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ABSTRACT
Two commonly used methods for improving precision and power in clinical trials are stratified randomiza-
tion and covariate adjustment. However, many trials do not fully capitalize on the combined precision gains
from these two methods, which can lead to wasted resources in terms of sample size and trial duration.
We derive consistency and asymptotic normality of model-robust estimators that combine these two
methods, and show that these estimators can lead to substantial gains in precision and power. Our theorems
cover a class of estimators that handle continuous, binary, and time-to-event outcomes; missing outcomes
under the missing at random assumption are handled as well. For each estimator, we give a formula for a
consistent variance estimator that is model-robust and that fully captures variance reductions from stratified
randomization and covariate adjustment. Also, we give the first proof (to the best of our knowledge) of
consistency and asymptotic normality of the Kaplan–Meier estimator under stratified randomization, and
we derive its asymptotic variance. The above results also hold for the biased-coin covariate-adaptive design.
We demonstrate our results using data from three trials of substance use disorder treatments, where the
variance reduction due to stratified randomization and covariate adjustment ranges from 1% to 36%.
Supplementary materials for this article, including a standardized description of the materials available for
reproducing the work, are available as an online supplement.
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1. Introduction

A joint guidance document from the U.S. Food and Drug
Administration and the European Medicines Agency (FDA and
EMA 1998) states that “Pretrial deliberations should identify
those covariates and factors expected to have an important
influence on the primary variable(s), and should consider how
to account for these in the analysis to improve precision and to
compensate for any lack of balance between treatment groups.”
More recent regulatory guidance documents also encourage
consideration of baseline variables in order to improve precision
in randomized trials (EMA 2015; FDA 2020, 2021). There is a
rich literature on model-robust, statistical methods to adjust
for baseline variables and improve precision in randomized
trials that use simple randomization, for example, Koch et al.
(1998), Yang and Tsiatis (2001), Rubin and van der Laan (2008),
Tsiatis et al. (2008), Moore and van der Laan (2009a), Moore
and van der Laan (2009b), Zhang (2015), and Jiang et al.
(2018). However, less is known for trials that use other forms of
randomization. This is a practical concern since, as discussed
below, many clinical trials use other forms of randomization.

“Covariate-adaptive randomization” refers to randomization
procedures that take baseline variables into account when
assigning participants to study arms. The goal is to achieve bet-
ter balance across study arms in preselected strata of the baseline
variables compared to simple randomization (which ignores
baseline variables). For example, balance on disease severity, a
genetic marker, or another variable thought to be correlated with
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the primary outcome could be sought. The simplest and most
commonly used type of covariate-adaptive randomization is
stratified permuted block randomization (Zelen 1974), referred
to as “stratified randomization” throughout, for conciseness.

Compared with simple randomization, covariate-adaptive
randomization can be advantageous in minimizing imbalance
and improving efficiency (Efron 1971; Pocock and Simon 1975;
Wei 1978). Due to these benefits, covariate-adaptive randomiza-
tion has become a popular approach in clinical trials. According
to a survey by Lin, Zhu, and Su (2015), 183 out of their sample
of 224 randomized clinical trials published in 2014 in leading
medical journals used some form of covariate-adaptive random-
ization. Stratified randomization was implemented by 70% of
trials in this survey. Another method for covariate-adaptive ran-
domization is the biased-coin design by Efron (1971), which we
call “biased-coin randomization” throughout. Other examples
include Wei’s urn design (Wei 1978) and rerandomization (Mor-
gan and Rubin 2012). We only consider the following two types
of covariate-adaptive randomization: stratified randomization
and biased-coin randomization.

Concerns have been raised regarding how to perform valid
statistical analyses at the end of trials that use covariate-adaptive
randomization. Adjusting for stratification variables is recom-
mended (Lachin, Matts, and Wei 1988; Kahan and Morris 2012;
EMA 2015). However, this recommendation is not reliably car-
ried out. Kahan and Morris (2012) sampled 65 published trials
from major medical journals from March to May 2010 and
found that 41 implemented covariate-adaptive randomization

© 2021 American Statistical Association
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(among which 29 used stratified randomization), but only 14
adjusted in the primary analysis for the variables used in the
randomization procedure. Furthermore, many results on how
to conduct the primary efficacy analysis in trials that use strat-
ified randomization require one to assume a correctly specified
regression model for the outcome given study arm assignment
and baseline variables, for example, Shao, Yu, and Zhong (2010),
Shao and Yu (2013), Ma, Hu, and Zhang (2015), Ma et al. (2018),
and Yang et al. (2020). Our focus is on model-robust estimators,
that is, estimators that do not require such an assumption when
there is no missing data or when outcome data are missing
completely at random. We also consider a related property when
data are missing at random, for estimators that involve multiple
working models.

Yang and Tsiatis (2001) showed that the analysis of covari-
ance (ANCOVA) estimator (both with and without treatment by
baseline variable interactions) is consistent and asymptotically
normal under simple randomization, and that this holds under
arbitrary misspecification of the linear regression model used
to construct the estimator. Analogous results for the ANCOVA
estimator were shown by Bugni, Canay, and Shaikh (2018, 2019)
under a variety of covariate-adaptive randomization procedures
that include stratified and biased-coin randomization; however,
their results only allow adjustment for the variables used in the
randomization procedure. The proofs of our results build on
key ideas from their work as described below. Ye, Shao, and
Zhao (2020a) and Ye, Yi, and Shao (2020b) extended the results
of Bugni, Canay, and Shaikh (2018, 2019) to allow adjustment
for additional baseline variables. The results of Li and Ding
(2020) and Liu and Yang (2020) for the ANCOVA estimator
are robust to arbitrary misspecification of the linear regression
model; however, they use the randomization inference frame-
work while many clinical trials are analyzed using the super-
population inference framework (as done here); see Robins
(2002) for a comparison of these frameworks. All of the results
in this paragraph are for the ANCOVA estimator, and so do
not apply to logistic regression models for binary outcomes
nor to commonly used models for time-to-event outcomes. Ye
and Shao (2020) derived asymptotic distributions for log-rank
and score tests in survival analysis under covariate-adaptive
randomization; however, estimation was not addressed.

For trials using stratified or biased-coin randomization, to
the best of our knowledge, it was an open problem to determine
(in the commonly used superpopulation inference framework
and without making parametric model assumptions) the large
sample properties of estimators such as the following: covari-
ate adjustment for binary outcomes using logistic regression,
the mixed-effects model for repeated measures (MMRM) esti-
mator, and the Kaplan-Meier estimator for survival outcomes.
We derived the large sample properties for these (and other)
estimators, which we think can be important for the analy-
sis of clinical trials. For example, binary and time-to-event
outcomes are commonly used in clinical trials. According to
a survey by Austin et al. (2010) of trials published in lead-
ing medical journals in 2007, 74 out of 114 trials involved
binary or time-to-event outcomes. As we show in our data
analyses, the addition of baseline variables beyond those used
for stratified randomization can lead to substantial precision
gains.

Under regularity conditions, we prove that a large class of
estimators is consistent and asymptotically normally distributed
in randomized trials that use stratified or biased-coin random-
ization, and we give a formula for computing their asymptotic
variance. This class of estimators consists of all M-estimators
that are consistent under simple randomization. Examples are
listed in Section 4. We prove analogous results for the Kaplan–
Meier (K-M) estimator (Kaplan and Meier 1958) of the survival
function. Underlying these results is our general technique for
characterizing the large sample behavior of asymptotically lin-
ear estimators under stratified or biased-coin randomization,
described in Section 7.

Our theorems imply that under standard regularity con-
ditions, whenever an estimator in our class is consistent and
asymptotically normally distributed under simple random-
ization, then it is consistent and asymptotically normally
distributed under stratified (or biased-coin) randomization.
Also, its influence function is the same regardless of whether
data are generated under simple, stratified or biased-coin ran-
domization. This can be advantageous since for many estimators
used to analyze randomized trials, their influence functions
have already been derived under simple randomization. An
estimator’s influence function can be input into our formula (4)
to produce a consistent variance estimator under stratified and
biased-coin randomization.

As in the aforementioned work, we assume that the random-
ization procedure and analysis method have been completely
specified before the trial starts, as is typically required by reg-
ulators (FDA and EMA 1998; EMA 2015; FDA 2020, 2021).

In the next section, we describe three trial examples to which
we apply our methods. In Section 3, we describe our setup, nota-
tion and assumptions. We present our main results in Section 4.
In Section 5, we give example estimators for continuous and
binary outcomes to which our general results apply. In Section 6,
we present asymptotic results for the Kaplan–Meier estimator
for time-to-event outcomes. Trial applications are provided in
Section 7. Practical recommendations and future directions are
discussed in Section 8.

2. Three Completed Trials That Used Stratified
Randomization

In some cases, the outcomes in our analyses differ from the
primary outcomes in the corresponding trials. This is because
we wanted similar outcomes across trials for illustration.

2.1. Buprenorphine Tapering and Illicit Opioid Use
(NIDA-CTN-0003)

The trial of “Suboxone (Buprenorphine/Naloxone) Taper: A
Comparison of Two Schedules” trial in the National Drug
Abuse Treatment Clinical Trials Network (NIDA-CTN-0003),
is a phase-3 randomized trial completed in 2005 (Ling et al.
2009). The goal was to compare the effects of a short or long
taper schedule after buprenorphine stabilization of patients
with opioid use disorder. Patients were randomized into
two arms: 28-day taper (control, 259 patients, 36% missing
outcomes) and 7-day taper (treatment, 252 patients, 21%
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missing outcomes), stratified by maintenance dose (3 levels)
measured at randomization. The outcome of interest is a binary
indicator of whether a participant’s urine tested at the end of
the study is opioid-free (encoded as 0) or not (encoded as
1). In addition to the stratification variable, we adjust for the
following baseline variables: sex, opioid urine toxicology results,
the Adjective Rating Scale for Withdrawal (ARSW), the Clinical
Opiate Withdrawal Scale (COWS) and the Visual Analog Scale
(VAS).

2.2. Buprenorphine/Naloxone Treatment Plus Individual
Drug Counseling (NIDA-CTN-0030)

The Two-Phase Randomized Controlled Clinical Trial of
Buprenorphine/Naloxone Treatment Plus Individual Drug
Counseling for Opioid Analgesic Dependence (NIDA-CTN-
0030) is a phase-3 randomized trial completed in 2013 (Weiss
et al. 2011). The goal was to determine whether adding
individual drug counseling to the prescription of buprenor-
phine/naloxone would improve outcomes for patients with
prescription opioid use disorder. Though this study adopted
a 2-phase adaptive design, we focus on the first phase, in which
patients were randomized into standard medical management
(control, 330 patients, 10% missing outcomes) or standard
medical management plus drug counseling (treatment, 335
patients, 13% missing outcomes). Randomization was stratified
by the presence or absence of (i) a history of heroin use and
(ii) current chronic pain, resulting in 4 strata. The outcome of
interest is the proportion of positive urine laboratory results
among all tests (treated as a continuous outcome between 0
and 1). Among all 5 urine laboratory tests during the first 4
weeks of phase I, if a patient missed two consecutive visits, then
the outcome is regarded as missing. We included the following
baseline variables in the analysis: randomization stratum, age,
sex and urine laboratory results.

2.3. Internet-Delivered Treatment for Substance Use
Disorders (NIDA-CTN-0044)

The phase-3 randomized trial Web-delivery of Evidence-Based,
Psychosocial Treatment for Substance Use Disorders (NIDA-
CTN-0044) was completed in 2012 (Campbell et al. 2014).
The goal was to evaluate the effectiveness of a web-delivered
behavioral intervention, Therapeutic Education System (TES),
in the treatment of substance use disorder. Participants were
randomly assigned to two arms: treatment as usual (control,
252 participants, 19% missing outcomes) and treatment as usual
plus TES (treatment, 255 participants, 18% missing outcomes).

Randomization was stratified by site, patient’s primary sub-
stance of use (stimulant or nonstimulant) and abstinence status
at baseline. Unfortunately, the available dataset for this trial did
not include the site variable. Our analyses and claims in Sec-
tion 7 assume that the only randomization strata are the patient’s
primary substance of use and abstinence status at baseline (4
levels overall). Our theorems imply that ignoring one or more
randomization stratum variables leads to conservative variance
estimates when using our variance formulas, as explained in
Section 8.

After randomization, each participant was followed for 12
weeks with 2 urine laboratory tests per week. The outcome of

interest is the proportion of positive urine lab results among all
tests (treated as a continuous outcome between 0 and 1). If a
participant missed visits of more than 6 weeks, then the outcome
is regarded as missing. We adjust for randomization stratum and
the following additional baseline variables: age, sex, and urine
laboratory result.

We also analyze a second outcome: time to abstinence,
defined as the time to first two consecutive negative urine tests
during the study. Censoring time is defined as the first missing
visit. We used the data from the first 6 weeks of follow-up in our
data analysis of this time-to-event outcome, during which 99%
of the events occurred.

3. Definitions and Assumptions

3.1. Data-Generating distributions

We focus on two-arm randomized trials that use simple, strati-
fied or biased-coin randomization. Let n denote the sample size.
For each participant i = 1, . . . , n, let Yi denote the primary
outcome, Mi denote whether Yi is observed (Mi = 1) or
missing (Mi = 0), Ai denote study arm assignment (Ai = 1 if
assigned to treatment and Ai = 0 if assigned to control), and Xi
denote a vector of baseline covariates. This notation is for real-
valued outcomes, for example, continuous or binary outcomes.
Modified definitions, assumptions, and results for time-to-event
outcomes are in Section 6.

We use the Neyman–Rubin potential outcomes framework
(Neyman, Dabrowska, and Speed 1990), which assumes the
existence of potential outcomes Yi(0) and Yi(1) for each par-
ticipant i. These represent the outcome that would be observed
under assignment to study arm 0 or 1, respectively. We make the
following consistency assumption linking the observed outcome
Yi to the potential outcomes: Yi = Yi(Ai) = Yi(1)Ai+Yi(0)(1−
Ai) for each participant i. Also, let Mi(a) be the indicator of
whether participant i would have a nonmissing outcome if they
get assigned to study arm a ∈ {0, 1}. We assume, analogous
to the consistency assumption above, that Mi = Mi(Ai) =
Mi(1)Ai + Mi(0)(1 − Ai).

For each participant i, we define the full data vector
(including potential outcomes, some of which are not observed)
W i = (Yi(1), Yi(0), Mi(1), Mi(0), Xi) and the observed data
vector Oi = (Ai, Xi, YiMi, Mi). The reason that the product
YiMi appears in Oi is to encode that whenever the outcome
is missing (Mi = 0), the outcome value Yi is not available
in Oi; also, including YiMi in Oi is useful in simplifying the
estimating equations for some of our examples, as described in
the supplementary materials.

We make the following assumptions on the distribution of
{W1, . . . , Wn}:

Assumption 1. (i) W i, i = 1, . . . , n are independent, identi-
cally distributed samples from an unknown joint distribu-
tion P on W = (Y(1), Y(0), M(1), M(0), X).

(ii) Missing at random: M(a)⊥⊥Y(a)|X for each arm a ∈ {0, 1},
where ⊥⊥ denotes independence.

Throughout, we use E to denote the expectation with respect
to distribution P.
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3.2. Randomization Procedures: Simple, Stratified, and
Biased-Coin

First consider simple randomization, which assigns study arms
A1, . . . , An by independent Bernoulli draws each with fixed
probability π of being 1, for example, using a random num-
ber generator. By design, the draws are independent of each
other and of all participant characteristics measured before
randomization or not impacted by randomization. Therefore,
we have that (A1, . . . , An) is independent of (W1, . . . , Wn), and
that the observed data O1, . . . , On are independent, identically
distributed.

Next consider stratified or biased-coin randomization, where
treatment allocation depends on predefined baseline strata, such
as gender, age, site, disease severity, or combinations of these. We
refer to the baseline strata that are used in the randomization
procedure as “randomization strata.” The baseline stratum of
participant i is denoted by the single, categorical variable Si tak-
ing K possible values. For example, if randomization strata are
defined by 4 sites and a binary indicator of high disease severity,
then S has K = 8 possible values. Let Si denote the stratification
variable for participant i and let S = {1, . . . , K} denote the set
of all K randomization strata. The goal of stratified or biased-
coin randomization is to achieve balance in each stratum; that is,
the proportion of participants assigned to the treatment arm is
targeted to the prespecified proportion π ∈ (0, 1), for example,
π = 0.5. Throughout, the stratification variable S is encoded
in the baseline covariate vector X using K − 1 dummy variables
that make up the first K−1 components of X (which can include
additional baseline variables).

Stratified randomization uses permuted blocks to assign
treatment. For each randomization stratum, a randomly
permuted block with fraction π 1’s (representing treatment)
and (1 − π) 0’s (representing control) is used for sequential
allocation. When a block is exhausted, a new block is used.

Biased-coin randomization can be applied when π = 0.5 and
it allocates participants sequentially by the following rule for k =
1, . . . , n:

P(Ak = 1|S1, . . . , Sk, A1, . . . , Ak−1)

=

⎧⎪⎨
⎪⎩

0.5, if
∑k−1

i=1 (Ai − 0.5)I{Si = Sk} = 0
λ, if

∑k−1
i=1 (Ai − 0.5)I{Si = Sk} < 0

1 − λ, if
∑k−1

i=1 (Ai − 0.5)I{Si = Sk} > 0

where λ ∈ (0.5, 1], I{Z} is the indicator function that has
value 1 if Z is true and 0 otherwise, and by convention the first
participant is assigned with probability 0.5 to each arm. Our
results for biased-coin randomization assume that π = 0.5.

When comparing the three types of randomization proce-
dures (simple, stratified, or biased-coin), we assume that all use
the same value of π . For the stratified randomization and biased-
coin designs, it follows by construction (and was shown by
Bugni, Canay, and Shaikh 2018) that the study arm assignments
(A1, . . . , An) are conditionally independent of the participant
baseline variables and potential outcomes (W1, . . . , Wn) given
the randomization strata (S1, . . . , Sn). Intuitively, this is because
the study arm assignment procedure only has access to the
participants’ randomization strata. Under stratified or biased-
coin randomization, the observed data vectors O1, . . . , On are
not independent.

Under any of the three randomization procedures, the
observed data vectors O1, . . . , On are identically distributed;
that is, the distribution of O1 is the same as that of O2, etc. Let
P∗ denote this distribution, that is, the distribution of a generic,
observed data vector O = (A, X, YM, M). This distribution
is the same for each of the three randomization procedures,
and is that induced by first drawing a single realization
W = (Y(1), Y(0), M(1), M(0), X) from the distribution
P (see Assumption 1), then drawing A as an independent
Bernoulli draw with probability π of being 1, and lastly applying
the consistency assumptions Y = Y(1)A + Y(0)(1 − A)

and M = M(1)A + M(0)(1 − A) to construct Y , the
(non)-missingness indicator M, and their product YM. The
corresponding expectation with respect to P∗ is denoted E∗,
which is used below. The claims in this paragraph are proved in
the supplementary material.

3.3. Targets of Inference (Estimands) and Estimators

For continuous and binary outcomes, our goal is to estimate
a population parameter �∗, which is a contrast between the
marginal distributions of Y(1) and Y(0). For example, �∗ can
be defined as the population average treatment effect E[Y(1)]−
E[Y(0)].

We consider M-estimators of �∗ (van der Vaart 1998,
chap. 5). Let θ = (�, β t)t denote a column vector of p + 1
parameters where � ∈ R is the parameter of interest and
β ∈ R

p is a column vector of p nuisance parameters. We define
the M-estimator θ̂ = (�̂, β̂ t

)t to be the solution to the following
estimating equations:

n∑
i=1

ψ(Ai, Xi, Yi, Mi; θ) = 0, (1)

where ψ is a column vector (with p + 1 components) of known
functions. We define �̂ to be the estimator of �∗. We assume
that ψ(A, X, Y , M; θ) does not depend on the outcome Y when
M = 0 (since then Y is missing). Many estimators used in
clinical trials can be expressed as solutions to estimating equa-
tions (1) for an appropriately chosen estimating function ψ ; see
Sections 4 and 5 for examples.

For time-to-event outcomes, the K-M estimator of the sur-
vival curve is commonly used. Since it is not an M-estimator,
our general result (Theorem 1) for M-estimators below does
not apply. We separately prove analogous results for the K-M
estimator; see Section 6.

We assume regularity conditions similar to the classical con-
ditions that are used for proving consistency and asymptotic lin-
earity of M-estimators for independent, identically distributed
data, as given in (van der Vaart 1998, sec. 5.3). One of the con-
ditions is that E∗[ψ(A, X, Y , M; θ)] = 0 has a unique solution
in θ , which is denoted as θ = (�, β t)t . The other regularity
conditions are given in the supplementary material.

We assume that the estimating equations ψ were chosen to
ensure that the property �∗ = � holds. This property is gen-
erally needed to show consistency of the M-estimator �̂ for �∗
under simple randomization, and has previously been proved
for all of the estimators in Section 5.2. In general, whether the
property �∗ = � holds does not depend on the randomization
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procedure (simple, stratified, or biased-coin randomization);
this is because the property depends only on ψ , P and P∗.

Results in (van der Vaart 1998, sec. 5.3) imply that under
simple randomization, given Assumption 1 and the regularity
conditions in the supplementary material, �̂ converges in prob-
ability to � and is asymptotically normally distributed with
asymptotic variance that we denote by Ṽ . We focus on deter-
mining what happens under stratified or biased-coin random-
ization, where our main result (Section 4) is that consistency and
asymptotic normality still hold but the asymptotic variance may
be smaller (and a consistent variance estimator is given).

4. Main Result for M-estimators

Consider the setup in Section 3.3, where the M-estimator �̂ is
defined. The proof of the following theorem (and all results in
the paper) is given in the supplementary material:

Theorem 1. Assume the regularity conditions in the supplemen-
tary material, �∗ = �, and Assumption 1. Then under simple,
stratified, or biased-coin randomization, we have consistency,
that is, �̂ → �∗ in probability, and asymptotic linearity, that is,

√
n(�̂ − �∗) = 1√

n

n∑
i=1

IF(Ai, Xi, Yi, Mi) + op(1), (2)

where the influence function IF(A, X, Y , M) is the first entry of

−B−1ψ(A, X, Y , M; θ) for B = E∗
[

∂
∂θ

ψ(A, X, Y , M; θ)

∣∣∣
θ=θ

]
.

For stratified and biased-coin randomization,
√

n(�̂ −
�∗) d−→ N(0, V) for

V = Ṽ − 1
π(1 − π)

E∗ [
E∗ {(A − π)IF(A, X, Y , M)|S}2] , (3)

where Ṽ = E∗{IF(A, X, Y , M)2} is the asymptotic variance
under simple randomization. The asymptotic variance V can be
consistently estimated by formula (4).

Theorem 1 implies that whenever an M-estimator �̂ is con-
sistent and asymptotically normally distributed under simple
randomization, then it is consistent and asymptotically nor-
mally distributed under stratified (or biased-coin) randomiza-
tion with equal or smaller asymptotic variance. Also, its influ-
ence function is the same regardless of whether data are gener-
ated under simple, stratified, or biased-coin randomization.

For the unadjusted estimator �̂ = ∑n
i=1 YiAi/

∑n
i=1 Ai −∑n

i=1 Yi(1 − Ai)/
∑n

i=1(1 − Ai), our Theorem 1 is equivalent
to (Bugni, Canay, and Shaikh 2018, theor. 4.1) under stratified
or biased-coin randomization. In the special case of continuous
outcomes, if the ANCOVA estimator is used with X = S, then
Theorem 1 is equivalent to the result in (Bugni, Canay, and
Shaikh 2018, sec. 4.2) under stratified or biased-coin random-
ization, though their results also handle other types of covariate-
adaptive randomization.

Theorem 1 extends the results of Bugni, Canay, and
Shaikh (2018) to handle the class of M-estimators, that is,
estimators calculated by solving estimating equations (1). This
includes, for example, the standardized logistic regression
estimator for binary outcomes (Example 1 of Section 5.2),

the DR-WLS estimator (Example 2 of Section 5.2), and the
maximum likelihood (ML) estimator corresponding to an
MMRM (Example 3 in Section 5.4). This class of estimators
also includes the inverse-probability-weighted estimator (IPW,
Robins, Rotnitzky, and Zhao 1994), the augmented inverse
probability weighted (AIPW) estimator (Robins, Rotnitzky,
and Zhao 1994; Scharfstein, Rotnitzky, and Robins 1999), and
targeted maximum likelihood estimators (TMLE) that converge
in 1-step (van der Laan and Gruber 2012), among others. Thus,
Theorem 1 covers estimators that handle various outcome
types, repeated measures outcomes, missing outcome data,
and covariate adjustment. Our proof relies on key ideas from
Lemmas B.1 and B.3 in the supplement of Bugni, Canay, and
Shaikh (2018).

In order to construct confidence intervals (CIs) and perform
hypothesis tests, one can use the following estimator for the
asymptotic variance V , which is the empirical counterpart of the
right-hand side of Equation (3):

V̂ = Ṽn − 1
π(1 − π)

En
[
En{(A − π)IF(A, X, Y , M)|S}2] , (4)

where Ṽn is the sandwich variance estimator of �̂ (Tsiatis 2007,
sec. 3.2), defined as the first-row first-column entry of{

En

[
∂

∂θ
ψ(A, X, Y , M; θ)

∣∣∣∣
θ=θ̂

]}−1

{
En

[
ψ(A, X, Y , M; θ̂)ψ(A, X, Y , M; θ̂)t]}{

En

[
∂

∂θ
ψ(A, X, Y , M; θ)

∣∣∣∣
θ=θ̂

]}−1,t
,

and En denotes expectation with respect to the empirical dis-
tribution of the observed data O1, . . . , On. Then a CI for �∗
can be constructed based on the normal approximation with
variance V̂/n. We show in the supplementary material that V̂
is a consistent estimator of V .

5. Example Estimators for Continuous and Binary
Outcomes

5.1. Definition of Model-Robustness

We consider three examples of M-estimators, to which The-
orem 1 can be applied. Each estimator uses working models,
that is, models used to compute the estimator, but that are not
assumed to be correctly specified. Each estimator involves an
outcome working model, defined as a model of the outcome
given study arm assignment and baseline variables. One of the
estimators (DR-WLS) also uses a working model for the proba-
bility of the outcome being missing given study arm assignment
and baseline variables.

We call an estimator “model-robust” if it is consistent and
asymptotically normal under arbitrary misspecification of the
outcome working model, when there are no missing data or the
outcome data are missing completely at random. The estimators
in all three examples have this model-robustness property under
each of the randomization procedures considered in this paper
(simple, stratified, and biased-coin). The DR-WLS estimator has
the further “double robustness” property of being consistent and
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asymptotically normal if at least one of its working models is cor-
rectly specified, when outcome data are missing at random. The
proofs of the above results are in the supplementary material.

5.2. Standardized Logistic Regression and DR-WLS

For estimators defined in Examples 1 and 2, the parameter of
interest, that is, �∗, is the average treatment effect defined as
E[Y(1)] − E[Y(0)], and we denote Z = (1, A, Xt)t . In Example
1, we assume no missing data.

Example 1. For binary outcomes, the standardized logistic
regression estimator �̂logistic is calculated by first fitting a
working model: P(Y = 1|A, X) = expit(β0 + βAA + β t

XX),
where expit(x) = 1/(1 + e−x), and getting the maximum
likelihood estimates (β̂0, β̂A, β̂ t

X)t . Then define �̂logistic =
1
n

∑n
i=1{expit(β̂0 + β̂A + β̂

t
XXi) − expit(β̂0 + β̂

t
XXi)}.

Equivalently, the estimator �̂logistic is the solution to estimating
Equations (1) letting

ψ(A, X, Y , M; θ) =
(

expit(β0 + βA + βt
XX) − expit(β0 + βt

XX) − �

{Y − expit(β0 + βAA + βt
XX)}Z

)
.

This estimator is mentioned as potentially useful in COVID-19
treatment and prevention trials in a recent FDA guidance (FDA
2020).

Example 2. When some outcomes are missing and the missing
at random assumption holds, then one can estimate �∗ by the
DR-WLS estimator, which generalizes the estimator in Example
1. The DR-WLS estimator can be used with binary or continuous
outcomes. The estimator is calculated by first fitting the logistic
regression working model:

P(M = 1|A, X) = expit(α0 + αAA + αt
XX) (5)

and getting the ML estimates (̂α0, α̂A, α̂t
X)t of parameters

(α0, αA, αt
X)t . Next, fit the following working model for the

outcome given study arm and baseline variables (from the
generalized linear model family):

E[Y|A, X] = g−1(β0 + βAA + β t
XX), (6)

with weights 1/expit(̂α0 + α̂AAi + α̂t
XXi) using only the data

with Mi = 1. Here the inverse link function is g−1(x) = x
for continuous outcomes and g−1(x) = expit(x) for binary
outcomes. Third, the DR-WLS estimator is

�̂DR−WLS = 1
n

n∑
i=1

{g−1(β̂0 + β̂A + β̂
t
XXi) − g−1(β̂0 + β̂

t
XXi)}.

The DR-WLS estimator can be expressed as the solution to
estimating equations (given in the supplementary material) of
the general form (1). For the DR-WLS estimator, we assume that
at least one of the two working models (5) and (6) is correctly
specified, and inf (a,x)∈(A,X ) P(M = 1|a, x) > 0, where (A,X )

is the support of (A, X).
The ANCOVA estimator and the standardized logistic

regression estimator are special cases of the DR-WLS estimator.
If there are no missing data, which means Mi = 1 for
i = 1, . . . , n, and the regression weights used to fit (6) are

constant, then �̂DR−WLS reduces to the ANCOVA estimator
for continuous outcomes and to �̂logistic for binary outcomes.
(The ANCOVA estimator for �∗ involves first fitting a linear
regression working model E[Y|A, X] = β0 + �A + β t

XX using
ordinary least squares and then letting �̂ be the estimate of �.)
The DR-WLS estimator can be generalized to allow the addition
of interaction terms in the model (6).

5.3. Asymptotic Results for Estimators in Examples 1 and 2

Under simple randomization and assuming that �∗ = �, con-
sistency and asymptotic normality for the estimators in Exam-
ples 1 and 2 have been proved by Scharfstein, Rotnitzky, and
Robins (1999) and Robins et al. (2007), respectively. Under strat-
ified or biased-coin randomization, Theorem 1 applies to these
estimators since each is an M-estimator. In particular, under
the conditions in the theorem, each of the three estimators is
consistent and asymptotically normal with asymptotic variance
that is consistently estimated by use disorder (4).

Under the additional conditions (a)–(c) listed in the corollary
below, for each estimator in Examples 1 and 2, its asymptotic
variance is the same regardless of whether simple, stratified, or
biased-coin randomization is used; also, the asymptotic variance
is consistently estimated by the sandwich variance estimator Ṽn.
Under such conditions, the estimators and their corresponding
sandwich variance estimators can be used to perform hypothesis
tests and construct CIs that are asymptotically correct.

Recall that we assume throughout that S is encoded by
dummy variables in X.

Corollary 1. Assume that �∗ = �, the regularity conditions
in the Supplementary Material, and Assumption 1. Consider
the standardized logistic regression estimator. If any of the
conditions (a)–(c) below holds, then under simple, stratified,
or biased-coin randomization, the estimator is consistent and
asymptotically normally distributed with asymptotic variance
V = Ṽ ; furthermore, the sandwich variance estimator is con-
sistent. Conditions:

(a) π = 0.5;
(b) the outcome regression model (6) includes indicators

for the randomization strata and also treatment-by-
randomization-strata interaction terms;

(c) the outcome regression model (6) is correctly specified.

The claims in Corollary 1 also hold for the DR-WLS esti-
mator if at least one of the two working models (5) and (6) is
correctly specified and inf (a,x)∈(A,X ) P(M = 1|a, x) > 0, where
(A,X ) is the support of (A, X).

5.4. MMRM for Repeatedly Measured Continuous
Outcomes

Example 3. Consider the scenario where the outcome is con-
tinuous and repeatedly measured at K > 1 visits, and the
mixed-effects model for repeated measures (MMRM) is used
(Mallinckrod et al. 2008). We define Y(a) = (Y1(a), . . . , YK(a))

and M(a) = (M1(a), . . . , MK(a)) for a = 0, 1, where for
each t = 1, . . . , K, Yt(a) is the potential outcome and Mt(a)
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is an indicator of whether Yt(a) is nonmissing at visit t under
assignment to study arm a. The notation in Section 3 is modified
by substituting Y(a) and M(a) for Y(a) and M(a), respectively.

We make Assumption 1 (i) but change Assumption 1 (ii)
from missing at random to missing completely at random, that
is, we assume that M(a)⊥⊥(Y(a), X) for a = 0, 1, and that M(1)

and M(0) are identically distributed. We further assume that
P(M1(a) = 1, . . . , MK(a) = 1) > 0 for a = 0, 1. The parameter
of interest is the average treatment effect at the last visit, that is,
�∗ = E[YK(1)] − E[YK(0)].

The MMRM working model (whose correct specification is
not assumed when establishing the model-robustness property
in the next paragraph) is defined as follows:

Yt = β0t + βAtA + βt
XX + εt , for each t = 1, . . . , K, (7)

where ε = (ε1, . . . , εK) is independent of (A, X) and has a
multivariate normal distribution with mean 0 and covariance
	. Under the working model, εi, i = 1, . . . , n, are assumed
to be independent, identically distributed draws from N(0, 	).
The working model uses an unstructured covariance matrix 	,
that is, the only assumption is that 	 is positive-definite (and
that 	 does not depend on A or X). Such model specifications
were also used by Mallinckrod et al. (2008), and Lane (2008).
The coefficients β0t , βAt , βX in (7) are fixed effects. As described
by Mallinckrod et al. (2008), the working model (7) is called
MMRM because it is derived from a linear mixed-effects model
that is similar to (7) but with random effects as well; the model
(7) results from marginalizing over the random components,
which then implicitly get represented in 	. Our results below
also hold when a different correlation structure, for example,
lag 1 autoregressive structure, is used in the working model.

The ML estimator β̂AK of the parameter βAK in the outcome
working model (7) is a model-robust M-estimator for �∗, that
is, consistent and asymptotically normal under arbitrary mis-
specification of model (7), under the regularity conditions for
M-estimators in the supplementary material; this holds under
simple, stratified or biased-coin randomization. The MMRM
working model assumptions in the previous paragraph, which
include for example, that E∗[Y|A, X] is linear in (A, X) and ε =
Y −E∗[Y|A, X] is independent of (A, X), are not needed for this
model-robustness property to hold. We give the corresponding
estimating equations, influence function, and proofs in the sup-
plementary material.

An alternative and commonly used estimator for �∗ is the
restricted maximum likelihood (REML) estimator. Under sim-
ple randomization and a correctly specified model (7), the ML
estimator and REML estimator are asymptotically equivalent
on the n1/2–scale (Das 1979; Jiang 2017, p.17). To the best of
our knowledge, it remains an open question whether this holds
under model misspecification and/or other randomization pro-
cedures (such as stratified or biased-coin randomization).

If we consider a larger working model than (7) where we
allow 	 to depend on the baseline variables, then it is an open
question whether the ML estimator β̂AK is model-robust. Under
a correctly specified MMRM model (7), Cnaan, Laird, and
Slasor (1997) stated that the MMRM estimator is consistent and
asymptotically normal under the missing at random assumption

when simple randomization is used. Whether this claim extends
to stratified or biased-coin randomization is an open question.

6. Estimators Involving Time-to-Event Outcomes

6.1. Notation and Assumptions

For time to event outcomes, we use slightly modified notation
and assumptions compared to above. We assume that the out-
come is right-censored. Let Yi denote the failure time and Mi
denote the censoring time. Other variables including Ai, Xi and
the potential outcomes Yi(a), Mi(a) for a = 0, 1 are defined
analogously as in Section 3. For each participant i ∈ {1, . . . , n},
we observe (Ai, Xi, Ui, δi), where Ui = min{Yi, Mi} and δi =
I{Yi ≤ Mi}. We further define a restriction time τ such that
the time window t ∈ [0, τ ] is of interest. We define P∗ and
E∗ analogously as in Section 3.2, except here they represent the
distribution and expectation, respectively, for a single observed
data vector (A, X, U, δ).

The following assumption is made in place of Assumption 1:
Assumption 1’.

(i) W i, i = 1, . . . , n are independent, identically distributed
samples from an unknown joint distribution P on W =
(Y(1), Y(0), M(1), M(0), X).

(ii) Censoring completely at random: M(a)⊥⊥Y(a) for each
arm a ∈ {0, 1}.

(iii) P(min{Y(a), M(a)} > τ) > 0 for each a = 0, 1.

Compared with Assumption 1, Assumption 1’(i) is the same
as Assumption 1(i), and Assumption 1’(ii) assumes censoring
completely at random instead of missing at random. This mod-
ification of the assumption on missing data is because we con-
sider the K-M estimator and its consistency generally requires
Assumption 1’(ii). Assumption 1’(iii) is often made in survival
analysis, which states that there is a positive probability that both
the failure time and censoring time occur after τ (under each
study arm assignment).

6.2. Kaplan–Meier Estimator Under Simple, Stratified, and
Biased-Coin Randomization

One commonly used method for survival analysis is the K-M
estimator. The goal is to estimate the survival curve {S(a)

0 (t) :
t ∈ [0, τ ]} for each a = 0, 1, where S(a)

0 (t) = P(Y(a) > t). This
represents the survival curve if everyone in the study population
were assigned to study arm a. The K-M estimator is defined as
follows:

Ŝ(a)
n (t) =

∏
j:Tj≤t

(
1 −

∑n
i=1 δiI{Ai = a}I{Ui = Tj}∑n

i=1 I{Ai = a}I{Ui ≥ Tj}
)

,

where {Tj, j = 1, . . . , mn} is the list of unique observed failure
times.

While the K-M estimator does not adjust for any baseline
variable, its variance under simple randomization is typically
different than under stratified or biased-coin randomization,
and this is not accounted for by standard methods for estimating
its variance. Specifically, the standard method for variance esti-
mation will typically overestimate the K-M variance under strat-
ified or biased-coin randomization, leading to wasted power.
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Our variance estimator below avoids this problem. Since the
K-M estimator estimates a survival function rather than a real
number or a vector, our Theorem 1 on M-estimators does not
apply. The following theorem gives the asymptotic distribution
of the K-M estimator under our three different types of random-
ization. It involves the influence function IF(a)(Ai, Ui, δi; t) for
the K-M estimator under simple randomization (Kosorok 2008,
Section 4.2), which is also given in the supplementary material.

Theorem 2. Given Assumption 1’, under simple, stratified, or
biased-coin randomization, we have for each t ∈ [0, τ ] that

√
n(̂S(a)

n (t)−S(a)
0 (t)) = 1√

n

n∑
i=1

IF(a)(Ai, Ui, δi; t)+op∗(1), (8)

where op∗(1) represents a sequence of random variables con-
verging to 0 in probability uniformly over t ∈ [0, τ ].

For stratified and biased-coin randomization, the process
{√n(̂S(a)

n (t) − S(a)
0 (t)) : t ∈ [0, τ ]} converges weakly to a mean

0, tight Gaussian process with covariance function V(a)(t, t′)
defined in the supplementary material, which has the following
property: for any t ≤ τ ,

V(a)(t, t) = Ṽ(a)(t, t) (9)

− 1
π(1 − π)

E∗
[

E∗ {
(A − π)IF(a)(A, U, δ; t)|S

}2
]

,

where Ṽ(a)(t, t) is the asymptotic variance under simple ran-
domization. V(a)(t, t) can be consistently estimated as described
in the supplementary material.

Analogous to Theorem 1, Theorem 2 implies that the influ-
ence function of the K-M estimator is the same under simple,
stratified, and biased-coin randomization. The above theorem
implies that under stratified or biased-coin randomization, the
K-M estimator is consistent and asymptotically normally dis-
tributed with equal or smaller asymptotic variance than under
simple randomization. The asymptotic covariance function of
the K-M estimator under stratified or biased-coin randomiza-
tion is given in Appendix C of the supplementary material.
It can be used to construct pointwise CIs and a simultaneous
confidence band.

The challenge in proving Theorem 2 is that the traditional
tool for deriving asymptotic normality in survival analysis, that
is, martingale central limit theorems such as (Andersen et al.
2012, theor. II.5.1) or (Fleming and Harrington 2011, theor.
5.1.1 ), is not applicable here because of the dependence among
data points introduced by stratified or biased-coin randomiza-
tion. To overcome the above difficulty, in the proof of Theo-
rem 2, we first developed a central limit theorem for sums of ran-
dom functions under stratified randomization (Lemma 5 in the
supplementary material) based on the empirical process results
of Shorack and Wellner (2009) combined with generalizations of
the techniques from Bugni, Canay, and Shaikh (2018). We then
proved Theorem 2 by generalizing the arguments in our proof
of Theorem 1 to handle random functions. We conjecture that,
using our central limit theorem, Theorem 2 can be generalized
to apply to other estimators of survival functions, such as the
covariate-adjusted estimators proposed by Lu and Tsiatis (2011)
and Zhang (2015), which may improve precision even further.

6.3. Other Estimators for Time-to-Event Outcomes

Another parameter of interest is the restricted mean survival
time, defined as �∗ = E[min{Y(1), τ } − min{Y(0), τ }]. One
covariate adjusted estimator of the restricted mean survival time
is the AIPW estimator of Moore and van der Laan (2009b).
This estimator is an M-estimator, to which our Theorem 1
applies. When the survival probability at a given time point is
the parameter of interest, one can use the K-M estimator or the
method from Moore and van der Laan (2009b).

7. Clinical Trial Applications

7.1. Binary and Continuous Outcomes

Table 1 summarizes our data analyses involving binary and
continuous outcomes. The outcome is binary for NIDA-CTN-
0003 and is continuous for NIDA-CTN-0030 and NIDA-CTN-
0044. In all cases, the target of inference is the average treatment
effect defined as E[Y(1)] − E[Y(0)].

All missing baseline values were imputed by the median
for continuous variables and mode for binary or categorical
variables. The only estimator in Table 1 that adjusts for miss-
ing outcomes is the DR-WLS estimator; all other estimators
omit data from the participants with missing outcomes. Nega-
tive (positive) estimates are in the direction of clinical benefit
(harm). For all estimators presented in Table 1, the 95% CI
is constructed using the normal approximation with variance
calculated from formula (4).

For NIDA-CTN-0003, the outcome is binary and “adjusted
estimator” in Table 1 refers to the standardized logistic regres-
sion estimator. The unadjusted point estimate is −0.104 with
95% CI (−0.204, −0.004). If randomization strata and addi-
tional baseline variables are adjusted for (as in the row “Adjusted
estimator (X)” in Table 1), the point estimate is unchanged
but the 95% CI (−0.184, −0.024) is substantially smaller. The
corresponding variance reduction due to covariate adjustment,
defined as one minus the variance ratio of “Adjusted estimator
(X)” to the unadjusted estimator, is 36%. This is equivalent to
needing 36% fewer participants to achieve the same power as a
trial that uses the unadjusted estimator, asymptotically.

NIDA-CTN-0030 and NIDA-CTN-0044 had continuous-
valued outcomes and “Adjusted estimator” in Table 1 refers to

Table 1. Summary of clinical trial data analyses with each cell giving the point
estimate and 95% CI of an estimator.

Clinical Trial:

NIDA-CTN-0003 NIDA-CTN-0030 NIDA-CTN-0044

Unadjusted
estimator

−0.104(−0.204, −0.004) 0.015(−0.023, 0.052) −0.093(−0.149, −0.038)

Adjusted
estimator (S)

−0.110(−0.209, −0.009) 0.015(−0.022, 0.052) −0.089(−0.145, −0.033)

Adjusted
estimator (X)

−0.104(−0.184, −0.024) 0.012(−0.022, 0.046) −0.087(−0.142, −0.032)

DR-WLS
estimator (X)

−0.099(−0.180, −0.019) 0.012(−0.022, 0.045) −0.091(−0.148, −0.035)

NOTES: Each row is for a different estimator. “Adjusted estimator” refers to the standardized
logistic estimator for the trial with binary outcome (Column 2) and to the ANCOVA estimator
for the trials with continuous outcomes (Columns 3 and 4). The variable in parentheses after
the estimator name indicates which variables (if any) are adjusted for, with S denoting the
randomization strata only and X denoting the randomization strata and additional baseline
variables.
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Figure 1. The K-M estimator of survival function for NIDA-CTN-0044 treatment group. The solid line is the estimated survival function. Dashed and dotted lines, respectively,
represent CIs using the standard method and CIs accounting for randomization strata using (9); the dashed and dotted lines are very similar and almost coincide. “Variance
Reduction” and the associated percentages represent the variance reduction due to accounting for stratified randomization using (9).

the ANCOVA estimator. Covariate adjustment brings 17% and
3% variance reduction for NIDA-CTN-0030 and NIDA-CTN-
0044, respectively, compared to the unadjusted estimator. In
all cases, the variance reduction from covariate adjustment is
larger when the baseline variables are more strongly prognostic
for (i.e., more strongly correlated with) the outcome.

In all three trials, the variance reduction due to adjusting for
baseline variables beyond S, defined by one minus the variance
ratio of “adjusted estimator (X)” and “adjusted estimator (S),”
is the same (to the nearest percent) as the corresponding
variance reduction comparing “adjusted estimator (X)” to
the unadjusted estimator. This is expected for the ANCOVA
estimator since Bugni, Canay, and Shaikh (2018) showed that
“adjusted estimator (S)” and the unadjusted estimator are
asymptotically equivalent when the randomization probability
π = 0.5. Also, in all three trials, the “DR-WLS estimator (X),”
which handles missing outcomes under the missing at random
assumption, has a similar point estimate and 95% CI compared
to “adjusted estimator (X),” which omits missing outcomes.
We recommend using the DR-WLS estimator when outcomes
have missing values and the missing at random assumption is
plausible.

We next compare the estimated variance (and resulting CIs)
based on the sandwich variance estimator versus the variance
estimator (4). For the unadjusted estimator, using the sand-
wich variance estimator instead of formula (4) may lead to
conservative variance estimates, as implied by Theorem 1. For
example, for NIDA-CTN-0044, the 95% CI of the unadjusted
estimator constructed by formula (4) is (−0.149, −0.038), while
the 95% CI calculated using the sandwich variance formula is
(−0.162, −0.025), which is 23% wider. The former 95% CI is
asymptotically correct assuming outcomes are missing com-
pletely at random, an assumption that is generally needed for
the unadjusted estimator to be consistent. Furthermore, the
variance of the unadjusted estimator calculated by formula (4)
(which is consistent) is 34% smaller than the variance calculated
by the sandwich variance estimator (which is conservative). In
contrast, for the adjusted estimator or the DR-WLS estimator,
since all three trials have randomization probability π = 0.5,

the sandwich variance estimator is not conservative; this follows
from Corollary 1.

7.2. Time-to-Event Outcome

Figure 1 presents the K-M estimator for time-to-abstinence in
the treatment group as defined in Section 2.3 for study NIDA-
CTN-0044. We estimated the variance of the K-M estimator in
two different ways: one ignored the stratification variable and
was the estimated variance returned by the “survfit” function
in R; the other used our proposed variance formula that takes
the stratification into account. For each of the two variance
estimators, we constructed corresponding point-wise CIs for the
K-M estimator.

While Figure 1 shows that CIs based on different variance
estimators are very close to each other, there are variance reduc-
tions due to accounting for stratification, which can be trans-
lated into sample size reduction needed to achieve the desired
power. The variance reduction ranges from 1% to 12% as we
consider the survival function at different time points. Among
all time points, the first time point (one week after randomiza-
tion) has the greatest variance reduction. The variance formula
(9) from Theorem 2 accounts for the improved precision due to
stratified randomization (unlike standard methods that ignore
stratification variables); this can be used to construct more pow-
erful hypothesis tests based on the K-M estimator divided by
its standard error. The corresponding figure and results for the
control group are given in the supplementary material and are
qualitatively similar to those described above for the treatment
group.

8. Discussion

The primary efficacy analysis in confirmatory randomized tri-
als is typically based on a treatment effect estimator that is
asymptotically linear under simple randomization; that is, for
an appropriately chosen influence function IF, the estimator
has the form (2) when estimating a scalar/vector or (8) when
estimating a function such as a survival curve. All estimators in
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this article have this property, and we proved for each estimator
covered by Theorems 1 and 2 that under stratified and biased-
coin randomization, it is asymptotically linear with the same
influence function as under simple randomization. We then
gave formulas (3) and (9) for the asymptotic variance under
stratified (and biased-coin) randomization in terms of the influ-
ence function.

Though our theorems cover a variety of estimators used to
analyze randomized trials, they do not handle every estimator.
However, our results point to a general approach for deriving
the asymptotic behavior under stratified and biased-coin ran-
domization of any estimator that is known to be asymptoti-
cally linear under simple randomization. The approach is to (a)
conjecture that under stratified and biased-coin randomization
it is asymptotically linear with the same influence function as
under simple randomization; (b) prove this, which may need
to be tailored to the estimator, for example, using techniques as
shown in the supplementary material for M-estimators and the
K-M estimator; (c) apply results from the supplementary mate-
rial (Proposition 1 or Lemma 5) to show that the asymptotic
variance is given by (3) for scalar/vector parameters or by (9) for
functions. An area of future research is to apply this approach to
the estimators of Lu and Tsiatis (2011) and Zhang (2015) that use
covariate adjustment to improve precision of the K-M estimator.

Our asymptotic results, just as many asymptotic results under
the commonly used superpopulation inference framework for
randomized trials, assume that the number of randomization
strata is fixed and the number of participants in each stratum
goes to infinity. This may be a reasonable approximation when
no stratum has a small number of participants. In our data
examples, the smallest stratum has 49 participants. An area of
future research is to consider cases where some randomization
strata have few participants.

In our data analyses of NIDA-CTN-0044, the stratification
variable “site” was not available in our dataset. It was therefore
neither used in the estimators nor in the corresponding variance
estimates. The variance formulas (3) and (9) in this case are
asymptotically conservative. This is because the outer expecta-
tion in the rightmost terms of these formulas are unchanged
or decreased if S is replaced by a coarsening of S (defined as
merging several randomization strata together in a preplanned
way, in the analysis); this follows from the conditional Jensen’s
inequality. This result may be useful more generally, for exam-
ple, when some strata are so small compared to the sample size
that stratum-specific evaluation of the empirical means En in (4)
and the corresponding estimator for (9) cannot be reliably done.
In such cases a pre-planned, coarsened stratum indicator could
be used and the resulting hypothesis test would still control Type
I error, asymptotically.

Stratified randomization is related to stratified sampling
designs, also called “two-phase sampling” (Sen 1988; Breslow
and Wellner 2007; Bai, Tsiatis, and O’Brien 2013). To the best
of our knowledge, asymptotic results for these designs do not
directly apply to our problem; a key difference is that asymptotic
results for stratified sampling designs often involve finite
population inference (commonly used in survey sampling),
while here we use superpopulation inference (commonly used
in analyzing randomized trials).

We provide R functions to calculate the variance for esti-
mators including those in Examples 1 and 2 and the K-M
estimator which are available on Github at https://github.com/
BingkaiWang/covariate-adaptive

Supplementary Materials

The Supplementary Material contains the regularity conditions for Theo-
rem 1, consistent estimators for the asymptotic variances in Theorems 1 and
2, proofs of all results, and additional data analysis for the K-M estimator.
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