Johannsen’s pure lines. The data for the different lines are denoted by different
symbols. If there is a heritable component to seed weight within a pure line, a line
with positive slope is expected — larger parents should yield larger offspring.
However, within each line, mean offspring size is essentially independent of the
parental phenotype. (Data from Johannsen 1903.)



KEY

e Relatives share alleles, and this idea was
exploited by R. A. Fisher (1918)

e |f a trait has a genetic basis, the more genes

that two individuals share (i.e., the closer the
degree of relationship), the more similar they
should be in trait value

— The covariance in phenotypic trait values
should be an increasing function of the
amount of relatedness

—E.g., Identical twins (clone) more
similar than two non-identical sibs




The transmission of genotypes versus
alleles

e With fully inbred lines, offspring have the same genotype as
their parent, and hence the entire parental genotypic value G is
passed along

— Hence, favorable interactions between alleles (such as with
dominance) are not lost by randomization under random mating

but rather passed along.

* When offspring are generated by crossing (or random mating),
each parent contributes a single allele at each locus to its
offspring, and hence only passes along a PART of its genotypic
value

e This part is determined by the average effect of the allele

— Downside is that favorable interaction between alleles are NOT
passed along to their offspring in a diploid (but, as we will see, are
in an autoteraploid)
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e Think about the implications of the last slide

e CLONES pass on their entire genotype
(genotypic value G) to their offspring

e Sexual progeny pass on SINGLE alleles at
each locus underlying the trait
— Leads to the importance concepts of
e Average effects of an allele

e The Breeding value of an individual
e The additive genetic variance

e \\Ve now address these in turn
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Genotypic values

It will prove very useful to decompose the genotypic
value into the difference between homozygotes (2a) and

a measure of dominance (d or k = d/a)

aa Aa AA
|

C-a C+d C+a

Note that the constant C is the average value of
the two homozygotes.

If no dominance, d = 0, as heterozygote value equals
the average of the two parents. Can also write d = ka,

so that G(Aa) = C + ak
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Computing a and d

Suppose a major locus influences plant height, with
the following values

Genotype aa Aa AA

Trait value 10 15 16

C = [G(AA) + G(aa)]/2 = (16+10)/2 =13
a = [G(AA) - G(aa)]/2 = (16-10)/2 = 3
d = G(Aa)] - [G(AA) + G(aa)]/2

= G(Aa)] -C=15-13=2
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Population means: Random mating

Let p = freq(A), g = 1-p = freg(a). Assuming
random-mating (Hardy-Weinberg frequencies),

Genotype aa Aa AA
Value C-a C+d C+a
Frequency ok 2p9 oF

Mean = g%C - a) + 2pq(C + d) + pC + a)

Hrv = C + a(p-q) + d(2pg)
A ...
Contributio..n from Con’;.ribution from

homozygotes heterozygotes



Population means: Inbred cross F,

Suppose two inbred lines are crossed. It A is fixed
in one population and a in the other, thenp=qg=1/2

Genotype aa Aa AA
Value C-a C+d C+a
Frequency 1/4 1/2 174

Mean = (1/4)(C - a) + (1/2)(C + d) + (1/4)( C + a)
Uy =C + d/2

Note that C is the average of the two parental lines, so when d
> 0, F, exceeds this. Note also that the F; exceeds
this average by d, so only half of this passed onto F,. 15



The average effect of an allele

e The average effect a, of an allele A is defined by the
difference between offspring that get allele A and a
random offspring.

— o, = mean(offspring value given parent transmits
A) - mean(all offspring)
— Similar definition for a,.
* Note that while C, a, and d (the genotypic

parameters) do not change with allele frequency, a,

is clearly a function of the frequencies of alleles with
which allele x combines.
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Random mating

Consider the average effect of allele A when a parent is randomly-
mated to another individual from its population

Suppose parent contributes A

Allele from other Probability | Genotype Value
parent

A > AA C+a

a g Aa C+d

Mean(A transmitted) = p(C + a) + gq(C + d) = C + pa + qd
aa = Mean(A transmitted) - u = g[a + d(g-p)]
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Random mating

Now suppose parent contributes a

Allele from other Probability | Genotype Value
parent

A o Aa C+d

a q aa C-a

Mean(a transmitted) = p(C + d) + gq(C-a) = C - ga + pd

a, = Mean(a transmitted) - u = -p[a + d(g-p)]
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o, the average effect of an
allelic substitution

® o = apu-a,isthe average effect of an allelic
substitution, the change in mean trait value when an
a allele in a random individual is replaced by an A
allele

- o = a + d(g-p). Note that
e ap=qa anda, =-po.
* E(ay) = paa + qo, = pga - gpa = 0,
e The average effect of a random allele is zero,

hence average effects are deviations from the
mean
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Key ideas so far

e Key concept from the last few slides

— The average effect of an allele

* For a given population, how much of a
deviation from the mean in a trait is generated
by getting the target allele

* Property of a particular trait in a particular
population.

— The average effect of the same allele will change
over traits

— The average effect of the same allele will change
over background populations.

— The average effects of a substitution
(swapping one allele for another)
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Dominance deviations

e Fisher (1918) decomposed the contribution
to the genotypic value from a single locus as
Gj=p+ o+ a+ 9

— Here, p is the mean (a function of p)
— a4 are the average effects

— Hence, p + o, + o, is the predicted genotypic
value given the average effect (over all

genotypes) of alleles i and j.

— The dominance deviation associated with
genotype G;j is the difference between its true
value and its value predicted from the sum of
average effects (essentially a residual)

21



Fisher’s (1918) Decomposition of G

One of Fisher’s key insights was that the genotypic value
consists of a fraction that can be passed from parent to
offspring and a fraction that cannot.

In particular, under sexual reproduction, parents only
pass along SINGLE ALLELES to their offspring

Consider the genotypic value Gj resulting from an

AlAJ indiVidual

Gij =~ HG

0¥

a.

J

- 0

I

Average contribution to genotypic value for allele i

Mean value pg = 2 Gij Freq(AiAj)

22



GIJ=MG+(XI+(XJ+6IJ

Since parents pass along single alleles to their
offspring, the o, (the average effect of allele i)
represent these contributions

The average effect for an allele is POPULATION-
SPECIFIC, as it depends on the types and frequencies
of alleles that it pairs with

The genotypic value predicted from the individual
allelic effects is thus G _ n n
j =~ Mg ™ O T Q

23



GIJ=MG+(XI+(XJ+6IJ

The genotypic value predicted from the individual
allelic effects is thus G _ n n
j =~ Mg ™ O T O

Dominance deviations --- the difference (for genotype
AiA) between the genotypic value predicted from the
two single alleles and the actual genotypic value,

Gij - é\lj — 6']

24
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Fisher's decomposition is a Regression

Predicted value ,
Residual error

A notational change clearly shows this is a regression,

Gij = Ug + 2(11 +((12 — (11) N + 8IJ

Independent (predictor) variable N = # of A, alleles

Note that the slope a, - o1 = a, the average effect
of an allelic substitution

26



Gij = Ug + 2(11 + ((XZ—OC'|) N + 6IJ

Intercept Regression slope
20 forN =0, e.g, A;A,
200 + (g —a1))N =< a1 +ap forN =1, e.g, A1 A,
2009 forN =2, e.g, AsA>

A key point is that the average effects change with
allele frequencies. Indeed, if overdominance is present
they can change sign with allele frequencies.
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Allele A, common, o > o,

The size of the circle denotes the weight associated with
that genotype. While the genotypic values do not change,

their frequencies (and hence weights) do.
28



Allele Ay common, o, > a;

Gy Slope = a; - a;

G » Gy

Again, same genotypic values as previous slide, but
different weights, and hence a different slope

(here a change in sign!)
29



Both A; and A, frequent, oy = 0, =0

‘ Gy

@ G

N

0 1 2

With these allele frequencies, both alleles have the same
mean value when transmitted, so that all parents have the
same average offspring value -- no response to selection
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Key idea from last secetion

e The |last several slides were the technical
details, so don't be too concerned (for now).

* We now examine the key concepts (related
to these developments)

— Average effects
— Breeding (or additive-genetic) values

— Genetic variances (such as the additive and
dominance variance)

— These are the quantities we work with in
QG.
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Average Effects and Additive Genetic Values

The a values are the average effects of an allele

A key concept is the Additive Genetic Value (A) of
an individual

A(Gij) = o; + O

J

A = Z (agk) + oe(jk))
k=1

a,& = effect of allele i at locus k

A is called the Breeding value or the Additive genetic

value
32



T

A = (agk)—i—a(,k))
k=1 J

Why all the fuss over A?

Suppose pollen parent has A = 10 and seed parent has
A = -2 for plant height

Expected average offspring height is (10 - 2)/2
= 4 units above the population mean. Offspring A =
average of parental A's

KEY: parents only pass single alleles to their oftspring.

Hence, they only pass along the A part of their genotypic

value G
33



Genetic Variances

Writing the genotypic value as

Gij=MG+( +OL)+6|J

The genetic variance can be written as

:zn:a o +a5") +Za 55
k=1

k=1
This follows since
0?(G) = 0% (g + (o + o) + 8;5) = o%(a; + ;) + 0%(d;5)
As Cov(o,0) = 0
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Key concepts (so far)

a; = average effect of allele i

— Property of a single allele in a particular population
(depends on genetic background)

A = Additive Genetic Value (A)

— A = sum (over all loci) of average effects

— Fraction of G that parents pass along to their offspring

— Property of an Individual in a particular population
Var(A) = additive genetic variance

— Variance in additive genetic values

— Property of a population

Can estimate A or Var(A) without knowing any of the
underlying genetical detail (forthcoming)
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Questions

* What is the expected breeding value
for a random individual from a
population?

— Hint: A is a deviation from the mean

® You cross a single sire (male) to a large
number of unrelated dams (females),
with one daughter per cross
— These are a collection of half-sibs

— Suppose the mean milk yield of daughters
from a given sire has a value of 10 units
above the mean. What is the sire’'s BV?

36



 The BV for a randomly-chosen
individual has an expected value of
zero

* The expected offspring mean is

— Overall mean + (1/2) BV(sire) + (1/2)
BV(dam)

— Hence, the expected mean with random
dams is overall mean + (1/2) BV(Sire) + 0

— Hence, if offspring are 10 units above the
mean, then (1/2) BV(sire) = 10, or sire BV is
20.
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Genetic Variances

02(G’ Z(f (k +a(k) +Za é(k)

k=1

Additive Genetic Variance
(or simply Additive Variance)

Dominance Genetic Variance
(or simply dominance variance)

Hence, total genetic variance = additive + dominance
variances, g

c& = O + Of

38



Q,Q; Q4 Q,Q,
04 =2E[o’] = 22@22])2'. 0 a(1+k) 2a

Since E[a] = 0,
Var(a) = E[(a -p,)4] = E[o?]

One locus, 2 alleles: 02 = 2,10 [1+ K (py— ) 2

Dominance alters
additive variance

When dominance present, Additive variance is an
asymmetric function of allele frequencies

39



Dominance variance Q,Q; Q,Q, Q,Q,
0 a(1+k) 23

oh= E[8*|=)_) &np

i=1 j=1

Equals zero if k= 0

A
One locus, 2 alleles: a% = (2p1 po ak)2

This is a symmetric function of
allele frequencies

Can also be expressed in terms of d = ak
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Additive variance, V5, with no dominance (k = O)
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Epistasis

Gz‘jkl ke + (o + Qi+ O +ay) + (‘519 + 5k3)
+ (Qik + aail + aajk + aajl)
+ (adikt + adjkl + adkij + adlij)
+ (00;;x1)
=uc+A+D+AA+ AD+ DD

These components are defined to be uncorrelated,
(or orthogonal), so that

04 =05 +0% +0%4+004p +0%5p
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Gijkl = KG + (Oéi + Q. + QO +al) + (5ij + 5kj)
+ (aik + aail + aagk + o)
+ (adikt + adjki + abkij + adiij)
+ (00; k1)
= pc+ A+ D+ AA+ AD + DD

Additive x Additive interactions -- aa,, AA
interactions between a single allele
at one locus with a single allele at another

Additive x Dominance interactions -- ad, AD
interactions between an allele at one

locus with the genotype at another, e.qg.
allele A; and genotype By,

Dominance x dominance interaction --- 83, DD

the interaction between the dominance

deviation at one locus with the dominance

deviation at another. u



