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Overview
• Part I:  Introductory Concepts

• Part II:  Evaluating Risk Models

• Part III:  Evaluating the Incremental Value of New 
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• Part V: Target Performance for Early Phase 
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Overview

• The focus of this short course is concepts 
rather than statistical details 
– we will not derive hypothesis tests or 

distributional results

– we will examine some mathematical expressions 
as we explore concepts
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Misconceptions about Biomarkers 
and Risk Models

• A large odds ratio implies that a biomarker is useful for 
prediction.

• A data analyst can identify the optimal threshold from an ROC 
curve.

• A data analyst can identify the optimal risk threshold from a 
Decision Curve.

• The best biomarker to improve a risk model is the one with 
strongest association with the outcome.

• To improve prediction, a new biomarker should be independent 
of existing predictors

• To assess whether to add new biomarker to a risk model, 
multiple stages of hypothesis testing are needed.

• We can often use biomarkers to identify which patients will 
benefit from treatment.
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Part I Topics

• Motivating and illustrative examples

• True and false positive rates (TPR, FPR)

• Predictive values (PPV, NPV)

• ROC curves and area under the curve (AUC)

• Risk models

• What is “personal risk”?
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Part 1 Overview

• Some examples

• To start: 1 marker X is binary (a “test”)

• Then:     1 marker X is continuous

• Multiple markers X, Y, …, and risk model 
P(bad outcome | X, Y, …)

6
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What is a Biomarker?

• DEF:  a quantitative or qualitative measure 
that is potentially useful to classify individuals 
for current or future status
– current → diagnostic marker

– future   → prognostic marker

• Includes biomarkers measured in biological 
specimens

• Includes imaging tests, sensory tests, clinical 
signs and symptoms, risk factors
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A brief history of Biomarker
• According to Lassere (Stat Methods Medical 

Research 2008):

– The term biomarker first appeared in a 1973 
paper on extraterrestrial biological markers.  

– In a medical context, the first incidence of 
biomarker in the literature was 1977.

– Most early papers on biomarkers were from 
cancer medicine.
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What is the purpose of a 
classifier or risk prediction tool?

• To inform subjects about risk

• To help make medical decisions
– Often:  identify individuals with high risk –

individuals at high risk of a clinical event have 
the greatest potential to benefit from an 
intervention that could prevent the event

– Sometimes:  identify individuals with low risk who 
are unlikely to benefit from an intervention

• To enrich a clinical trial with “high risk” 
patients

10
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Terminology and Notation

• “case” or “event” is an individual with the 
(bad) outcome

• “control” or “non-event” is an individual 
without the outcome
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case control

D=1 D=0

D 𝐷

D N

• X, Y  = potential predictors of D (biomarkers, 
demographic factors, clinical characteristics)

• Often:  X is “standard” predictor(s) and Y is a 
new biomarker under consideration

• risk(X) = r(X) = P( D=1 | X )
– risk(X,Y) = r(X,Y) = P( D=1 | X, Y)

• prevalence = P( D=1 ) = ρ (“rho”)

12

Terminology and Notation
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What is risk(X)?

• risk(x) ≡ P( D=1 | X=x ) is the frequency of 
events/disease among the group with X = x

• Risk is simply a population frequency.  
“Personal risk” is not completely personal!
– Will return to this at the end of Part I
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Example:  Coronary Artery 
Surgery Study (CASS)

• 1465 men undergoing coronary arteriography
for suspected coronary heart disease

• Arteriography is the “gold standard” measure 
of coronary heart disease
– Evaluates the number and severity of blockages  

in arteries that supply blood to the heart

• Simple cohort study

• Possible marker:  exercise stress test (EST)

• Possible marker:  chest pain history (CPH)
14
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Example: Breast Cancer 
Biomarkers

• Women with positive mammograms undergo 
biopsy, the majority turn out to be benign 
lesions

• Provides motivation to develop serum 
biomarker to reduce unnecessary biopsies 
(EDRN – early detection research network)
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Example:  Pancreatic Cancer 
Biomarkers

• 141 patients with either pancreatitis (n=51) or 
pancreatic cancer (n=90)

• Serum samples

• Two candidate markers:
– A cancer antigen CA-125

– A carbohydrate antigen CA19-9

• Which marker is better at identifying cancer?

• Is either marker good enough to be useful?
Wieand, Gail, James, and James Biometrika 1989
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Example:  Cardiovascular Disease

• Framingham study

• D = CVD event

• Y = high density lipoprotein

• X = demographics, smoking, diabetes, blood 
pressure, total cholesterol

• n = 3264, nD=183
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Simulated Data

• Artificial data are useful for 
exploring/illustrating methodology

• Artificial datasets we will use to illustrate 
some methods:
– Simulated data on DABS website

– Simulated data from R packages rmda (risk 
model decision analysis) and BioPET

– Normal and MultiNormal biomarker model
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Example:  Simulated data on DABS 
website

• n = 10,000, nD=1017

• X = continuous, 1-dimensional

• Y = continuous, 1-dimensional

• Search “Pepe DABS” or 
http://research.fredhutch.org/diagnostic-
biomarkers-center/
– “simulated risk reclassification dataset”

19

Example:  Simulated data in R 
packages

• n = 500, nD=60

• Four predictors:  sex, smoking status, 
Marker1, Marker2

• These simulated data appear in software 
demo (not in course notes)

20
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Normal Model with 1 Marker

• Biomarker X Normally distributed in controls
and in cases

X ~ N(0,1) in controls

X ~ N(μ,1) in cases

21Distribution of X when μ=1

Multivariate Normal Model with 2 
Markers (Bivariate Normal)

• Biomarkers (X1, X2) are bivariate Normally 
distributed in controls and in cases

�⃑� ~ 𝑀𝑉𝑁 0, Σ) in controls

�⃑� ~ 𝑀𝑉𝑁 𝜇, Σ) in cases

Σ 1 𝑟
𝑟 1
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In these examples, (X1, X2) has mean (0,0) in controls and mean (1,2) in 
cases.  We can visualize marker data in 2-dimensional space.

• Biomarkers (X1, X2) are bivariate Normally 
distributed in controls and in cases

�⃑� ~ 𝑀𝑉𝑁 0, Σ) in controls

�⃑� ~ 𝑀𝑉𝑁 𝜇, Σ) in cases

• This data model is useful in research because the 
logistic regression model holds for each marker and
for both markers together.
logit P(D=1| X1) is linear in X1

logit P(D=1| X2) is linear in X2

logit P(D=1|X1, X2) is linear in X1 and X2

24
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Generalization:  
Multivariate Normal Model

• Biomarkers (X1, X2, …, Xk) are multivariate 
Normally distributed in controls and in cases

�⃑� ~ 𝑀𝑉𝑁 0, Σ) in controls

�⃑� ~ 𝑀𝑉𝑁 𝜇, Σ) in cases

• The linear logistic model holds for every 
subset of markers

25

QUANTIFYING CLASSIFICATION 
ACCURACY (BINARY MARKER OR “TEST”)
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Terminology

• D = outcome (disease, event)

• Y = marker (test result)
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D=0 D=1

Y=0
true 

negative
false

negative

Y=1
false 

positive
true 

positive

Terminology

• D = outcome (disease, event)

• Y = marker (test result)
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D=0 D=1

Y=0
true 

negative
false

negative

Y=1
false 

positive
true 

positive
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Terminology
TPR = true positive rate = P[Y=1|D=1] = sensitivity

FPR = false positive rate = P[Y=1|D=0] = 1-specificity

FNR = false negative rate = P[Y=0|D=1] = 1-TPR

TNR = true negative rate = P[Y=0|D=0] = 1-FPR

Ideal test:  FPR=0 and TPR=1

29

• (FPR, TPR)

30

cost
Later, we will consider the 
costs associated with false 
positives

benefit
Later, we will consider the 
benefits of identifying a true 
positive
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Coronary Artery Surgery Study 
(CASS)
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Coronary Artery Disease
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Y=0 327 208

Y=1 115 815

442 1023

FPR=115/442=26%

TPR=815/1023=80%

What about Odds Ratios?

• Odds ratios are very popular:
– Because logistic regression is popular

– Odds Ratio estimable from case-control study

– OR ≈ relative risk for rare outcome

• 𝑂𝑅   

 

• Good classification (high TPR and low FPR) 
→ large odds ratio

• However, large odds ratio does NOT imply 
good classification!

32
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Good classification → large odds ratio

E.g., TPR=0.8, FPR=0.1

𝑂𝑅
0.8  0.9
0.1 0.2

36
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Coronary Artery Surgery Study (CASS)
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Coronary Artery Disease

D=0 D=1
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Y=0 327 208

Y=1 115 815

442 1023

FPR=115/442=26%

TPR=815/1023=80%

OR ≈ 11.1

OR is large but classification performance is mediocre.
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large odds ratio does NOT imply good classification!

• Need to report both FPR and TPR

• Collapsing into one number (e.g., OR) is not 
sufficient
– important information is lost

36
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Misclassification Rate

MR = error rate = P(Y ≠ D)

= P(Y=0, D=1) + P(Y=1, D=0)

= ρ(1-TPR)+(1- ρ)FPR

• ρ is the prevalence P(D=1)

• only appropriate if the cost of false positives 
equals the cost of false negatives
→ seldom appropriate in biomedical applications

37

Misclassification Rate

• There are two kinds of wrong decisions and 
the MR equates these.  
– “Accuracy”, which is 1─MR, similarly equates the 

two types of errors.

• In order to be clinically relevant we must 
consider the harms of each kind of error
– Part II

38
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• FPR, TPR condition on true status (D)

• they address the question:  “to what extent 
does the biomarker reflect true status?”

39

Predictive Values

Positive predictive value PPV=P(D=1|Y=1)

Negative predictive value NPV=P(D=0|Y=0)

• condition on biomarker results (Y)

• “Given my biomarker value is Y, what is the 
chance that I have the disease?”  This is the 
question of interest for patients and clinicians 
when interpreting the result of a biomarker or 
medical test

40
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Predictive Values

PPV and NPV are functions of TPR and FPR 
and the prevalence ρ

𝑃𝑃𝑉
𝜌 𝑇𝑃𝑅

𝜌 𝑇𝑃𝑅 1 𝜌 𝐹𝑃𝑅

𝑁𝑃𝑉
1 𝜌 1 𝐹𝑃𝑅

1 𝜌 1 𝐹𝑃𝑅 𝜌 1 𝑇𝑃𝑅
• TPR, FPR are properties of a test, but PPV, 

NPV are properties of a test in a population

• For low prevalence conditions, PPV tends to 
be low, even with very sensitive tests

41

Predictive Values - Example
A serious disease affects 1 in 10,000 in a population.

A company markets a screening test as “98% 
accurate” because both sensitivity and specificity have 
been estimated to be 98%.

Those who test positive are recommended to undergo 
an invasive procedure for definitive diagnosis.

Should there be general screening for the patient 
population?

42
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Predictive Values - Example
Disease affects 1 in 10,000 in a the population.

Test has sensitivity=specificity=98%.

A person from the population tests negative.  What is 
the probability that person is truly not diseased?

A person from the population tests positive.  What is 
the probability that person has the disease?

43

Predictive Values - Example
Disease affects 1 in 10,000 in a the population.

Test has sensitivity=specificity=98%.

What is the probability that person who tests negative 
is truly not diseased?

What is the probability that person who tests positive 
truly has the disease?

44
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Predictive Values - Example
A serious disease affects 1 in 10,000 in a the relevant  
population.

A company markets a screening test as “98% 
accurate” because both sensitivity and specificity have 
been estimated to be 98%.

Those who test positive are recommended to undergo 
an invasive procedure for definitive diagnosis.

Should there be general screening for the patient 
population?

NPV = 99.999%

PPV =  0.5%  (½ of 1%)
45

?

?
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False Discovery Rate

False Discovery Rate FDR=P(D=0|Y=1)

=1 – PPV
“False Positive Rate” and “False Discovery Rate” 
sound similar, but they are very different

•FPR:  among all those who are not diseased, 
how many were called positive

•FDR:  among all those called positive, how 
many were not actually diseased. 
•We will not use or further discuss FDR.

47

CONTINUOUS MARKERS:  ROC CURVES
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Motivation

• Most biomarkers are continuous

49

• Assume larger Y more indicative of disease
– otherwise replace Y with -Y

• Formally:  P( D=1 | Y ) increasing in Y

Convention

Receiver Operating 
Characteristic (ROC) Curve

• generalizes (FPR, TPR) to continuous 
markers

• considers rules based on thresholds “Y≥c”
– makes sense when P(D=1|Y) increasing in Y

• TPR(c)=P(Y ≥ c | D=1 )

• FPR(c)=P(Y ≥ c | D=0 )

• ROC(∙)={FPR(c), TPR(c) ; c  in (-∞,∞)}

50
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Receiver Operating Characteristic Curve
(ROC Curve)

Each point on the 
ROC curve 
corresponds to a 
threshold for 
declaring “marker-
positive.”

52

Marker Values
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Marker Values
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Marker Values
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Marker Values
 

 ABC Controls
Cases

0 0.5 1
0

0.2

0.4

0.6

0.8

1

A

B

C

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Properties of ROC curves
• non-decreasing from (0,0) to (1,1) as threshold 

decreases from c=∞ to c=  −∞

• ideal marker has control distribution completely 
disjoint from case distribution; ROC through (0,1)

• useless marker has ROC equal to 45 degree line

• doesn’t depend on scale of Y:  invariant to monotone 
increasing transformations of Y

• puts different markers on a common relevant scale

• shows entire range of possible performance
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CA-19-9 appears to be 
the more accurate 
diagnostic biomarker for 
pancreatic cancer

59

• for most FPR, CA-19-9 has the better 
corresponding TPR

• for most TPR, CA-19-9 has the better 
corresponding FPR

ROC limitations
• ROC curve summarizes (FPR, TPR) across all 

possible cut-points for the continuous marker
– Alternatively, (specificity, sensitivity)

– Aids in assessing:  How well can the marker discriminate 
between controls and cases ?

• While useful, ROC curves do not contain crucial 
information
– Prevalence

– Value of TP, Cost of FP

• →There is no way to determine an optimal cut-point 
from an ROC curve

60
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Summarizing ROC Curves:  AUC

• AUC is Area under ROC curve

• AUC = 0∫
1
ROC(t) dt = average(TPR)

– average is uniform over (0,1)

• Common summary of ROC curve
– sometimes called the c-index or c-statistic

• ideal marker:  AUC=1.0

• useless marker:  AUC=0.5

• A single number summary of a curve is 
necessarily a crude summary

• Commonly used to compare biomarkers 61

AUC:  probabilistic interpretation

• For a randomly selected case D and a 
randomly selected control N, 

AUC = P(YD > YN)

• AUC is interpretable, but its interpretations 
(as an area; as a probability) show that AUC 
is not clinically meaningful

62
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RISK PREDICTION

Risk Model: Huntington’s Disease

• Huntington’s Disease is caused by the gene 
HTT on human chromosome 4.  There is a 
CAG segment that is repeated 10-35 times in 
non-diseased individuals.  If the segment is 
repeated 36-120+ times, a person develops* 
Huntington’s Disease in middle-age.  The 
genetic abnormality is dominant ─ one 
abnormal gene causes disease.
– *40+ times:  always develop HD

– *36-39 times:  might not develop HD (ignoring this small possibility)

64
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Risk Model: Huntington’s Disease

• Relevant Population:  Individuals with a biological 
parent who has Huntington’s Disease

• Within this population, an individual has a 50% 
chance of developing HD depending on whether he 
or she inherited the abnormal or normal version of 
the gene from the affected parent.  

• P(D) =  ½  = ρ in this population.

65

Risk Model: Huntington’s Disease

• An individual can choose to have their HTT gene 
genotyped.  Say HTT=0 means 0 copies of 
abnormal gene; HTT=1 means 1 copy of abnormal 
gene.

• P( D | HTT=0)=0% ;    P( D | HTT=1)=100%.

• The marker HTT stratifies the patient population 
(risk=50%) into the subgroup with 0% risk and the 
subgroup with 100% risk.

66
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Risk model
• risk prediction model – gives a risk based on 

a marker value or a combination of markers

• Predicted risks are in the interval [0,1] and 
interpreted as probabilities

• It is rare that a risk model is definitive like the 
HD example
– In fact, because the genetic test for Huntington’s 

Disease is definitive, we might not think of it as a 
risk model

67

Risk model examples
• Most risk models combine information from 

multiple risk factors

• E.g., Gail model for breast cancer risk
– for use in women with no history of breast cancer

– Estimates 5-year risk of breast cancer based on 
current age, age at menarche, age at first birth, 
family history, race.

• E.g., Framingham CHD risk score
– Estimates risk of CHD based on age, sex, 

smoking status, total and HDL cholesterol, blood 
pressure

68
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Risk model examples

• E.g. STS risk score for dialysis following 
cardiac surgery is formed via:
– STS risk score = f(α + β1 Age + β2 Surgery Type + β3 

Diabetes + β4 MI Recent + β5 Race + β6Chronic Lung 
Disease + β7 Reoperation + β8NYHA Class + β9 

Cardiogenic Shock+  β10Last Serum Creatinine)

69

What is “personal risk”?

• Recall:  risk(x) ≡ P( D=1 | X=x ) is the 
frequency of events among the group with 
marker values x

• “Personal risk” is not completely personal!
– (next example)

70



Kerr SISCER 2022 Module 4: Part I

What is “personal risk”?
• Suppose the prevalence of D in “Population A” is 1%

– Without any additional information, the only valid risk 
prediction instrument is to assign everyone in the 
population risk=1%

• Suppose we have a marker X that tends to be 
higher in cases than controls

71Distribution of marker X in controls (blue) and cases (red)

What is “personal risk”?
• Alice is an individual in Population A.  Alice has X=1.

• We can calculate Alice’s risk(X=1)≈1.6%
– calculation uses Bayes’ rule

72Distribution of marker X in controls (blue) and cases (red)
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What is “personal risk”?
• Suppose the marker acts exactly the same in 

Population B.  The only difference between 
Populations A and B is that B has prevalence=10%. 

• Betty, an individual in Population B, has X=1.  
Betty’s risk is ≈15.5%

73Distribution of marker X in controls (blue) and cases (red)

What is “personal risk”?
• “Personal risk” is a term that is prone to be 

misconstrued

• Risk is personal in the sense that it is calculated 
from personal characteristics

• However, personal risk is not completely divorced 
from population characteristics.  The previous 
example shows that the population (specifically, the 
population prevalence) affects “personal” risk.

74
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What is “personal risk”?
• Occasionally one hears mention of estimating a 

person’s “individual risk” or “true personal risk.”

• Frequentist statisticians cannot really claim to do so.

• One might claim John’s “true risk” of a heart attack 
in the next 5 years is 7%.  But we can only observe 
John having or not having a heart attack in the next 
5 years.  I cannot observe John having a heart 
attack in 7% of 5-year periods from now.

• The best I can objectively claim is that “among 
people with John’s characteristics, 7% will have a 
heart attack in the next 5 years.”
– More than one way to define “people like John.”

75

Summary of Part I
• Example datasets

• FPR (1 – specificity), TPR  (sensitivity)

• PPV, NPV
– function of FPR, TPR and disease prevalence

• ROC curves

• AUC
– geometric interpretation as area under curve

– probability interpretation

• A risk model gives population frequencies:  
risk(X)=P(D=1|X)
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Misconceptions about Biomarkers 
and Risk Models

• A large odds ratio implies that a biomarker is useful for 
prediction.

• A data analyst can identify the optimal threshold from an ROC 
curve.

• A data analyst can identify the optimal risk threshold from a 
Decision Curve.

• The best biomarker to improve a risk model is the one with 
strongest association with the outcome.

• To improve prediction, a new biomarker should be independent 
of existing predictors

• To assess whether to add new biomarker to a risk model, 
multiple stages of hypothesis testing are needed.

• We can often use biomarkers to identify which patients will 
benefit from treatment.


