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and they were combined into one for logistic/efficiency reasons. Moreover, the t-statistics
for the effects of antioxidants and HRT are nearly statistically independent. If we knew the
population variances and substituted them for their estimates in the denominators of the
t-statistics, the test statistics would be completely independent. The analogy with separate
clinical trials is strong. Consequently, no multiple comparison adjustment was made for the
two comparisons.

Table 4.6: The Women’s Angiographic Vitamin and Estrogen (WAVE) trial was a 2 × 2 factorial trial

of antioxidants and hormone replacement therapy (HRT) in postmenopausal women with heart disease.

Women were randomized in equal proportions to the four cells.

Placebo HRT Active HRT
Placebo antioxidant
Active antioxidant

Factorial trials can have more than two levels of each factor or more than two factors. For
example, if the WAVE trial had included 3 levels of antioxidants (placebo, dose 1, and dose
2) and two levels of HRT, it would have been a 3× 2 factorial. If it had instead combined a
trial of another factor such as diet A versus diet B, it would have been a 2× 2× 2 factorial
trial.

A different multi-arm design compares k treatments to the same control arm. An ex-
ample is the Antihypertensive and Lipid-Lowering treatment to reduce Heart Attack (ALL-
HAT) trial described in Example 4.6. Three newer classes of antihypertensive drugs were
compared to a diuretic with a longer track record. Here, the k = 3 comparisons with the
diuretic are not statistically independent because the same control arm is used for all com-
parisons. A randomly ‘bad’ control arm might increase the probability of a false positive
for each comparison. For this reason, clinical trialists have traditionally made a multi-
ple comparison adjustment in this type of trial, as opposed to in a factorial trial. That
thinking began to change in the era of emerging infectious diseases like Ebola virus dis-
ease and COVID-19. One reason is that in a deadly pandemic, there is an urgent need to
find something that works. Adhering to an arguably unnecessary, austere level of rigor is
counterproductive. Moreover, pharmaceutical companies would have no incentive to join a
multi-armed trial that adjusts for multiple comparisons when they can perform their own
trial with no multiplicity adjustment. Still, if more than one dose of the same drug is com-
pared to a control, a multiple comparison adjustment is in order if a claim of efficacy could
be made based on at least one dose being beneficial. The simplest and most conservative
multiple comparison adjustment is the Bonferroni method with significance level α/k for
each of the k comparisons. This is based on the Bonferroni inequality P{∪iAi} ≤

∑
i P (Ai)

for any events A1, A2, . . . Chapter 10 contains more powerful alternative methods.

Another thing to bear in mind for comparisons with the same control arm is that the
sample size in the control arm is often made larger than the sample size in each other arm.
A heuristic explanation is as follows. If a patient is assigned to one of the other arms, power
for the comparison of that arm with control is increased, but if the patient is assigned to
the control arm, power for each comparison with control is increased. Of course, there is a
limit to how large the control arm should be; if all patients are assigned to control, there
are no comparisons! Likewise, if almost all patients are assigned to control, power is poor.

We can determine the allocation ratio that maximizes power for each comparison with
control as follows. Suppose that N patients are randomized to k comparator arms plus a
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control (a total of k+1 arms) in a trial comparing means. Let n0 and n denote the sample
sizes in the control and each of the other arms, respectively. The constraint is that

n0 + kn = N. (4.17)

Assume a common known variance σ2 in the different arms. Power for the comparison of
arm i to control (arm 0) is a decreasing function of var(Ȳi − Ȳ0) = σ2(1/n + 1/n0). We
would like to choose the control sample size minimizing 1/n+1/n0. From Equation (4.17),
n = (N − n0)/k. Therefore, we want to choose n0 to minimize k/(N − n0) + 1/n0. Even
though n0 must be an integer, replace it with a variable x that can take any value, and
minimize

k

N − x
+

1

x
(4.18)

with respect to x. Differentiating with respect to x and equating to 0 gives (N−x)/x = k1/2

which, after substituting n0 for x and using the constraint (4.17), leads to

n0 =
√
k n. (4.19)

That is, var(ȲT − ȲC) is minimized (and power is maximized) when the sample size is larger
in the control arm than in each other arm by a factor of the square root of the number of
non-control arms. In practice, there may be interest in comparisons between active arms
as well. For fixed total sample size, enlarging the control sample size compromises power
for comparisons of active arms. Therefore, some trials make n0/n larger than 1, but not as
large as k1/2, to increase power for control comparisons while maintaining reasonable power
for comparisons of active arms.

It may seem paradoxical, but increasing the control sample size n0 actually decreases the
correlation between the test statistics comparing different arms to control (again assuming
known common variance). The only reason these test statistics are correlated is because
they share the control arm, so increasing n0 seems like it would increase the correlation.
Think instead about the fact that a larger n0 makes Ȳ0 closer to a constant, namely its
expectation µ0. If Ȳ0 were exactly µ0, the test statistics would be completely independent.

Other multi-arm designs are more popular for phase II trials to determine which inter-
ventions have the most promise for a more definitive phase III trial. Multi-arm multi-stage
(MAMS) designs begin with several arms, but drop arms that do not meet a certain mini-
mum level of benefit compared to the control (see, for example, Royston, Parmar, and Qian,
2003; Barthel, Parmar, and Royston, 2009; Magirr et al. 2012; Wason and Jaki, 2012). A
simple example would be to drop any arm whose standardized z-score for comparison with
control is less than 0. It might seem that dropping bad arms should require comparable
multiple comparison adjustment to selecting the best treatments. However, this is not the
case. The amount of statistical adjustment required to control the familywise error rate is
much less when dropping arms not meeting a minimal level of efficacy.

Bayesian multi-arm designs are often used in platform trials, extensive duration trials
comparing multiple arms to a control. Bayesian trials use a different criterion for dropping
arms, often the posterior probability that an arm is best, or among the best, given data
observed thus far. See Section 9.7 for a brief discussion of Bayesian monitoring of clinical
trials. Bayesian platform trials are often accompanied by response-adaptive randomization
(RAR). See Section 5.7 for more details of RAR.

Exercises

1. A trial was conducted in heart patients with implantable cardiac defibrillators (ICDs),
devices implanted in the heart that record and correct life-threatening arrhythmias.
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