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Potential Outcomes

Consider an eligible patient population.

Imagine two parallel worlds: one where everyone is assigned
Treatment 0 and one where everyone is assigned Treatment 1.

Y 0 and Y 1: potential/hypothetical outcomes in the two
parallel worlds.

Superscript (0 or 1): allocation to treatment.
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Hypothetical World: Causal Estimand

Causal Estimand

Average of the outcomes when everyone is assigned to Treatment 1
minus

average of the outcomes when everyone is assigned to Treatment 0

Mean difference: E
(
Y 1

)
− E

(
Y 0

)
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Marginal Causal Contrasts

Causal contrasts of interest often reflect a contrast between
the means of the distributions of Y 0 and Y 1:
E
(
Y 0

)
and E

(
Y 1

)
Mean difference E

(
Y 1

)
− E

(
Y 0

)
Mean ratio E

(
Y 1

)
/E

(
Y 0

)
Odds ratio E(Y 1)/{1−E(Y 1)}

E(Y 0)/{1−E(Y 0)}

. . .

These are marginal causal contrasts.

The (marginal) causal contrast can also be a contrast of other
summaries of the distributions of Y 0 and Y 1;
e.g., for time-to-event outcomes.
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Real world: Randomization

In real life, patients are randomized to only one group.

Causal Treatment Effect Estimate

Average of observed outcomes of patients assigned to Treat. 1
minus

average of observed outcomes of patients assigned to Treat. 0
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Randomization

In real life, patients are randomized to only one group.

The randomized group is denoted Z and the factual/observed
outcome Y .

Randomization ensures that causal contrasts correspond to
statistical contrasts:

E
(
Y 1

)
− E

(
Y 0

)
= E (Y |Z = 1)− E (Y |Z = 0).
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Conditional Causal Contrasts

So far, we have been focusing on marginal estimands.
A (causal) treatment effect for the whole eligible patient
population.

We can also focus on a certain subgroup
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Conditional Causal Contrasts

We can also focus on a certain subgroup

For example, there may be interest in the treatment effect (on
a certain scale) in the male or female participants separately.

These are conditional (i.e., within stratum of baseline
variable(s)) treatment effects.

We can just take the difference in means between the
outcomes of female/male participants under Treatment 1 and
Treatment 0.
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Conditional Causal Contrasts

Thus, causal contrasts of interest can also reflect a contrast
between the means of the distributions of Y 0 and Y 1 in a
subset of patients (e.g., females):

e.g., mean difference E
(
Y 1|sex = f

)
− E

(
Y 0|sex = f

)

Randomization ensures that
E
(
Y 1|sex = f

)
− E

(
Y 0|sex = f

)
= E (Y |Z = 1, sex = f ) − E (Y |Z = 0, sex = f ).

However, estimation typically requires model assumptions
(such as logistic regression model),
and the estimate is often uninterpretable under model
misspecification.
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Conditional Causal Contrasts

So far, our estimand definitions have been model-free.

ICH E9 (FDA and EMA, 1998) and EMA (2015) guidelines
are written with the understanding that the target treatment
effect is a model parameter; e.g.,

g{E (Y |Z ,X )} = β0 + β1Z + β2X

where g(·) is a pre-specified link function.

This model implies the same treatment effect in the
subgroups:
it makes the statistical modelling assumption that there is
no interaction between Z and X (on the considered scale)

Not implied by randomization.
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Conditional Causal Contrasts: Continuous Outcome

Let’s consider a continuous outcome.

One may then choose g(·) to be the identity link function,
and fit the model

E (Y |Z ,X ) = β0 + β1Z + β2X .

Statistical modelling assumption: no interaction between Z
and X on the linear scale

Not implied by randomization.

If assumption holds:

β1 carries an interpretation as both a conditional causal effect
E (Y 1 − Y 0|X = x) and a marginal causal effect E (Y 1 − Y 0).

15 / 41



Conditional Causal Contrasts: Continuous Outcome

Let’s consider a continuous outcome.

One may then choose g(·) to be the identity link function,
and fit the model

E (Y |Z ,X ) = β0 + β1Z + β2X .

Statistical modelling assumption: no interaction between Z
and X on the linear scale

Not implied by randomization.

If assumption holds:

β1 carries an interpretation as both a conditional causal effect
E (Y 1 − Y 0|X = x) and a marginal causal effect E (Y 1 − Y 0).

15 / 41



Conditional Causal Contrasts: Continuous Outcome

Let’s consider a continuous outcome.

One may then choose g(·) to be the identity link function,
and fit the model

E (Y |Z ,X ) = β0 + β1Z + β2X .

Statistical modelling assumption: no interaction between Z
and X on the linear scale

Not implied by randomization.

If assumption holds:

β1 carries an interpretation as both a conditional causal effect
E (Y 1 − Y 0|X = x) and a marginal causal effect E (Y 1 − Y 0).

15 / 41



Conditional Causal Contrasts: Continuous Outcome

One might also fit a model with an interaction

E (Y |Z ,X ) = β0 + β1Z + β2X + β3ZX

β1: (conditional) effect in those with X = 0.
β1 + β3x : (conditional) effect in those with X = x .

β1 and β3 typically lose their marginal interpretation

unless X is appropriately scaled (Ye et al., 2022).

However, we can use these models to obtain marginal
treatment effect estimates by averaging across the empirical
distribution of baseline covariates (see later).
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Conditional Causal Contrasts: Other Outcomes

For a binary outcome Y , it is more common to choose the
logistic regression model

logit{E (Y |Z ,X )} = β0 + β1Z + β2X .

If the model reflects the truth, then the effect of treatment
(β1) does not differ for different values of X .

Unlike in the linear case, exp(β1) would only retain an
interpretation as a conditional effect,

E (Y 1|X = x)/{1− E (Y 1|X = x)}
E (Y 0|X = x)/{1− E (Y 0|X = x)}

,

which may differ from the marginal causal odds ratio

E (Y 1)/{1− E (Y 1)}
E (Y 0)/{1− E (Y 0)}

.
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Non-Collapsibility

Standard practice based on logistic regression does not
typically target a marginal effect.

This phenomenon occurs due to the non-collapsibility of the
logistic link function; see Daniel et al. (2021).

Not unique to logistic regression; e.g., Cox proportional
hazards models.
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Non-Collapsibility

An effect measure is collapsible if conditional and marginal
estimands are the same: e.g., mean difference

Examples of non-collapsible effect measures:

the marginal odds ratio is not the same as the conditional
odds ratio.

the marginal hazard ratio is not the same as the conditional
hazard ratio.
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Illustration of non-collapsibility: odds ratio

The effect in females is the same as the effect in males, but the
effect in females and males together is different. Astonishing!

Non-Collapsibility

Even when all subgroup treatment effects are identical, this
subgroup-specific conditional treatment effect can differ from the
marginal treatment effect.
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Illustration of collapsibility: risk difference

Conditional risk difference:
Males: 0.90 - 0.50 = 0.40
Females: 0.50 - 0.10 = 0.40

Marginal risk difference:
0.70 - 0.30 = 0.40

Collapsibility

The marginal treatment effect is a weighted average of
subgroup-specific conditional treatment effects.
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Conditional Causal Contrasts: Other Outcomes

For a binary outcome Y , it is more common to choose the
logistic regression model

logit{E (Y |Z ,X )} = β0 + β1Z + β2X .

When the model is misspecified, the standard likelihood-based
estimators of β1 may not generally target either
E(Y 1|X=x)/{1−E(Y 1|X=x)}
E(Y 0|X=x)/{1−E(Y 0|X=x)} or E(Y 1)/{1−E(Y 1)}

E(Y 0)/{1−E(Y 0)} .

The concern for model misspecification for non-linear models is
for example highlighted in the (EMA, 2015) guideline.
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FDA guidance on covariate adjustment

Choice between marginal and
conditional treatment effects is an
estimand decision.

Covariate adjustment is an analysis
decision.

Linear model: marginal and
conditional effect estimates coincide.

Non-linear model: be cautious due to
non-collapsibility.
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Conditioning versus Adjusting

Confusing: Traditionally ‘conditional’ and ‘adjusted’ have
been used interchangeably, likewise for ‘marginal’ and
‘unadjusted’.

Better suggestion:

marginal/conditional are related to the ‘estimand’ of interest
unadjusted/adjusted are related to the ‘analysis’ performed

Perfectly possible to obtain an adjusted estimator of a
marginal estimand.

Adjusted estimators of marginal estimands are almost
always more precise than unadjusted estimators.

Recent FDA guidelines make a distinction between
conditioning and adjusting (FDA, 2023).

Recommendations for covariate adjustment.
Advice on both conditional, and marginal estimands.
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Covariate Adjustment for Marginal Estimands

Covariate adjustment is a statistical analysis method with
high potential to improve precision for many of these trials.

Pre-planned adjustment for baseline variables when
estimating average treatment effect.

Estimand is same as when using unadjusted estimator (e.g.,
difference in means).

Goal: avoid making any model assumptions beyond what’s
assumed for unadjusted estimator (robustness to model
misspecification).

(e.g., Koch et al., 1998; Yang and Tsiatis, 2001; Rubin and van der Laan, 2008;
Tsiatis et al., 2008; Moore and van der Laan, 2009b,a; Zhang, 2015; Jiang
et al., 2018; Benkeser et al., 2020)
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Example

Suppose we aim to learn the treatment effect on a binary
outcome Y (e.g., ‘disease’).

Age Z Y Y 1 Y 0

40 1 1 1 ?
50 1 0 0 ?
60 1 1 1 ?
50 0 0 ? 0
30 0 1 ? 1
40 0 0 ? 0

By randomization: fine to compare outcomes of treated with
outcomes of untreated

Based on baseline covariates (e.g., age): guesses about what
outcome would be for all participants if they were (un)treated.

By using the models that were used to obtain conditional
estimates.
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A simple try. . .

Let’s use a simple imputation procedure:

Estimate disease risk on treatment, P̂1, for all trial participants
based on a logistic regression in the treated, in function of
baseline covariates.

Age Z Y Y 1 P̂1 Y 0

40 1 1 1 0.8 ?
50 1 0 0 0.7 ?
60 1 1 1 0.6 ?
50 0 0 ? 0.7 0
30 0 1 ? 0.9 1
40 0 0 ? 0.8 0

average these risks for all trial participants to obtain an
estimate of population disease risk on treatment (i.e., E (Y 1)).
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Covariate Adjusted Estimator: standardization/g-computation

Example: E (Y 1)

Treated Untreated
Y 1, Age Age

Y 1 ?̂P1P̂1

Estimator for E (Y 1) is obtained by

Step 1: Model fitting
fitting a logistic regression model for outcome Y given age
among the treated patients,

Step 2: Predicting
using this model to impute outcome for all patients,

Step 3: Averaging
taking the average of imputed outcomes.
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Covariate Adjusted Estimator: standardization/g-computation

Similar for an estimate of population disease risk on control:

Estimate disease risk on control, P̂0, for all trial participants
based on a logistic regression in the controls, in function of
baseline covariates.

Age Z Y Y 1 P̂1 Y 0 P̂0

40 1 1 1 0.8 ? 0.3
50 1 0 0 0.7 ? 0.2
60 1 1 1 0.6 ? 0.1
50 0 0 ? 0.7 0 0.2
30 0 1 ? 0.9 1 0.4
40 0 0 ? 0.8 0 0.3

average these risks for all trial participants to obtain an
estimate of population disease risk on control (i.e., E (Y 0)).

We can then contrast these estimates as differences, ratios,
. . .
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Some Advantages

Focus on marginal treatment effect leads to a simple
interpretation
Same as comparing sample averages

No matter how complex logistic regression models are

More efficient than standard sample averages if age is
predictive for outcome

By contrasting disease risks for the same participants with and
without treatment, we gain precision.

31 / 41



Some Advantages

Focus on marginal treatment effect leads to a simple
interpretation
Same as comparing sample averages

No matter how complex logistic regression models are

More efficient than standard sample averages if age is
predictive for outcome

By contrasting disease risks for the same participants with and
without treatment, we gain precision.

31 / 41



Simulation Results

Results for binary outcome and risk difference under
correctly specified models

n Effect Estimator type Bias Power MSE RE

100 -0.201 Unadj. 0.025 0.463 0.829 1.000
Adj. 0.023 0.607 0.755 0.911

200 -0.201 Unadj. 0.010 0.821 0.864 1.000
Adj. -0.001 0.895 0.749 0.867

500 -0.126 Unadj. -0.013 0.798 0.979 1.000
Adj. -0.007 0.862 0.850 0.868

1000 -0.091 Unadj. 0.012 0.837 0.898 1.000
Adj. 0.020 0.892 0.817 0.910

Results from Benkeser et al. (2020) “Improving precision and power in

randomized trials for COVID-19 treatments using covariate adjustment, for

binary, ordinal, and time-to-event outcomes.” Biometrics.
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Data Analysis: MISTIE II trial (Stroke)

Participants were randomized to the treatment arm (surgical)
or control arm (standard medical care).

Randomization ratio was 2:1 treatment (66) to control (37).

Functional outcome: proportion of patients who achieved a
modified Rankin Scale score of 0-3 at 365 days (binary).

Estimand of interest: risk difference.

The following baseline variables are strongly associated with
the primary outcome: age, ICH volume, and National
Institutes of Health Stroke Scale (NIHSS).

(Hanley et al., 2016)
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Data Analysis: MISTIE II trial

Unadjusted estimator: difference between the observed
proportion of successes in treatment versus control.

Estimate: 12.0%
95% CI: −5.9% to 30.2%

Covariate adjusted estimator (TMLE)

Estimate: 14.4%
95% CI: 1.3% to 32.8%

The width of this confidence interval is 12.7% smaller than
that of the unadjusted estimator.

(Colantuoni and Rosenblum, 2015)
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What if models are misspecified?

What if relationship between age and outcome in treated patients
is not linear. . .

For simplicity, the outcome is continuous now 35 / 41
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What if models are misspecified?

In treatment arm: mean of predictions (under treatment) =
mean of observed outcomes,
regardless of whether your model is correct or not

Under randomization, this robustness against
misspecification also holds for mean of predictions (under
treatment) for all patients

⇒ Consistent estimator for E (Y 1), even when model is wrong.
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Potential of baseline covariates

Mean of predictions based on glm’s with canonical link and
intercept, fitted in both arms separately

Asymptotically unbiased estimator, even when outcome
regression model is wrong (robustness)

They overcome the concern as to whether covariate
adjustment (and possible misspecification of the model) is
appropriate in randomized experiments.

Model misspecification may reduce efficiency, but (almost)
never outperformed by unadjusted analyses (more efficient).
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Inference

Standard errors easy to calculate

1 Robust standard errors (Tsiatis et al., 2008; Rosenblum and
Van Der Laan, 2009; Ye et al., 2023):

Similar to variance of sample mean

1/n times sample variance of

2Z(Y − P̂1) + P̂1 − (2(1− Z)(Y − P̂0) + P̂0) for a mean
difference

Takes into account uncertainty in imputations

2 Non-parametric bootstrap

and are valid even when the model is misspecified (Vermeulen

et al., 2015)

Robust standard errors also valid when variable selection is
used (Avagyan and Vansteelandt, 2021).

38 / 41



Inference

Standard errors easy to calculate

1 Robust standard errors (Tsiatis et al., 2008; Rosenblum and
Van Der Laan, 2009; Ye et al., 2023):

Similar to variance of sample mean

1/n times sample variance of

2Z(Y − P̂1) + P̂1 − (2(1− Z)(Y − P̂0) + P̂0) for a mean
difference

Takes into account uncertainty in imputations

2 Non-parametric bootstrap

and are valid even when the model is misspecified (Vermeulen

et al., 2015)

Robust standard errors also valid when variable selection is
used (Avagyan and Vansteelandt, 2021).

38 / 41



Inference

Standard errors easy to calculate

1 Robust standard errors (Tsiatis et al., 2008; Rosenblum and
Van Der Laan, 2009; Ye et al., 2023):

Similar to variance of sample mean

1/n times sample variance of

2Z(Y − P̂1) + P̂1 − (2(1− Z)(Y − P̂0) + P̂0) for a mean
difference

Takes into account uncertainty in imputations

2 Non-parametric bootstrap

and are valid even when the model is misspecified (Vermeulen

et al., 2015)

Robust standard errors also valid when variable selection is
used (Avagyan and Vansteelandt, 2021).

38 / 41



Recommendations

Important to use predictions based on glm’s with canonical
link.

Otherwise we need slightly different approach (AIPW,
TMLE).

Use of baseline covariates raises concerns due to missing
data

Easily addressed: mean/mode imputation.

Without inflating risk of bias.

I haven’t covered all available methods

There are no other methods that have more power and have
the same robustness.
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What about hypothesis testing (p-value)?

Suppose we are fitting a generalised linear model with
pre-specified canonical link function g(·)

g{E (Y |Z ,X )} = β0 + β1Z + β2X ,

using maximum likelihood estimation.

Wald tests (using robust SE) based on

1 β̂1 (conditional), or
2 standardization with this model (marginal),

both control the Type I error rate and are equally powerful
in large samples (Rosenblum and Steingrimsson, 2016).

Enhanced standardization estimators (e.g., by fitting separate
outcome working models or by including a model for
randomization) have the potential for greater efficiency
gains.
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Thank you for your attention!

Interested? Paper with Frank Bretz and Oliver Dukes and Tutorials

E-mail: kelly.vanlancker@ugent.be
Website: kellyvanlancker.com
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Marginal and conditional estimands

Arguments made for marginal estimands

A single number with a (relatively) simple interpretation.

Yes, but we should not use that as an argument for a
unadjusted analysis.

Useful for making blanket policy decisions (e.g., should this
drug be approved?)

Yes, but only if target population is similar to trial population.

Less risk that model misspecification invalidates the analysis.

Used in defense of unadjusted analysis, or adjusted analysis for
marginal estimands.
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Marginal and conditional estimands

Arguments made for conditional estimands

A broader understanding of treatment effect, e.g. groups for
whom treatment may be especially beneficial.

Yes, but for this, the conditional estimands must be allowed to
differ (heterogeneity). This is not the case if no interactions
are included.

Conditional estimands are more relevant to an individual.

Estimators of conditional estimands are more precise.

This is an argument for adjusted analyses, rather than for
conditional estimands.

It is often argued that conditional estimands are more
transportable to different populations.
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