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Heritability
• Central concept in quantitative genetics
• Fraction of phenotypic variance due to 

additive genetic values (Breeding values)
– h2 = VA/VP

– This is called the narrow-sense heritability
– Phenotypes (and hence VP) can be directly 

measured
– Breeding values (and hence VA) must be 

estimated

• Estimates of VA require known collections of 
relatives
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Broad-sense heritability

• Narrow-sense heritability h2 applies when 
outcrossing, 
– h2 = Var(A)/Var(P)
– =  the fraction of all trait variation due to variation 

in breeding (additive genetic) values
• Broad-sense heritability H2 applies when 

selecting among a series of pure lines
– H2 = Var(G)/Var(P)
– =  the fraction of all trait variation due to 

variation in Genotypic values
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Defining H2 for Plant Populations
Plant breeders often do not measure individual plants 
(especially with  pure lines), but instead  often measure a plot or 
a block of individuals.

This replication can result in inconsistent measures of H2 even for 
otherwise  identical populations.  

Effect of the k-th plot
deviations of individual
plants within this plot

Let zijkl denote the value of the l-th replicate in plot k of genotype i
in environment j.  We can decompose this value as

zijkl = Gi + Ej + GEij + pijk + eijkl
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If we set our unit of measurement as the average over 
all plots, the phenotypic variance for the mean of line 
i becomes

Thus, VP, and  H2 = VG/VP, depend  on our choice of e, r, and n
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Suppose we replicate the genotype over e environments,
with r plots (replicates) per environment, and n individuals
per plot.

In order to compare board-sense heritabilities we need to use a
consistent design (same values of e, r, and n)

zi
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Key observations
• The amount of phenotypic resemblance

among relatives for the trait provides an 
indication of the amount of genetic variation
for the trait.

• If trait variation has a significant genetic 
basis, the closer the relatives, the more 
similar their appearance

• The covariance between the phenotypic 
value of relatives measures the strength of 
this similarity, with larger Cov = more 
similarity
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Question

– In some lines, a small fraction of chicken eggs are 
laid without a hard shell, but rather are coated 
with a soft membrane, and hence quickly broken.

– A poultry scientist trying to improve this trait 
might turn to environment change (e.g., add 
more calcium to their diet) or genetic 
improvement.

– For this trait, h2 is very small, while H2 is close to 
one.  What do these observations suggest in 
terms of potential improvement strategies?



• H2 close to one suggests most of the 
variation in this trait is genetic, so that 
environmental improvement (changes in 
management, such as using dietary 
supplements) is unlikely to impact the trait.

• h2 close to zero suggests that there is little 
ADDITIVE variation, therefore only breeding 
schemes that exploit nonadditive variation 
(dominance, epitasis) are likely to make an 
improvement.

8
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Genetic Covariance between relatives

Genetic covariances arise because two related  
individuals  are more likely to share alleles than 
are two unrelated individuals.

Sharing alleles means having alleles that are identical by 
descent (IBD): both copies can be traced back to  a single 
copy in a  recent common ancestor. 

Father Mother
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Father Mother

No alleles IBD One allele IBD

Both alleles IBD
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Resemblance between relatives and 
variance components

• The phenotypic covariance between relatives 
can be expressed in terms of genetic 
variance components
– Cov(zx,zy) = axyVA + bxyVD.
– The weights a and b depend on the nature of the 

relatives x and y, and are measures of how often 
they are expected to share alleles identical by 
descent 

– These are critical in predicting selection response
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Parent-offspring genetic covariance

Cov(Gp, Go) --- Parents and offspring share 
EXACTLY one allele IBD

Denote this common allele by A1

G p = A p + D p = a1 + ax + D 1x

G o = A o + D o = a1 + ay + D 1y

IBD allele Non-IBD alleles
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Hence, relatives sharing one allele IBD have a
genetic covariance of Var(A)/2

The resulting parent-offspring genetic covariance 
becomes Cov(Gp,Go) = Var(A)/2
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Half-sibs

1

o1

2

o2

The half-sibs share no alleles IBD
•  occurs with probability 1/2

Each sib gets exactly one 
allele from common father,
different alleles from the 
different mothers

Hence, the genetic covariance of half-sibs is just 
(1/2)Var(A)/2 = Var(A)/4
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Full-sibs
Father Mother

Sib 1

Prob(Allele from father IBD) = 1/2.  Given the allele in parent 
one, prob = 1/2 that sib 2 gets same allele

Each sib gets
exact one allele
from each parent

Sib 2

Prob(Allele from father not IBD) = 1/2.  Given the allele in 
parent one, prob = 1/2 that sib 2 gets different allele
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Full-sibs
Father Mother

Full Sibs
Paternal allele not IBD [ Prob = 1/2 ]
Maternal allele not IBD [ Prob = 1/2 ]
Prob(sibs share 0 alleles IBD) = 1/2*1/2 = 1/4

Each sib gets
exact one allele
from each parent
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Father Mother

Full Sibs

Paternal allele  IBD [ Prob = 1/2 ]
Maternal allele  IBD [ Prob = 1/2 ]
Prob(sibs share 2 alleles IBD) = 1/2*1/2 = 1/4

Each sib gets
exact one allele
from each parent

Prob(share 1 allele IBD) = 1-Pr(0) - Pr(2) = 1/2
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I BD alleles Probability Contr ibution

0 1/4 0

1 1/2 Var (A)/2

2 1/4 Var (A) + Var( D)

Resulting Genetic Covariance between full-sibs

Cov(Full-sibs) = Var(A)/2 + Var(D)/4
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Question

– Suppose the parent-offspring covariance 
for a trait is 12.  What can you say about 
the additive and dominance variances?

– Suppose that the full-sib covariance for the 
same trait is 20.  What can you say now 
about the dominance variance?



• Cov(P, O) = Var(A)/2, hence
– Var(A)/2 = 12, or Var(A) = 24
– Can not say anything about dominance variance

• Cov(full sibs) = Var(A)/2 + Var(D)/4,  
– Hence 24/2 + Var(D)/4 = 20, or Var(D)/4 = 8, or Var(D) 

= 32

• Complication:  Esp. in animals, full sibs can share 
a common family environmental variance, 
Var(Em), such as a common maternal effect.  
Hence, 
– Cov(full sibs) = Var(A)/2 + Var(D)/4 + Var(Em)
– Thus, all that we can say is that Var(D)/4 + Var(Em) = 8
– Hence, can only say that Var(Em) < 8 or Var(D) < 32

21
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Genetic Covariances for General Relatives

Let r = (1/2)Prob(1 allele IBD) + Prob(2 alleles IBD)

Let u = Prob(both alleles IBD)

General genetic covariance between relatives
Cov(G) = rVar(A) + uVar(D)

When epistasis is present, additional terms appear
r2Var(AA) + ruVar(AD) + u2Var(DD) + r3Var(AAA) +
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More general relationships 

• To obtain the expected covariance for any 
set of relatives, we normally need only 
compute r and u for that set of relatives

• With general inbreeding, becomes more 
complex (as three other terms, in addition to 
VA and VD arise)

• With crosses involving inbred and/or related 
parents, values for r and u are different from 
those presented above.
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Coefficients of Coancestry
Suppose we pick a single allele each at random from
two relatives.  The probability that these are IBD is 
called Q, the coefficient of coancestry.  In terms of our
previous notation, 2Q = r = the coeff on Var(A)

Qxy denotes the coefficient for relatives x and y

Consider an offspring z from a (hypothetical) cross
of x and y. Qxy = fz, the inbreeding coefficient of z.
Why?  Because the offspring of x and y each get a 
randomly-chosen allele from each parent.  The probability
fz that both alleles are IBD (the probability of inbreeding)
is thus just Qxy.
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q and the coefficient on VA

• The coefficient on the additive variance for 
the relatives x and y is just 2qxy.  

• To see this, 
– let AiAj denote the two alleles in x and AkAl those 

in y. 
– Cov(breeding values) = Pr(Ai ibd Ak) cov(ai, ak) + 

Pr(Ai ibd Al) cov(ai,al) + Pr(Aj ibd Ak) cov(aj, ak) + 
Pr(Aj ibd Al) cov(aj,al)  = 4 qxyVar(a)

– Since Var(A) = 2Var(a), Cov = 2 qxyVar(A)
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Qxx :  The Coancestry of an individual 
with itself

Self x, what is the inbreeding coefficient of its offspring?

To compute Qxx, denote the two alleles in x by A1 and A2

Draw A1

Draw A1 Draw A2

Draw A2

IBD

IBD

Hence, for a non-inbred individual, Qxx = 2/4 = 1/2

If x is inbred, fx = prob A1 and A2 IBD, 

fx

fx

Qxx = (1+ fx)/2
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Example
BA DC

E F

G

Consider the following pedigree
Suppose A and D are fully-inbred, 
and related, lines with qAD = 0.5.
Further, B and C are unrelated and
outcrossed individuals

Individual A B C D

Fx 1 0 0 1

qxx = (1 + Fx)/2 1 1/2 1/2 1



28

Question

– Suppose  Sam’s COC is ¾.
• What is  Sam’s level of inbreeding?
• If we self Sam, what is the level of inbreeding 

in Sam’s offspring? 



• ¾ = (1/2) (1+fSam), 
– or 6/4 = 1+fSam

– Or fSam = 6/4 -1=  ½

• The COC between two individuals in 
the level of inbreeding in the offspring.  
Hence, we self Sam, the inbreeding in 
the offspring is simply Sam’s COC or 
3/4

29
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The Parent-offspring Coancestry
Let A1, An denote the two alleles in the offspring, where
An is the allele from the nonfocal parent (NP), while
A1,Ap are the two alleles in the focal parent (P)

Draw A1

Draw A1 Draw An

Draw Ap

IBD

QP,NP

For a non-inbred individual, QP0 = 1/4

fp

QPO = (1 + fp + 2QP,NP)/4 = (1 + fp + 2fo)/4

Offspring

Pa
re

nt

A1, Ap IDB if 
parent is inbred

Prob(An,Ap), the alleles
from the two parents are IBD,
i.e. , offspring is inbred

QP,NP

General:
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BA DC

E F

G

From before 

qAA= qDD = 1; qBB = qCC = 1/2; 
qAD = 1/2, 
qAB = qAC = qBC = qBD =  qCD = 0

Consider A - E (inbred parent - offspring)
qAE = (1+fA)/4 = (1+1)/4 = 1/2.  Same value for qDF

Consider B - E (outbred parent - offspring)
qBE = (1+fB)/4 = (1+0)/4 = 1/4.  Same value for qCF

Consider E - G (outbred parent - offspring)
qEG = (1+fE)/4 = (1+0)/4 = 1/4.  Same value for qFG
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BA DC

E F

G

From before 

qAA= qDD = 1; qBB = qCC = 1/2; 
qAD = 1/2, 
qAB = qAC = qBC = qBD =  qCD = 0

What about qEF ?

The randomly-chosen allele from E has equal chance
of being from A or B.  Likewise for F (from C or D)

Of these four possible combinations (A&C, A&D, B&C, B&D), only 
an allele from A and an allele from D have a chance of being
IBD, which is qAD = 1/2. 

Hence, qEF = qAD /4 = 1/8
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m f

1/2 1/2

(1/2)(1/2)(1/2) (1/2)(1/2)(1/2)

Q = 1/8 + 1/8 = 1/4

m f

(1+fm)/2
(1+ff)/2

[(1 +fm )/2] (1/2)(1/2) [(1 +ff )/2] (1/2)(1/2)

Q =(2 + fm+ ff)/8

Full sibs (x and y) from parents m and f

Unrelated, non-inbred
parents

Unrelated, inbred
parents
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m f

Q mf

Q mf /4

Full sibs (x and y) from parents m and f

m f

Q mf

Q mf (1/2)(1/2)

This gives Q = (2+fm+ff +4 Q mf)/8

Parents inbred & related.
Two additional paths to add
to Q =(2+fm+ff)/8
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Full sibs (x and y) from parents m and f

Qxy =  (2 + fm + ff + 4Qmf)/8

f m

x y

sf df sm dm

ff = Qsf,df fm = Qsm,dm

Qxy =  (2 + Qsm,dm + Qsf,df + 4Qmf)/8

Putting all this together gives
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BA DC

E F

From before 

qAA= qDD = 1; qBB = qCC = 1/2; 
qAD = 1/2, qEF = 1/8, 
qAB = qAC = qBC = qBD =  qCD = 0

S1,S2

qS1S2 = (2 + 0 + 0 + 4[1/8])/8 = (4 + 1)/16 = 5/16

Qxy =  (2 + QAB + QCD + 4QEF)/8

Example
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Half-sibs

• Using the same arguments as above,
qEF = (qAA + qAB + qAC + qBC)/4

= ([1 + fA]/2  + qAB + qAC + qBC)/4
Hence, if B and C unrelated, 
qEF =  (1 + fA)/8

AB C

E F

A is the common parent
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Computing qxy -- The Recursive Method
• There is a simple recursive method for generating the elements Aij

= 2 qij of a relationship matrix (used for BLUP selection). For ease of 
reading, we use the notation A(i,j) = Aij

– Basic idea is that the founding individuals of the pedigree are 
assumed to be unrelated and not inbred (although this can also 
be accommodated).  These founders are assigned values of A(i,i) 
= 1.  

– Likewise, any unknown parent of any future individual is assumed to be 
unrelated to all others in the pedigree and not inbred, and they are 
also assigned a value of A(i,i) = 1. 

– Let Si and Di denote the sire and dam (father and mother) of individual 
i.    For this offspring A(i,i) = 1 + A(Si, Di)/2

– A(i,j) = A(j,i) = [A(j,Si) + A(j,Di)]/2 = [A(i,Sj) + A(i,Dj)]/2 
– The recursive (or tabular) method starts with the founding parents and 

then proceeds down the pedigree in a recursive fashion to fill out A for 
the desired pedigree.
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Example

1

23 4 5

6 7 8

9
10

11

Ancestors are 1 & 2

A(1,1) = A(2,2) = 1
A(1,2) = 0

3:  S3 = 1, D3 = Unknown,  A(3,3) = 1 + A(S3,D3)/2 = 1 + A(1,unk)/2 = 1
A(1,3) = [A(1,S3) + A(1,D3)]/2 = [A(1,1) + A(1,unk)]/2 = 1/2.
Note also that A(1,4) = A(1,5) = 1/2, A(4,4) = A(5,5) = 1.
A(3,4) = [A(3,S4) + A(3,D4) ]/2 = [A(3,1) + A(3,unk)]/2 = (1/2+0)/2 = 1/4.
Same for A(3,5) = 1/4.  2 is unrelated to 3, 4, 5, giving  A(2,3) = A(2,4) = A(2,5) = 0.

3, 4, 5, 8 all have 
unknown parents
(only a single 
arrow to them)
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1

23 4 5

6 7 8

9
10

11

So far

6:  S6 = 2, D6 = 3.  A(6,6) = 1 + A(S6, D6)/2 = 1 + A(2,3)/2 = 1
A(6,1) = [A(1, S6) + A(1, D6)]/2 =  [A(1,2) + A(1,3)]/2 = [0 + 1/2]/2 = 1/4
A(6,2) = [A(2, S6) + A(2, D6)]/2 =  [A(2,2) + A(2,3)]/2 = [1+ 0]/2 = 1/2
A(6,3) = [A(3, S6) + A(3, D6)]/2 =  [A(3,2) + A(3,3)]/2 = [0 + 1]/2 = 1/2
A(6,4) = [A(4, S6) + A(4, D6)]/2 =  [A(4,2) + A(4,3)]/2 = [0 + 1/4]/2 = 1/8
A(6,5) = [A(5, S6) + A(5, D6)]/2 = [A(5,2) + A(5,3)]/2 = (0+1/4)/2 = 1/8

7:  S7 = 2, D7 = 4.  A(7,7) = 1 + A(S7, D7)/2 = 1 + A(2,4)/2 = 1 + 0/2 = 1
A(6,7) = [A(6, S7) + A(6, D7)]/2 = [A(6, 2) + A(6, 4)]/2 = (1/2 +1/8)/2 = 5/16

8:  S8 = 5, D8 = unk. A(8,8) = 1 + A(S8, D8)/2 = 1 + A(5,unk)/2 = 1.
A(6,8) = [A(6, S8) + A(6, D8)]/2 = [A(6, 5) + A(6, unk)]/2 = (1/8)/2 = 1/16

9:  S9 = 7, D9 = 6. A(9,9) = 1 + A(S9, D9)/2 = 1 + A(6,7)/2 = 1 + 5/32 = 1.156 <- inbred! 



Actual relatedness versus expected values from 
pedigrees
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Values for the coefficient of coancestry (q) and the
coefficient of fraternity (D) obtained from pedigrees
are expected values.  Due to random segregation of
genes from parents, The actual value (or realization) 
can be different.
For example, we expect 2q to be ½ for full subs.  However,
one pair of sibs may actually be more similar (0.6) and
another less similar (say 0.35).  On average, 2q is ½
for pairs of full sibs, but if we knew the actual value 
of q, we have more information.  With sufficient 
dense genetic markers, we can estimate these
relationships directly.

Genomic selection uses this extra information.



What about coefficient of coancestry q ?

4242
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Indiv x:  00  00  10  10  00  10  11  00  11  00

Indiv y:  10  00  11  11  10  11  11  10  11  10

Locus-specific
q

0.5    1.0     0.5    0.5     0.5     0.5     1.0    0.5      1.0     0.5

Estimated q is the average over all ten loci, = 0.65 
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Key points of last section
– Key point:  Q, the coefficient of coancestry, is a 

central measure of the genetic relationship, 
with 2Q giving the expected coefficient on 
contribution of Var(A) to the phenotypic 
correlation.

• We showed how inbreeding and relatedness all 
inflate Q over outbred and unrelated relatives,

• With a known pedigree, the expected value of Q 
for any set of pedigreed individuals can be 
computed

• With dense (> 10,000 SNPS), we can use marker 
information to obtain the realized, as opposed to 
the expected (pedigree), value of Q .
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The coefficient of fraternity
• While (twice) the coefficient of coancestry gives the 

weight on the additive variance for two relatives, a 
related measure of IDB status among relatives gives 
the weight on the dominance variance

• The probability that the two alleles in individual x are 
IBD to two alleles in individual  y is denoted Dxy, and 
is called the coefficient of fraternity.

• This can be expressed as a function of the 
coefficients of coancestry for the parents of (mx and 
fx) of x and the parents (my and fy) of y.
– Dxy = qmxmyqfxfy+ qmxfyqfxmy
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The coefficient of fraternity (cont)

• x and y can have both alleles IBD if
– The allele from the father (fx) of x and the father (fy) of y are 

IDB (probability qfxfy) AND the allele from the mother (mx) of 
x and the mother (my) of y are IDB (probability qmxmy) , or 
qfxfy qmxmy

– OR the allele from the mother (mx) of x and the father (fy) of 
y are IDB (probability qmxfy) AND the allele from the father 
(fx) of x and the mother (my) of y are IDB (probability qfxmy) , 
or qmxfy qfxmy

– Putting these together gives 
• Dxy = qmxmyqfxfy+ qmxfyqfxmy
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x y

fx fymx
my

Dxy = qmxmyqfxfy + qmxfyqfxmy

qmxmy
qfxfy

qmxfy

qfxmy

Dxy, The Coefficient of Fraternity

Dxy = Prob(both alleles in x & y IBD)
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Examples of Dxy: Full sibs
• Full sibs share same mon, dad

– mx = my = m,  fx = fy = f
– Dxy = qmxmyqfxfy + qmxfyqfxmy = qmmqff + qmf

2

– Dxy = (1+fm)(1+ff)/4 + qmf
2

• If parents unrelated, qfm = 0, giving 
– Dxy = (1+fm)(1+ff)/4

• If parents are unrelated and not inbred,
– Dxy = 1/4
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Examples of Dxy: Half sibs
• Paternal half sibs share same dad, different 

moms
– fx = fy = f;  mx and my

– Dxy = qmxmyqfxfy + qmxfyqfxmy = qmxmyqff + qmxf qmyf

– Dxy = qmxmy (1+fm)/2 + qmxf qmyf

• If mothers are unrelated to each other and 
to the common father, qmxmy = qmxf = qmyf = 
0, giving 
– Dxy = 0
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When is D non-zero?
• Since Dxy = qmxmyqfxfy + qmxfyqfxmy

• A nonzero value for D requires either 
– That the fathers of both x and y are related 

AND the mothers of both x and y are 
related

– OR that the father of x is related to the 
mother of y AND the mother of x is related 
to the father of y 
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BA DC

E F

From before 

qAA= qDD = 1; qBB = qCC = 1/2; 
qAD = 1/2, qEF = 1/8, 
qAB = qAC = qBC = qBD =  qCD = 0

S1,S2

What is D for the full sibs (S1 and S2)?

Dxy = qmxmyqfxfy + qmxfyqfxmy = qEEqFF + qEF
2

Giving Dxy = qEEqFF + qEF
2

= (1/2)(1/2) + (1/8)2

= 1/4 + 1/64 = 17/64 = 0.266
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Dxy and the coefficient on VD

• The coefficient on the dominance variance for the 
relatives x and y is just Dxy.  

• To see this, 
– let AiAj denote the two alleles in x and AkAl those 

in y.
– Suppose that alleles i and k come from the 

mothers of these two relatives and alleles j and l 
from their fathers. 

– Cov(dominance values) = Pr(Ai ibd Ak; Aj ibd Al ) 
cov(dij, dkl) + Pr(Ai ibd Al; Aj ibd Ak)cov(dij, dkl) 

– = (qfxfyqmxmy + qmxfyqjxmy) Var(D) = Dxy Var(D) 



Estimating relationships using 
molecular data

53

With SNP data, treat identity in state (also
called alike in state, AIS) as IBD

Suppose the genotypes of two individual at 10 SNPs are

3/10 loci have Dxy = 1, so average Dxy over all loci is
0.3* 1 = 0.3

Indiv x:  00  00  10  10  00  10  11  00  11  00

Indiv y:  10  00  11  11  10  11  11  10  11  10



Adjusting for allele frequencies
(see LVW Chapter 8 for a much more detailed 

discussion)

54

The previous approach ignores matches that are 
expected to occur by chance.

For example, if individual I is a “00”, the chance 
that an unrelated individual, j, matches is just p2, 
where p is the frequency of allele 0 at this
SNP

Hence, most molecular-based methods adjust for 
the chance of an unrelated individual matching.
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General Resemblance between 
relatives



59

Example
BA DC

E F
S1,S2

We found for full sibs S1, S2 that
q = 5/16, hence 2 q = 5/8;  D = 17/64 

Expected genetic covariance between this sibs is

(5/8)Var(A) + (17/64)Var(D) + (5/8)2Var(AA) +
(5/8) (17/64)Var(AD) + (17/64) 2Var(DD) + …
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Key ideas from last section
– The coefficient of coancestry measures the 

fraction of alleles shared, and hence the 
contribution from additive variance (which is a 
function of the variation explained by single 
alleles)

– The coefficient of fraternity is the next level 
measure of relatedness, showing the fraction of 
diploid genotypes that are shared

• It gives the weighting on the dominance variance
• Can also be estimated from either pedigree of (dense) 

marker data.
• Many, perhaps most, relationships can a co of fraternity 

of zero (as most have common relatives on both sides 
(mother and father) of the pedigree.
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Autotetraploids
• Peanut, Potato, alfalfa, soybeans all examples 

of crops with at least some autotetraploid 
lines

• With autotetraploid, four alleles per locus, 
with a parent passing along two alleles to an 
offspring

• As a result, a parent can pass along the 
dominance contribution in G to an offspring

• Further, now there are four variance 
components assocated with each locus
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Genetic variances for 
autotetraploids

• G = A + D + T + Q
– A (additive) and D (dominance, or digenic effects) 

as with diploids
– T (trigenic effects) are the three-way interactions 

among alleles at a locus
– Q (quadrigenic effects) are the four-way 

interactions at a locus
• Total genetic variance becomes

– VG = VA + VD + VT + VQ
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Resemblance between 
autotetraploid relatives

Relatives VA VD VT VQ

Half-sibs 1/4 1/36

Full-sibs 1/2 2/9 1/12 1/36

Parent-
offspring 1/2 1/6

Assumes unrelated, non-inbred parents


