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Heritability

e Central concept in quantitative genetics

* Fraction of phenotypic variance due to
additive genetic values (Breeding values)
— h2 = V,/Vp
— This is called the narrow-sense heritability

— Phenotypes (and hence Vp) can be directly
measured

— Breeding values (and hence V,) must be
estimated

® Estimates of V, require known collections of
relatives



Broad-sense heritability

e Narrow-sense heritability h? applies when
outcrossing,
— h2 = Var(A)/Var(P)
— = the fraction of all trait variation due to variation

in breeding (additive genetic) values

e Broad-sense heritability H? applies when
selecting among a series of pure lines
— H? = Var(G)/Var(P)

— = the fraction of all trait variation due to
variation in Genotypic values



Detining H? for Plant Populations

Plant breeders often do not measure individual plants
(especially with pure lines), but instead often measure a plot or
a block of individuals.

This replication can result in inconsistent measures of H? even for
otherwise identical populations.

Let z;y denote the value of the I|-th replicate in plot k of genotype i
in environment j. We can decompose this value as

Ziy = Gy + B+ GE; + py + e
/ h
deviations of individual

Effect of the k-th plot plants within this plot
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Suppose we replicate the genotype over e environments,
with r plots (replicates) per environment, and n individuals

per plot.

It we set our unit of measurement as the average over
all plots, the phenotypic variance for the mean of line
| becomes

2 2 2
2, = 2 2 OGE Gp Oe
c(z)= 06+ o + + — +
e er ern

Thus, Vp, and H? = V5/Vp, depend on our choice of e, r, and n

In order to compare board-sense heritabilities we need to use a
consistent design (same values of e, r, and n)



Key observations

* The amount of phenotypic resemblance
among relatives for the trait provides an
indication of the amount of genetic variation

for the trait.

 |f trait variation has a significant genetic
basis, the closer the relatives, the more
similar their appearance

* The covariance between the phenotypic
value of relatives measures the strength of
this similarity, with larger Cov = more
similarity



Question

— In some lines, a small fraction of chicken eggs are
laid without a hard shell, but rather are coated
with a soft membrane, and hence quickly broken.

— A poultry scientist trying to improve this trait
might turn to environment change (e.g., add
more calcium to their diet) or genetic
Improvement.

— For this trait, h? is very small, while H? is close to
one. What do these observations suggest in
terms of potential improvement strategies?



e H?close to one suggests most of the
variation in this trait is genetic, so that
environmental improvement (changes in
management, such as using dietary
supplements) is unlikely to impact the trait.

e h? close to zero suggests that there is little
ADDITIVE variation, therefore only breeding
schemes that exploit nonadditive variation

(dominance, epitasis) are likely to make an
Improvement.



Genetic Covariance between relatives

Sharing alleles means having alleles that are identical by
descent (IBD): both copies can be traced back to a single
copy In a recent common ancestor.

Genetic covariances arise because two related
individuals are more likely to share alleles than
are two unrelated individuals.




(@o] (o0 N\

No alleles IBD One allele IBD

Both alleles IBD
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Resemblance between relatives and
variance components

* The phenotypic covariance between relatives
can be expressed in terms of genetic
variance components
— Cov(z,,z,) = ay, Va + by Vp.

— The weights a and b depend on the nature of the
relatives x and y, and are measures of how often
they are expected to share alleles identical by
descent

— These are critical in predicting selection response
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Parent-offspring genetic covariance

Cov(G,, G,) --- Parents and offspring share
EXACTLY one allele IBD

Denote this common allele by A

Gp = Ap+ Dp = (@ (@ Dix
Go= Ao+ Do D 1y
™~

IBD allele Non-IBD alleles
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Cov(Go,Gp) = Cov(ay + oz + D1z, a1 + ay + D1y

= Cov(a1, 1) +C ay) +C D1y)
+Co a)+Co o) + , D1y)
+ z, 1) + 1z,0y) + MDW)

All blue covariance terms are zero.

» By construction, a and D are uncorrelated

» By construction, a from non-IBD alleles are
uncorrelated

» By construction, D values are uncorrelated unless
both alleles are IBD
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Con \ {O if x £y, i.e., not IBD
ov(g,0y) = . .
7 Var(A)/2 ifx =y, ie.,IBD

Var(A) = Var(a; + ay) = 2Var(a,)

so that
Var(ay) =Cov(ag,aq) = Var(A)/2

Hence, relatives sharing one allele IBD have a
genetic covariance of Var(A)/2

The resulting parent-offspring genetic covariance
becomes Cov(G,,G,) = Var(A)/2
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Half-sibs

/QQ

Each sib gets exactly one Q 1 Q 2
allele from common father,

different alleles from the

different mothers

The half-sibs share no alleles IBD
* occurs with probability 1/2

Hence, the genetic covariance of half-sibs is just
(1/2)Var(A)/2 = Var(A)/4
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Full-sibs

Father Mother

Each sib gets
exact one allele
from each parent

Sib 1 Sib 2

Prob(Allele from father IBD) = 1/2. Given the allele in parent
one, prob = 1/2 that sib 2 gets same allele

Prob(Allele from father not IBD) = 1/2. Given the allele in
parent one, prob = 1/2 that sib 2 gets different allele 16



Full-sibs

Father Mother

Each sib gets
exact one allele
from each parent

—~
)

Paternal allele not IBD [ Prob = 1/2 ]
Maternal allele not IBD [ Prob = 1/2 ]
Prob(sibs share 0 alleles IBD) = 1/2*1/2 = 1/4
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Each sib gets
exact one allele
from each parent

¢

Paternal allele IBD [ Prob =1/2]
Maternal allele IBD [ Prob = 1/2]
Prob(sibs share 2 alleles IBD) = 1/2*1/2 = 1/4

Prob(share 1 allele IBD) = 1-Pr(0) - Pr(2) = 1/2
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Resulting Genetic Covariance between full-sibs

| BD alleles

0
1

2

Probability Contr ibution
1/4 0
1/2 Var(A)/2
1/4 Var(A) + Var( D)

Cov(Full-sibs) = Var(A)/2 + Var(D)/4
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Question

— Suppose the parent-ottspring covariance
for a traitis 12. What can you say about
the additive and dominance variances?

— Suppose that the full-sib covariance for the
same trait is 20. What can you say now
about the dominance variance?

20



e Cov(P, O) = Var(A)/2, hence
— Var(A)/2 = 12, or Var(A) = 24
— Can not say anything about dominance variance
e Cov(full sibs) = Var(A)/2 + Var(D)/4,
— Hence 24/2 + Var(D)/4 = 20, or Var(D)/4 = 8, or Var(D)
= 32
e Complication: Esp. in animals, full sibs can share
a common family environmental variance,

Var(Em), such as a common maternal effect.
Hence,

— Cov(full sibs) = Var(A)/2 + Var(D)/4 + Var(Em)
— Thus, all that we can say is that Var(D)/4 + Var(Em) = 8

— Hence, can only say that Var(Em) < 8 or Var(D) < 32 N




Genetic Covariances for General Relatives

Let r = (1/2)Prob(1 allele IBD) + Prob(2 alleles IBD)
Let u = Prob(both alleles IBD)

General genetic covariance between relatives
Cov(@) = rVar(A) + uVar(D)

When epistasis is present, additional terms appear
r’Var(AA) + ruVar(AD) + u?Var(DD) + r3Var(AAA) +
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More general relationships

e To obtain the expected covariance for any
set of relatives, we normally need only
compute r and u for that set of relatives

e \With general inbreeding, becomes more
complex (as three other terms, in addition to
V and Vp arise)

e \With crosses involving inbred and/or related

parents, values for r and u are different from
those presented above.
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Coefticients of Coancestry

Suppose we pick a single allele each at random from
two relatives. The probability that these are IBD is
called 0O, the coefficient of coancestry. In terms of our
previous notation, 20 = r = the coeff on Var(A)

®,, denotes the coefficient for relatives x and y

Consider an offspring z from a (hypothetical) cross

of x andy. ©,, = 1, the inbreeding coefficient of z.

Why? Because the offspring of x and y each get a
randomly-chosen allele from each parent. The probability
f, that both alleles are IBD (the probability of inbreeding)
is thus just Q.
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0 and the coefficient on V,

e The coefficient on the additive variance for
the relatives x and y is just 20,,.

e To see this,
— let AA; denote the two alleles in x and A/A those
Iny.
- Cov(breedlng values) = Pr(A ibd A,) cov(a,, o) +
Pr(A; ibd A)) cov(oy,a) + Pr(A; ibd Ay) cov(ay, oy) +
Pr(A; ibd A) cov(ay,a) =4 0, Var(a)

— Slnce Var(A) = 2Var(a), Cov = 2 6, Var(A)
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®,,: The Coancestry of an individual
with itselt

Selt x, what is the inbreeding coefficient of its offspring?
To compute 0O,,, denote the two alleles in x by A; and A,

Draw A, Draw A,
Draw A, IBD fy

Draw A, f, IBD

Hence, for a non-inbred individual, ©,, = 2/4 = 1/2

If x is inbred, f, = prob A; and A, IBD, O = (14 1,)/2
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Example

A B C D
\E/ \/

F
\G/

Individual A | B C |D
F. 1 0 0O |1
O.=(1+F)2|111/2]1/2|1

Consider the following pedigree
Suppose A and D are fully-inbred,
and related, lines with 6,5 = 0.5.
Further, B and C are unrelated and
outcrossed individuals

27



Question

— Suppose Sam’s COC is %.

e What is Sam'’s level of inbreeding?

e [f we selt Sam, what is the level of inbreeding
in Sam’s offspring?

28



® 3 =(1/2) (1+fc,..),
—or 6/4 = 1+1g,,
— Orfe,n,=6/4-1= V>

¢ The COC between two individuals in
the level of inbreeding in the oftspring.
Hence, we self Sam, the inbreeding in

the offspring is simply Sam’s COC or
3/4

29



The Parent-oftspring Coancestry

Let Ay, A, denote the two alleles in the offspring, where
A, is the allele from the nonfocal parent (NP), while
A1, A, are the two alleles in the focal parent (P)

Oftspring
Draw A, Draw A,
+ Draw A1 |BD ®P NP
S \
= . Prob(A,,A o), the alleles
© <
o~ Draw AIO f ® from the two parents are IBD,
5 P PNP
......... i.e., offspring is inbred
A, A, IDB if

parent is inbred

For a non-inbred individual, ®py = 1/4

General: Opp = (1 + fp + 20p\p)/4=(1 + fp + 2f.)/4 | 30




From before

A B C D Opn= Op = 1: Onn = O = 1/2:
\E/ \F/ eig _ 1[)/[;’ BB CC

\ / Oas = Oac = 0gc=0gp= Ocp=0
G

Consider A - E (inbred parent - offspring)
Oae = (1+14)/4 = (1+1)/4 = 1/2. Same value for Op¢

Consider B - E (outbred parent - offspring)
Oge = (1+15)/4 = (1+0)/4 = 1/4. Same value for O

Consider E - G (outbred parent - offspring)
O = (1+1)/4 = (1+0)/4 = 1/4. Same value for O
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From before

A B C D g 005=1: 0= 0cc=1/2

N\ Bap = 1/2,
E F

\ / Oas = Oac = 0gc=0gp= Ocp=0
G

What about Ogr ?

The randomly-chosen allele from E has equal chance
of being from A or B. Likewise for F (from C or D)

Of these four possible combinations (A&C, A&D, B&C, B&D), only
an allele from A and an allele from D have a chance of being
IBD, which is 0,5 = 1/2.

Hence, O = 04p/4 = 1/8
32



Full sibs (x and y) from parents m and t

®=1/8+1/8=1/4 ®=(2 + f,+ 1)/8

1/2 1+1)/2
1/2 / (1+£,)/2 e

C D C D
2T

(172)(1/2)(1/2) (1/2)(1/2)(1/2) [(1 +f.,)/2] (1/2)(1/2) [(1 +5)/2] (1/2)(1/2)

Unrelated, non-inbred Unrelated, inbred
parents parents
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Full sibs (x and y) from parents m and t

®mf
N

@
|
.

® . (1/2)(1/2)

|
O

®mf

X

O O

mf/4

Parents inbred & related.
Two additional paths to add
to @ =(2+f,,+1)/8

This gives

O =

2+t +f+4 © 1/8
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Full sibs (x and y) from parents m and t

Q,, = (2 +f,+ %+ 40,)/8

\/ VA

sf df /m f = ®sm,dm
X y

Putting all this together gives

O, =

y (2 + ®sm,dm + ®sf,df + 4®mf)/8
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Example

From before

A B C D =001 05=0cc= 172
\ / \ / Oro= 1/2, 0cr = 1/8,
E F Oag = Oac = Opc=0gp= Ocp =0
\ v
S'],SZ

®xy = (2 + ®AB + ®CD + 4®E|:)/8

Os15o=2+0+0+4[1/8])/8=(4+ 1)/16 = 5/16
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Half-sibs

B A C A is the common parent
NN/
E F
e Using the same arguments as above,
Ocr = (Ban + Oag + Oac + 05c)/4
— ([1 + fA]/Z + GAB + OAC + GBC)/4

Hence, it B and C unrelated,
QEF — (1 + fA)/S
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Computing 0,, -- The Recursive Methoad

There is a simple recursive method for generating the elements A;
= 2 0 of a relationship matrix (used for BLUP selection). For ease of
reading, we use the notation A(i,j) = A;

Basic idea is that the founding individuals of the pedigree are
assumed to be unrelated and not inbred (although this can also
be accommodated). These founders are assigned values of A, i)
= 1.

Likewise, any unknown parent of any future individual is assumed to be
unrelated to all others in the pedigree and not inbred, and they are
also assigned a value of A(,i) = 1.

Let S; and D; denote the sire and dam (father and mother) of individual
i. For this offspring A(i,i) = 1 + A(S;, D;)/2

Al = AG,i) = [AG,S) + AGDIV2 = [AG,S) + AG,D)I2

The recursive (or tabular) method starts with the founding parents and

then proceeds down the pedigree in a recursive fashion to fill out A for
the desired pedigree.
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Example
1

/ LorcRagan AnCeStOrS are 1 & 2

\
Champion of 4 Buchsda of 5 A(1 ,1) = A(2,2) =1
Mistletoe Englond The Czar A(1 12) — O
b

6© Grand Duke

Mimulus f Glost

imulu of Gloster 3, 4, 5,88” have
\ / unknown parents

Prmcess (Onl aSin |e
9 Royal Duke ROYG, , X

arrow to them)
of Gloster
\ ‘ Roan ‘ /

1 1 Gauntlet

3: S3=1, D3 =Unknown, A@3,3)=1+ A(S;,D3)/2 =1+ A(1,unk)/2 = 1

A(1,3) = [A(1,S3) + A(1,D3)1/2 = [A(1,1) + A(T,unk)]/2 = 1/2.

Note also that A(1,4) = A(1,5) = 1/2, A4,4) = A(5,5) = 1.

A(3,4) = [AQB,S,) + A3,Dy) 172 = [AGB,1) + AB,unk)]/2 = (1/2+0)/2 = 1/4.

Same for A(3,5) = 1/4. 2 is unrelated to 3, 4, 5, giving A(2,3) = A(2,4) = A2,5) = 0.
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6

/

vI

Lord Raglan

Champion of
@ England
Grand Duke
Mimulus of Gloster
9 Royal Duke
of Gloster \

6: Sé = 2, Dé = 3.
AG,T) = [A( S +
Al6,2) = [A(2, Sy) +
A(6,3) = [AB. S,) +
Al6,4) = [A4, Sy +
A(6,5) = [A(5, Sy) +
/: S7 = 2, D7 =4,
Al6,7) =[A6, S7) +
8: Sg = 5, D8 = un
A6,8) = [A(6, Sg) +

9: So=7,D

> >J>J>J>J>k
O\

Q

GRONS

6) =

, D
, D
, D
, D
, D
/)

D

J>
o~ .

(6,

A6,

6)
6) )
/2 = [A(3,2)
6) )
6)

/2 =

\
T
The Czar

Gloster, 9th

Prmcess
Roya!

Roan
Gauntlet

‘11

—1+AS, D)2=1+A23)/2="1
/2 = [A(1,2) + A(1,3)1/2 = [0 + 1/2)/2 = 1/4
/2 = [AQR.2) + AR,3)1/2 = [1+ 0)/2 = 1/2
+ABIN2=[0+1/2=1/2
/2 = [A(4,2) + A4,3))/2 = [0 + 1/4)/2 = 1/8

/2 = [A(5,2) + A(5,3)]/2 = (0+1/4)/2 = 1/8

—1+AS, D)2=1+AR24/2=1+0/2="1
1/2 =

[A(6, 2) + A6, 4)]/12 =(1/2 +1/8)/2 = 5/16

7)
k. AB8,8) =1+ ASg Dg)l/2 =1+ AB,unk)/2 = 1.
Del/2 = [A®6, 5) + A6, unk))/2 = (1/8)/2 = 1/16

o=6. A9,9) =1+ ASy, Do)/2 =1+ A6,7)/2 =1 +5/32 = 1.156 < inbred!

b =

= W

(g |

Tl Tl Tl OO e

b B B

oo O == O N

3 4 5
1/2 1/2 1/2
0 0 0
1 1/4 1/4

/4 1 1/4
/4 1/4 1
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Actual relatedness versus expected values from
pedigrees

Values for the coefficient of coancestry (6) and the
coefticient of fraternity (A) obtained from pedigrees
are expected values. Due to random segregation of
genes from parents, The actual value (or realization)
can be different.

For example, we expect 20 to be V2 for full subs. However,
one pair of sibs may actually be more similar (0.6) and
another less similar (say 0.35). On average, 20 is 2

for pairs of tull sibs, but if we knew the actual value

of 8, we have more information. With sufficient

dense genetic markers, we can estimate these
relationships directly.

Genomic selection uses this extra information. a1



What about coefficient of coancestry 0 ?

Genotype of 7
Genotype of 7 11 10 00
11 1 0.5 0
10 0.5 0.5 0.5
00 0 0.5 1

One computes the coefficient of coancestry for each SNF, taking the average value over all
loci as the coefficient of coancestry for that pair of individuals. Toro et al. (2002) refer to this
as molecular coancestry. Note that we can compare an individual with itself (i = j), which
returns 1 for each homozygouslocus and 1/2 for each heterozygous loci.
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Genotype of j 11

11 1

10 0.5

00 0
Indivx: 00 00 10 10
Indivy: 10 00 11 11
Locus-specific 05 10 05 05

Genotype of

10 00
0.5 0
0.5 0.5
0.5 1
oo 10 11 00 11
10 11 11 10 11
05 05 10 05 1.0 05

Estimated 0 is the average over all ten loci, = 0.65

43
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Key points of last section

— Key point: 0, the coefficient of coancestry, is a
central measure of the genetic relationship,
with 20 giving the expected coetfficient on
contribution of Var(A) to the phenotypic
correlation.

e \We showed how inbreeding and relatedness all
inflate ® over outbred and unrelated relatives,

e With a known pedigree, the expected value of ©®
for any set of pedigreed individuals can be

computed

e \With dense (> 10,000 SNPS), we can use marker

information to obtain the realized, as opposed to
the expected (pedigree), value of ® .
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The coefficient of fraternity

e While (twice) the coefficient of coancestry gives the
weight on the additive variance for two relatives, a
related measure of IDB status among relatives gives
the weight on the dominance variance

* The probability that the two alleles in individual x are
IBD to two alleles in individual y is denoted A, and
is called the coefficient of fraternity.

e This can be expressed as a function of the

coefficients of coancestry for the parents of (mx and
fx) of x and the parents (my and fy) of y.

Xy1

— Axy - emxmyefxfy+ emxfy@fxmy
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The coefficient of fraternity (cont)

e x and y can have both alleles IBD it

— The allele from the father (fx) of x and the father (fy) of y are
IDB (probability 854) AND the allele from the mother (mx) of
x and the mother (my) of y are IDB (probability 8ym,) , or
efxfy 6mxmy

— OR the allele from the mother (mx) of x and the father (fy) of
y are IDB (probability 8,,,5) AND the allele from the father

(fx) of x and the mother (my) of y are IDB (probability 85my) |,
or emxfy efxmy

— Putting these together gives
° Axy - emxmyefxfy_l_ 9mxfyefxmy

46



A,,, The Coefticient of Fraternity

Ay, = Prob(both alleles in x &y IBD)

0
9fxfy txmy 0

®» [ e
N/
® ®

Axy = emxmyefxfy + 6mxfy@fxmy

e

47



Examples of A, : Full sibs

e Full sibs share same mon, dad

- my=my=m, f,=1 =1

- Ay = er:xmyefxfy + 0mxyOtmy = OmmBsr + Oms
= Ay = (1H)(1+)/4 + 0,
e |f parents unrelated, 0¢,,= 0, giving
- Ay = (T+1)(1+5)/4
e |f parents are unrelated and not inbred,

— Ay =1/4
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Examples of A, : Half sibs

e Paternal half sibs share same dad, different

moms
- f,=1f,=1 myandm,
— Ay = BrxmyOtdty T Oty Otxmy = Ormxemy Ot + Bt Oyt
— Axy = Gmxmy (1 +fm)/2 + Gmxf Omyf
¢ |f mothers are unrelated to each other and
to the common father, O,y = Oxs = Oys =
0, giving
- Ay =0

49



When is A non-zero?

® Since Axy = emxmyefxfy T emxfyefxmy
* A nonzero value for A requires either

— That the fathers of both x and y are related
AND the mothers of both x and y are
related

— OR that the father of x is related to the
mother of y AND the mother of x is related
to the father of y

50



From before

A B C D Oan= Opp=1; Ogg = Occ = 1/2;
\ / \/ Oro= 1/2, 0= 1/8,
E s Oa8 = Oac = Opc = Ogp = Ocp =0
\ %
S1ISZ

What is A for the full sibs (S; and S,)?
Axy = emxmyefxfy + emxfyefxmy = eEEGFF + eEF2

GiViﬂg Axy — GEEOFF + OEFZ
= (1/2)(1/2) + (1/8)2
=1/4 + 1/64 = 17/64 = 0.266
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A,, and the coefficient on Vj

e The coefficient on the dominance variance for the
relatives x and y is just A,.

e To see this,
— let A/A; denote the two alleles in x and A/A, those
Iny.
— Suppose that alleles i and k come from the

mothers of these two relatives and alleles j and |
from their fathers.

— Cov(dominance values) = Pr(A; ibd A, A ibd A))
COV(S,J, Skl) + PI’(Ai ibd A| Ibd Ak)COV(SU, 8k|)

— = (06t Oy T Oty Ojmy) Var(D) Ay, Var(D)
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Estimating relationships using
molecular data

With SNP data, treat identity in state (also
called alike in state, AIS) as IBD

Suppose the genotypes of two individual at 10 SNPs are

Indivx: 00 00 10 10 00 10 11 00 11 00

Indivy: 10 00 11 11 10 11 11 10 11 10

t t t

3/10 loci have A,, = 1, so average A,, over all loci is
0.3*1=0.3 >3



Adjusting for allele frequencies

(see LVW Chapter 8 for a much more detailed
discussion)

The previous approach ignores matches that are
expected to occur by chance.

For example, it individual | is a “00", the chance
that an unrelated individual, j, matches is just p?,

where p is the frequency of allele O at this
SNP

Hence, most molecular-based methods adjust for
the chance of an unrelated individual matching.
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There are a large number of proposed methods that translate SNP data into estimates of 6.
The basic approach is as follows. Consider two individuals, = and y. We denote the two alleles
in = by a and b (which may be alike in state), and similarly in y by ¢ and d. The molecular
similarity at locus £ between x and v is defined by

Iac + Iad + Ibc + Ibd
4

where [, 4 is an indicator function that equals one if @ and d are AIS, and otherwise is zero. For
diallelic loci (such as most SNPs), S zy,¢ takes on values of 0,1/2, or 1. A value of 1/4 requires
at least three distinct alleles, and values of 3/4 do not occur as, if the first three combinations
are one, so is the last (Oliehoek al. 2006). Toro et al. (2002) referred to Equation 20.23a as
molecular coancestry, as when AIS equals IBD, then E[S;, ¢] = 0,, with the average over
all loci giving an estimate of the elements of the relationship matrix

Syt = (20.23a)

L
Ay =20, = %Z Syt (20.23b)
=1
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Specifically, suppose we let s; denote the probability that two randomly drawn alleles in
the base population are AIS. Obviously, s¢ is (ata minimum) a function of the allele frequencies
at £. As shown by Lynch (1988c¢), the expected value for Sz ¢ is given by

E[Szye] =0zy + (1 —0zy)se (20.23c)
For a diallelic locus in Hardy-Weinberg,
se=p;+(1—pe)* =1—2pe(1—pr)

Rearranging Equation 20.23c suggests a more general estimator

Pt EL: Szy,t — 8¢ (20.23d)
PTL& 1 :

where L is the number of SNPs for which 2 and y contain no missing data. Negative estimates
of # can arise when S zy.¢ < Sg over a large number of loci, implying that these individuals are
less related than expected by chance. Assuming sy = 0 eliminates this problem (the assump-
tion behind Equation 20.23b), but also introduces bias (Speed and Balding 2015; Ackerman et

al. 2017). Oliehoek al. (2006) obtained an adjusted value for sy to ensure that all the Oxy are
nonnegative, but again this likely introduces some slight bias.
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Si}hﬂarly, we can consider the correlation in allelic copy number between z and y. Let
T’z ¢ denote the number of copies of allele 1 (from SNP £) that  carries, where T, y = 0, 1, or
2. Hence E[T}] = 2py, yielding a contribution to the covariance in T between two relatives

Summing over uncorrelated SNPs returns

L
~ ~ 1 T,.p—2 T, ,—2
A,, =920, 2 —2pg) (Ty.e — 2pe)

Y7L & 2pe(1 — pe)

forz #y (20.231)

Yang et al (2010) showed that a slight modification is required when considering the coancestry
of x with itself,

L T2, — (14 2p¢)Tes + 2p?
.0 e) Lzt Dy
Azz =1+ LZ el — p) (20.23m)
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General Resemblance between
relatives

20, =r

= A

Uy

rYy? Y TY

COU(G“” G’y) — 2eccjz/‘/A + AmyVD

Cov(Gaz, Gy) =202y VA + Ay VD
T (26333/)2VAA -+ 26xyA nyVAD -+ Ag;yVDD 4o
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Example

A B C D
\1 / \1 / We found for full sibs S;, S, that
E F 9 =5/16 hence 20 =5/8: A =17/64
\ v
S1ISZ

Expected genetic covariance between this sibs is

(5/8)Var(A) + (17/64)Var(D) + (5/8)°Var(AA) +
(5/8) (17/64)\Var(AD) + (17/64) 2Var(DD) + -
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Key ideas from last section

— The coefticient of coancestry measures the
fraction of alleles shared, and hence the
contribution from additive variance (which is a
function of the variation explained by single
alleles)

— The coefticient of fraternity is the next level
measure of relatedness, showing the fraction of
diploid genotypes that are shared

* |t gives the weighting on the dominance variance

e Can also be estimated from either pedigree of (dense)
marker data.

* Many, perhaps most, relationships can a co of fraternity
of zero (as most have common relatives on both sides
(mother and father) of the pedigree.
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Autotetraploids

Peanut, Potato, alfalfa, soybeans all examples
of crops with at least some autotetraploid
lines

With autotetraploid, four alleles per locus,
with a parent passing along two alleles to an
offspring

As a result, a parent can pass along the
dominance contribution in G to an offspring

Further, now there are four variance
components assocated with each locus
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Genetic variances for
autotetraploids

e G=A+D+T+Q

— A (additive) and D (dominance, or digenic effects)
as with diploids

— T (trigenic effects) are the three-way interactions
among alleles at a locus

— Q (quadrigenic effects) are the four-way
interactions at a locus

e Total genetic variance becomes
— Vg =Vao+Vp+ Vi + Vg
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Resemblance between
autotetraploid relatives

Relatives VA VD VT VQ
Half-sibs 1/4 | 1/36
Full-sibs 1/2 | 2/9 | 1/12 | 1/36
Parent- | 4o | 16
offspring

Assumes unrelated, non-inbred parents
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