

Overview

- Part I: Introductory Concepts
- Part II: Evaluating Risk Models
- Part III: Evaluating the Incremental Value of New Biomarkers
- Part IV: Guidance on Developing Risk Models
- Part V: Target Performance for Early Phase Biomarker Research
- Part VI: Prognostic vs. Predictive Biomarkers

Overview

- The focus of this short course is concepts rather than statistical details

- we will not derive hypothesis tests or distributional results
- we will examine some mathematical expressions as we explore concepts

Misconceptions about Biomarkers and Risk Models

- A large odds ratio means a biomarker is useful for prediction.
- ROC curves are useful to identify the best biomarker cut-point.
- Decision curves are useful to identify the best risk threshold.
- To assess whether to add new biomarker to a risk model, multiple stages of hypothesis testing are needed.
- The best biomarker to improve a risk model is the one with strongest association with the outcome.
- To improve prediction, a new biomarker should be independent of existing predictors.
- We can often use biomarkers to identify which patients will benefit from treatment.

Part I Topics

- Motivating and illustrative examples
- True and false positive rates (TPR, FPR)
- Predictive values (PPV, NPV)
- ROC curves and area under the curve (AUC)
- Risk models
- What is "personal risk"?

Part 1 Overview

- Some examples
- To start: 1 marker X is binary (a "test")
- Then: 1 marker X is continuous
- Multiple markers $\mathrm{X}, \mathrm{Y}, \ldots$, and risk model P(bad outcome | X, Y, ...)

What is a Biomarker?

- DEF: a quantitative or qualitative measure that is potentially useful to classify individuals for current or future status
- current \rightarrow diagnostic marker
- future \rightarrow prognostic marker
- Includes biomarkers measured in biological specimens
- Includes imaging tests, sensory tests, clinical signs and symptoms, risk factors

A brief history of Biomarker

- According to Lassere (Stat Methods Medical Research 2008):
- The term biomarker first appeared in a 1973 paper on extraterrestrial biological markers

A search for porphyrin biomarkers in nonesuch shale and extraterrestrial samples

Joon H. Rho, A. J. Bauman, Heinz G. Boettger \& Teh Fu Yen
Space life sciences 4, 69-77 (1973) | Cite this article

- biomarker first appeared in the biomedical literature in 1977
- Most early biomarker papers were in cancer

What is the purpose of a classifier or risk prediction tool?

- To help make medical decisions
- Often: identify individuals with high risk - individuals at high risk of a clinical event have the greatest potential to benefit from an intervention that could prevent the event
- Sometimes: identify individuals with low risk who are unlikely to benefit from an intervention
- To enrich a clinical trial with "high risk" patients
- To inform subjects about risk
- Etc.

Guiding principle: evaluate a risk model in a way that relates to how it will be used

Terminology and Notation

- "case" or "event" is an individual with the (bad) outcome
- "control" or "non-event" is an individual without the outcome

Terminology and Notation

- $\mathrm{X}, \mathrm{Y}=$ potential predictors of D (biomarkers, demographic factors, clinical characteristics)
- Often: X is "standard" predictor(s) and Y is a new biomarker under consideration
- $\operatorname{risk}(X)=r(X)=P(D=1 \mid X)$
$-\operatorname{risk}(X, Y)=r(X, Y)=P(D=1 \mid X, Y)$
- prevalence $=P(D=1)=\rho$
("rho")

What is risk(X)?

- $\operatorname{risk}(x) \equiv P(D=1 \mid X=x)$ is the frequency of events/disease among the group with $\mathrm{X}=\mathrm{x}$
- Risk is simply a population frequency. "Personal risk" is not completely personal!
- Will return to this at the end of Part I

Example: Coronary Artery Surgery Study (CASS)

- 1465 men undergoing coronary arteriography for suspected coronary heart disease
- Arteriography is the "gold standard" measure of coronary heart disease
- Evaluates the number and severity of blockages in arteries that supply blood to the heart
- Simple cohort study
- Possible marker: exercise stress test (EST)
- Possible marker: chest pain history (CPH)

Example: Breast Cancer Biomarkers

- Women with positive mammograms undergo biopsy, the majority turn out to be benign lesions
- Provides motivation to develop serum biomarker to reduce unnecessary biopsies (EDRN - early detection research network)

Example: Pancreatic Cancer Biomarkers

- 141 patients with either pancreatitis ($\mathrm{n}=51$) or pancreatic cancer ($\mathrm{n}=90$)
- Serum samples
- Two candidate markers:
- A cancer antigen CA-125
- A carbohydrate antigen CA19-9
- Which marker is better at identifying cancer?
- Is either marker good enough to be useful?

Wieand, Gail, James, and James Biometrika 1989

Example: Cardiovascular Disease

- Framingham study
- $\mathrm{D}=\mathrm{CVD}$ event
- $\mathrm{Y}=$ high density lipoprotein
- X = demographics, smoking, diabetes, blood pressure, total cholesterol
- $\mathrm{n}=3264, \mathrm{n}_{\mathrm{D}}=183$

Simulated Data

- Artificial data are useful for exploring/illustrating methodology
- Simulated data on DABS website
- Simulated data from R packages rmda (risk model decision analysis) and BioPET
- Normal and MultiNormal biomarker model

Example: Simulated data on DABS website

- $\mathrm{n}=10,000, \mathrm{n}_{\mathrm{D}}=1017$
- $\mathrm{X}=$ continuous, 1 -dimensional
- $\mathrm{Y}=$ continuous, 1-dimensional
- Search "Pepe DABS" or http://research.fredhutch.org/diagnostic-biomarkers-center/
- "simulated risk reclassification dataset"

Example: Simulated data in R packages

- $\mathrm{n}=500, \mathrm{n}_{\mathrm{D}}=60$
- Four predictors: sex, smoking status, Marker1, Marker2
- Dataset used in software demo (not in course notes)

Normal Model with 1 Marker

- Biomarker X Normally distributed in controls and in cases

$$
\begin{gathered}
X \sim N(0,1) \text { in controls } \\
X \sim N(\mu, 1) \text { in cases }
\end{gathered}
$$

Distribution of X when $\mu=1$

Multivariate Normal Model with 2 Markers (Bivariate Normal)

- Biomarkers $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ are bivariate Normally distributed in controls and in cases

$$
\begin{gathered}
\vec{X} \sim \operatorname{MVN}(\overrightarrow{0}, \Sigma) \text { in controls } \\
\vec{X} \sim \operatorname{MVN}(\vec{\mu}, \Sigma) \text { in cases } \\
\Sigma=\left[\begin{array}{ll}
1 & r \\
r & 1
\end{array}\right]
\end{gathered}
$$

In these examples, $\left(X_{1}, X_{2}\right)$ has mean $(0,0)$ in controls and mean $(1,2)$ in cases. We can visualize marker data in 2-dimensional space.

22

- Biomarkers $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ are bivariate Normally distributed in controls and in cases

$$
\begin{gathered}
\vec{X} \sim \operatorname{MVN}(\overrightarrow{0}, \Sigma) \text { in controls } \\
\vec{X} \sim \operatorname{MVN}(\vec{\mu}, \Sigma) \text { in cases }
\end{gathered}
$$

- This data model is useful in research because the logistic regression model holds for each marker and for both markers together.
logit $P\left(D=1 \mid X_{1}\right)$ is linear in X_{1} logit $P\left(D=1 \mid X_{2}\right)$ is linear in X_{2} logit $P\left(D=1 \mid X_{1}, X_{2}\right)$ is linear in X_{1} and X_{2}

Generalization: Multivariate Normal Model

- Biomarkers ($\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{k}}$) are multivariate Normally distributed in controls and in cases

$$
\begin{gathered}
\vec{X} \sim \operatorname{MVN}(\overrightarrow{0}, \Sigma) \text { in controls } \\
\vec{X} \sim \operatorname{MVN}(\vec{\mu}, \Sigma) \text { in cases }
\end{gathered}
$$

- The linear logistic model holds for every subset of markers

QUANTIFYING CLASSIFICATION ACCURACY (BINARY MARKER OR "TEST")

Terminology

- $D=$ outcome (disease, event)
- $\mathrm{Y}=$ marker (test result)

Terminology

- D = outcome (disease, event)
- Y = marker (test result)

Terminology

$T P R=$ true positive rate $=P[Y=1 \mid D=1]=$ sensitivity

FPR = false positive rate $=P[Y=1 \mid D=0]=1$-specificity

FNR = false negative rate $=P[Y=0 \mid \mathrm{D}=1]=1-\mathrm{TPR}$

TNR = true negative rate $=\mathrm{P}[\mathrm{Y}=0 \mid \mathrm{D}=0]=1-\mathrm{FPR}$

Ideal test: $\mathrm{FPR}=0$ and $\mathrm{TPR}=1$

- (FPR, TPR)

cost
Later, we will consider the costs associated with false positives

benefit

Later, we will consider the benefits of identifying a true positive

Coronary Artery Surgery Study (CASS)

Coronary Artery Disease

Odds Ratios do not summarize predictive performance

- Odds ratios are very popular:
- Because logistic regression is popular
- Odds Ratio estimable from case-control study
$-\mathrm{OR} \approx$ relative risk for rare outcome
- $O R=\frac{T P R(1-F P R)}{F P R(1-T P R)}$
- Good classification (high TPR and low FPR) \rightarrow large odds ratio
- However, large odds ratio does NOT imply good classification.
- Need to report both FPR and TPR. Collapsing into one number (the OR) is not adequate.

Coronary Artery Surgery Study (CASS)

OR is large but classification performance is mediocre.
large odds ratio does NOT imply good classification!

FIGURE 1. Correspondence between the true-positive fraction (TPF) and the false-positive fraction (FPF) of a binary marker and the odds ratio. Values of (TPF, FPF) that yield the same odds ratio are connected.

Classification Accuracy

$$
\begin{aligned}
& \text { Accuracy }=P(Y=D) \\
& =P(Y=0, D=0)+P(Y=1, D=1) \\
& =\rho(T P R)+(1-\rho)(1-F P R)
\end{aligned}
$$

ρ is the prevalence, $P(D=1)$

- There are two kinds of errors (false positives and false negatives); accuracy treats them as equally bad.
- In order to be clinically relevant we must consider the harms of each kind of error.
- Accuracy is seldom an appropriate metric in any biomedical application
- FPR, TPR condition on true status (D)
- they address the question: "to what extent does the biomarker reflect true status?"

Predictive Values

Positive predictive value $P P V=P(D=1 \mid Y=1)$
Negative predictive value $N P V=P(D=0 \mid Y=0)$

- condition on biomarker results (Y)
- "Given my biomarker value is Y , what is the chance that I have the disease?" This is the question of interest for patients and clinicians when interpreting the result of a biomarker or medical test

Predictive Values

PPV and NPV are functions of TPR and FPR and the prevalence ρ

$$
\begin{gathered}
P P V=\frac{\rho T P R}{\rho T P R+(1-\rho) F P R} \\
N P V=\frac{(1-\rho)(1-F P R)}{(1-\rho)(1-F P R)+\rho(1-T P R)}
\end{gathered}
$$

- TPR, FPR are properties of a test, but PPV, NPV are properties of a test in a population
- For low prevalence conditions, PPV tends to be low, even with very sensitive tests

Predictive Values - Example

A serious disease affects 1 in 10,000 in a population.
A company markets a test as " 98% accurate" because both sensitivity and specificity are estimated to be 98\%.
Those who test positive are recommended to undergo an invasive procedure for definitive diagnosis.
Should there be general screening with this test in this population?

Predictive Values - Example

Disease affects 1 in 10,000 in a the population.
Test has sensitivity=specificity= 98%.
A person from the population tests negative. What is the probability that person is truly not diseased?
A person from the population tests positive. What is the probability that person has the disease?

Predictive Values - Example

Disease affects 1 in 10,000 in a the population.
Test has sensitivity=specificity=98\%.
What is the probability that person who tests negative is truly not diseased?
What is the probability that person who tests positive truly has the disease?

Important Subscriber Information Learn More

False Discovery Rate

False Discovery Rate FDR=P(D=0|Y=1)

$$
=1 \text { - PPV }
$$

"False Positive Rate" and "False Discovery Rate": sound very similar, but are very different -FPR: among all those who are not diseased, how many were called positive
-FDR: among all those called positive, how many were not actually diseased.
-We will not use or further discuss FDR.

CONTINUOUS MARKERS: ROC CURVES

Receiver Operating Characteristic (ROC) Curve

- generalizes (FPR, TPR) to continuous markers
- considers rules based on thresholds " $\mathrm{Y} \geq \mathrm{c}$ "
- makes sense when $P(D=1 \mid Y)$ increasing in Y
- $\operatorname{TPR}(c)=P(Y \geq c \mid D=1)$
- $\operatorname{FPR}(c)=P(Y \geq c \mid D=0)$
- ROC($\cdot)=\{\operatorname{FPR}(\mathrm{c}), \operatorname{TPR}(\mathrm{c}) ; \mathrm{c}$ in $(-\infty, \infty)\}$

Motivation

- Most biomarkers are continuous

Convention

- Assume larger Y more indicative of disease
- otherwise replace Y with $-Y$
- Formally: $P(D=1 \mid Y)$ increasing in Y

Properties of ROC curves

- non-decreasing from $(0,0)$ to $(1,1)$ as threshold decreases from $c=\infty$ to $c=-\infty$
- doesn't depend on scale of the marker: invariant to monotone increasing transformations
- puts different markers on a common relevant scale
- shows entire range of possible performance
- ideal marker has control distribution completely disjoint from case distribution; ROC through $(0,1)$
- useless marker has ROC equal to 45 degree line

Pancreatic cancer biomarkers (Wieand et al 1989)

CA-19-9 appears to be the more accurate diagnostic biomarker for pancreatic cancer

- for most FPR, CA-19-9 has the better corresponding TPR
- for most TPR, CA-19-9 has the better corresponding FPR

ROC limitations

- ROC curve summarizes (FPR, TPR) across all possible cut-points for the continuous marker
- Alternatively, (specificity, sensitivity)
- Aids in assessing: How well can the marker discriminate between controls and cases?
- While useful, ROC curves do not contain crucial information
- Prevalence
- Value of TP, Cost of FP
- \rightarrow There is no way to determine an optimal cut-point from an ROC curve

Summarizing ROC Curves: AUC

- AUC is Area under ROC curve
- AUC sometimes called the c-index or c-statistic
- $\mathrm{AUC}={ }_{0} \int^{1} \mathrm{ROC}(\mathrm{t}) \mathrm{dt}=\operatorname{average}(\mathrm{TPR})$
- average is uniform over $(0,1)$
- ideal marker: AUC=1.0
- useless marker: AUC=0.5
- A single number summary of a curve is necessarily a crude summary
- Commonly used to compare biomarkers

AUC: probabilistic interpretation

- For a randomly selected case D and a randomly selected control N ,

$$
A U C=P\left(Y_{D}>Y_{N}\right)
$$

- AUC is interpretable, but its interpretations (as an area; as a probability) show that AUC is not clinically meaningful

Risk Model: Huntington's Disease

- Huntington's Disease is caused by the HTT gene on human chromosome 4. There is a CAG segment that is repeated $10-35$ times in non-diseased individuals. If the segment is repeated 36-120+ times, a person develops* Huntington's Disease in middle-age. The genetic abnormality is dominant - one abnormal gene causes disease.
- *40+ times: always develop HD
- *36-39 times: might not develop HD (ignoring this small possibility)

Risk Model: Huntington's Disease

- Relevant Population: Individuals with a biological parent who has Huntington's Disease
- Within this population, an individual has a 50% chance of developing HD depending on whether he or she inherited the abnormal or normal HTT gene from the affected parent.
- $P(D)=1 / 2=\rho$ in this population.

Risk Model: Huntington’s Disease

- An individual can choose to have their HTT gene genotyped. Say HTT=0 means 0 copies of abnormal gene; HTT=1 means 1 copy of abnormal gene.
- $P(D \mid H T T=0)=0 \%$; $P(D \mid H T T=1)=100 \%$.
- The marker HTT stratifies the patient population (risk $=50 \%$) into the subgroup with 0% risk and the subgroup with 100% risk.

Risk model

- risk prediction model - gives a risk based on a marker value or a combination of markers
- Predicted risks are in the interval [0,1] and interpreted as probabilities
- It is rare that a risk model is definitive like the HD example
- In fact, because the genetic test for Huntington's Disease is definitive, we might not think of it as a risk model

Risk model examples

- Most risk models combine information from multiple risk factors
- E.g., Gail model for breast cancer risk
- for use in women with no history of breast cancer
- Estimates 5-year risk of breast cancer based on current age, age at menarche, age at first birth, family history, race.
- E.g., Framingham CHD risk score
- Estimates risk of CHD based on age, sex, smoking status, total and HDL cholesterol, blood pressure

Risk model examples

- E.g. STS risk score for dialysis following cardiac surgery is formed via:
- STS risk score $=f\left(\alpha+\beta_{1}\right.$ Age $+\beta_{2}$ Surgery Type $+\beta_{3}$

Diabetes $+\beta_{4}$ MI Recent $+\beta_{5}$ Race $+\beta_{6}$ Chronic Lung Disease $+\beta_{7}$ Reoperation $+\beta_{8}$ NYHA Class $+\beta_{9}$ Cardiogenic Shock+ β_{10} Last Serum Creatinine)

What is "personal risk"?

- Recall: $\operatorname{risk}(x) \equiv P(D=1 \mid X=x)$ is the frequency of events among the group with marker values x
- "Personal risk" is not completely personal! - (next example)

What is "personal risk"?

- Suppose the prevalence of D in "Population A " is 1%
- Without any additional information, the only valid risk prediction instrument is to assign everyone in the population risk=1\%
- We have a marker X that tends to be higher in cases than controls

What is "personal risk"?

- Alice is an individual in Population A. Alice has $X=1$.
- We can calculate Alice's risk $(X=1) \approx 1.6 \%$
- calculation uses Bayes' rule

Distribution of marker X in controls (blue) and cases (red)
67

What is "personal risk"?

- Suppose the marker acts exactly the same in Population B. The only difference between Populations A and B is that B has prevalence $=10 \%$.
- Betty, an individual in Population B, has $X=1$. Betty's risk is $\approx 15.5 \%$

What is "personal risk"?

- "Personal risk" is a term that is prone to be misconstrued
- Risk is personal in the sense that it is calculated from personal characteristics
- However, personal risk is not completely divorced from population characteristics. The previous example shows that the population (specifically, the population prevalence) affects "personal" risk.

What is "personal risk"?

- Occasionally one hears mention of estimating a person's "individual risk" or "true personal risk."
- Frequentist statisticians cannot really claim to do so.
- One might claim John's "true risk" of a heart attack in the next 5 years is 7%. But we can only observe John having or not having a heart attack in the next 5 years. I cannot observe John having a heart attack in 7\% of 5-year periods from now.
- The best I can objectively claim is that "among people with John's characteristics, 7\% will have a heart attack in the next 5 years."
- More than one way to define "people like John."

Summary of Part I

- Example datasets
- FPR (1 - specificity), TPR (sensitivity)
- PPV, NPV
- function of FPR, TPR and disease prevalence
- ROC curves
- AUC
- geometric interpretation as area under curve
- probability interpretation
- A risk model gives population frequencies:

$$
\operatorname{risk}(X)=P(D=1 \mid X)
$$

Misconceptions about Biomarkers

 and Risk Models

- A large odds ratio means a biomarker is useful for prediction. W
- ROC curves are useful to identify the best biomarker cut-point. X
- Decision curves are useful to identify the best risk threshold.
- To assess whether to add new biomarker to a risk model, multiple stages of hypothesis testing are needed.
- The best biomarker to improve a risk model is the one with strongest association with the outcome.
- To improve prediction, a new biomarker should be independent of existing predictors.
- We can often use biomarkers to identify which patients will benefit from treatment.

