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Risk Model Assessment

 Risk Model Calibration
— required for a risk model to be valid

— particularly crucial whenever a risk model will be
used to convey risk to patients

* Risk Model Discrimination Performance
— required for a risk model to be useful

— ldeally, performance assessment relates to how
the model will be used
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CALIBRATION

Calibration

* Arisk is a number of some import

— “based on my test results, the chance (risk) | have
the disease is 5%”

— “based on my age and family history, my chance of
a breast cancer diagnosis in the next 5 years is 1%”

* |n order to be valid, risks must be calibrated
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What does it mean for a risk model to be calibrated?

Type of Definition
Calibration

Mean Observed event rate equals average “calibration-in-the-
predicted risk large”
Weak No systematic overestimation or “logistic calibration”

underestimation of risks

Moderate Predicted risks correspond to Often the best we can
observed event rates assess with limited data
Strong For every combination of risk The ideal, but difficult to

factors, predicted risks correspond  assess
to observed event rates

Adapted from Van Calster et al, J Clinical Epidemiology, 2016 104

Mean Calibration

Also called “calibration-in-the-large”

Def: average predicted risk equals the
prevalence

To assess, compare event rate with average
predicted risk

— If 3% of the population are cases, then the risk
model has mean calibration if the average
predicted risk is 3%

Very low bar
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Weak Calibration

* Also called “Logistic calibration”

* Predicted risks are obtained from a previously developed model
for D (e.g., based on logistic regression); the linear combination
of predictors defines the “linear predictor” L=by+b, X; +... b, X,

* RegressDonlL: logit(P(D) |L)=a+blL

— ais the “calibration intercept”; b is the “calibration slope”

* Def:lIfa=0andb =1, the model is calibrated in the weak sense

* In data not used to fit the model, typically the calibration slope
b<1: large predicted risks are too high and low predicted risks
are too low

— (Rdemo)

Moderate Calibration

« Def: P(D = 1|risk(Xy, X)) =7) =71
— here, there are two risk factors X, and X,

* “collapses” data among groups of people with the
same predicted risk

* Common practice to assess: divide available data
into deciles based on predicted risks

* Compare event rate in a decile of individuals with
similar predicted risk - calibration curve
— Next slide: 1 risk model that has good calibration (in

the moderate sense); and 3 poorly calibrated risk
models
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Forecasts of rain: are the
risks well calibrated?

From The Signal and the Noise, Nate
Silver, The Penguin Press 2012.

FIGURE 4-8: THE WEATHER CHANNEL CALIBRATION
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FIGURE 4-7: NATIONAL WEATHER SERVICE CALIBRATION
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FIGURE 4-9: LOCAL TV METEOROLOGIST CALIBRATION
100%

90%
80%
70%
60%
50%
40%
30%
20%

10%¢

0% T T T T J
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Forecast Probability



Kerr SISCER 2023 Module 5: Part Il

how NOT to assess moderate calibration

Hosmer-Lemeshow test statistic
p-value from Hosmer-Lemeshow test

In small datasets, badly miscalibrated models
may not give a large H-L test statistic or a
significant p-value

In large datasets, small/unimportant deviations
from good calibration can produce large H-L test
statistic and small p-value

Calibration plots

* Can be sensitive to the choice of the groups,
choice of smoother, and other options
(beware of smooths that eliminate “outliers”)
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Strong Calibration

b Def: rlf.;k(Xl,Xz) == P(D=1|X1,X2)

* Must consider every unique combination of
predictors and ask whether observed and
predicted risks agree for people with that
combination

* Compared to calibration in the moderate sense,
does not “collapse” groups of people with the
same risk(X1, X,)

* Typically only feasible to assess when there are a
limited number of predictors and they are all
categorical

112

Example: Predicted risks for HD for those with 1 HD parent

Level | Definition No additional info: risk | Genotyped individuals:
is 50% for all risk is 0% or 100%

Observed event rate
equals average
predicted risk

Mean

No systematic over- or
under-estimation of
risks

Weak

Predicted risks
correspond to observed
event rates

Moderate

For every combination
of risk factors, predicted
risks correspond to
observed event rates

Strong
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3" risk model for Huntington’s disease

* Genotyping not available. Instead, flip a coin.
If heads, assign risk 75%. If tails, assign risk
25%.

* |s this risk model, which uses “data” from a
random coin flip, calibrated?
— Mean calibration?

— Moderate calibration?
— Strong calibration?

Calibration is not enough

* If the prevalence is p, a calibrated risk model
assigns everyone risk p.

* A risk model needs to do more: stratify people
into meaningful “low risk” and “high risk”
groups.

— Achieved perfectly by genotyping the HTT gene

among those at risk for Huntington’s disease, but
less perfectly for most applications.
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RISK MODEL DISCRIMINATION

Risk Model Performance

We will discuss three classes of assessment

* Generic measures

— “purely mathematical”

* meaning: they do not directly translate to any clinical,
public health, or public policy impact of using the risk model

* Assessing performance when model will be used
to recommend treatment/intervention to high
risk individuals

* Assessing performance for prognostic enrichment
of clinical trials
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The Distribution of Risk

* Case (D=1) and control (D=0) risk distributions
are fundamental components of all
performance measures

* When examining risk distributions, useful to
include any conventional thresholds for
deciding who is “high risk”

* The logit scale may be more convenient than
the O to 1 risk scale

* Next slide: risk model for simulated data from
DABS website

Distribution of Predicted Risks, 20% risk threshold
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For Cases and Controls

—— Controls
b —— Cases
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Risk
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Distribution of Risk on Logit Scale
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GENERIC MEASURES OF RISK MODEL
PERFORMANCE (MEASURES THAT DO
NOT USE A RISK THRESHOLD)
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MRD, AARD, AUC

* MRD = Mean Risk Difference
* AARD = Above Average Risk Difference
e AUC = Area Under the ROC Curve

These are measures of discrimination. They
guantify:

How well does the risk model
discriminate/separate cases and controls?

Mean Risk Difference (MRD)

MRD = mean(risk(X) | case)-mean(risk(X) | control)

* Also known as Yates’ slope

* Equals PEV = Proportion of Explained Variation = R? =
var(risk(X))/var(D)

* Change in MRD for two nested models also known as
IDI=Integrated Discrimination Improvement Index

For the DABS data example, mean(risk|case)=0.391,
mean(risk | cntl)=0.069; MRD=0.322
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Above Average Risk Difference (AARD)

AARD = P(risk(X)>p |case) - P(risk(X)>p| control)
AARD =0.797 - 0.198 = 0.599 in the DABS example

* Can also write as: HRp(p) - HR5(p)
— or TPR(p) - FPR(p)

* Related to Net Benefit metrics (will come to these soon)
— NB(r)=p HRp(r)-(1- p)éHRg(r); set r=p and divide by p

AUC for a Risk Model

AUC = Area Under the ROC Curve =P( risk_,.(X) > risk_(X) )

case
* Ignores the meaning of risk
* AUC not a clinically relevant measure of predictive
performance
— Arguably roughly similar to MRD in terms of clinical relevance
* Rather than AUC, it might be more clinically relevant to

average TPR over a relevant range of FPR (rather than
entire range)

— pAUC
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ROC Curve for a risk model

* A disadvantage of ROC curves for risk models
is that the curve does not show the risk
threshold corresponding to each (FPR, TPR).

* The next slide shows an alternative plot that
addresses this disadvantage.

Specitciy

As an alternative to ROC, plot TPR and FPR
versus risk threshold
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Example: Models to identify melanoma patients
with very low risk of death

* Melanoma is the most serious type of skin cancer,
but most patients have a high chance of survival

* Study of early-stage melanoma. Goal: use cancer
registry data to identify a subset with very low
risk of death from melanoma (<0.5% 7-year risk
of death)

* We developed two classification tree models and
one logistic regression model, and evaluated on
independent data.

— Eguchi et al, Cancer (2023)

128

* The logistic model has much better AUC than
the classification trees.

* Yet, for the goal of identifying patients at very
low risk of death, the classification trees are
more promising.

Model Proportion of
AUC Sample with | Number in

Low Risk of Subset | Risk of melanoma death

Death, N (%) that Died in subset (95% CI)
Training data (N=7652)
Model 1A: CART model with 3 leaves 0.73 2707 (35%) 12 0.44% (0.25%, 0.77%)
Model 1B: CART model 5 leaves 0.74 1950 (25%) 3 0.15% (0.05%, 0.45%)
Model 2: Logistic model, risk of death < 0.5% 0.80 1896 (25%) 9 0.47% (0.25%, 0.90%)
Testing data (N=3942)
Model 1A: CART model with 3 leaves 0.64 1381 (35%) 8 0.58% (0.29%, 1.14%)
Model 1B: CART model with 5 leaves 0.61 993 (25%) 4 0.40% (0.16%, 1.03%)

Model 2: Logistic model, risk of death < 0.5% 0.78 969 (25%) 5 0.52% (0.22%, 1.20%)

129
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EVALUATING A RISK MODEL FOR
RECOMMENDING TREATMENT

Risk-based decisions

* Sometimes the purpose of a risk model is to
inform who should be treated
— e.g., screen high-risk individuals for cancer

— e.g., treat individuals who are at high risk of a heart
attack with statins

— e.g., treat cancer patients with high risk of relapse
with adjuvant chemotherapy

* What risk threshold should define “high risk”?
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Benefits and Costs of Treatment

* Assume there is some expected benefit B to
treating a case
— life extended, morbidity reduced

* Assume there is some cost C to treating a
control
— cost includes side effects of treatment,

stress/anxiety, toxic exposures, as well as
monetary cost

Choice of Risk Threshold

Classical Decision Theory Result

Treatment offers benefit B to a case and cost Cto a
control. Then the optimal risk threshold r, for
selecting high-risk patients for treatment is

C C
- — & — =
"WE ¥R T B

TH
1—1y

Pauker and Kassierer, The threshold approach to clinical decision making. NEJM
1980.

Vickers and Elkin, Decision Curve Analysis. Medical Decision Making 2006.
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Choice of Risk Threshold
QOutline of derivation:
C C Ty
ry = o —

C+B B 1-ry
When should patients choose treatment?
* When expected result of treatment >0
* E(benefit|D=1,X)P(D=1]|X)-E(cost|D=0,X)P(D=0]X)>0
B-P(D=1|X)-C-P(D=0|X) >0
B-P(D=1]|X) > C-P(D=0]X)
P(D=1|X) C

>
1—P(D=1|X) ~ B

Choice of Risk Threshold

Specifying a Cost-Benefit ratio C/B implies a
rational choice of risk threshold.

Equivalently, a risk threshold is rational when it
corresponds to the Cost/Benefit ratio.



Kerr SISCER 2023 Module 5: Part Il

Choice of Risk Threshold: Example 1

20% risk threshold for treatment is equivalent to

—=0.2
C+B

C 02 _0.2_025
B 1-02 08

The cost of treating a control equals 1/4t" the benefit of
treating a case.

The benefit of treating a case is four times larger than the
cost of treating a control.

Choice of Risk Threshold: Example 2

Gail (JNCI, 2009) evaluated risk models for
breast cancer in terms of decisions about
prophylactic tamoxifen use in 50-59 year old
white women. Tamoxifen can reduce the risk of
breast cancer but increases the risk of other
serious diseases. Under some strong
assumptions, Gail estimated

C/B =0.0077 - r, =0.0076 per year
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Net Benefit of a Risk Model

Let r,, be the appropriate risk threshold to define
“high risk” and recommend for treatment.

Key elements:
HRp(ry) = P(r(X)>r, | D=1)

— essentially, TPR of the risk model at the risk threshold
HRp(ry) = P(r(X)>r, | D=0)

— essentially, FPR of the risk model at the risk threshold

Next we calculate the net benefit of using the risk
model and r, to decide treatment in the population.
We assume r, has been rationally selected, i.e. r,
corresponds to the benefits and costs of treatment

138

Net Benefit of a Risk Model

Overall population impact of the risk model -
combines HRp(r,) and HRp(r,) :

NB(r,)=B P(D=1) HRp(r,) - C P(D=0) HR5(r,,)
=B {P(D=1) HRp(r,) - — P(D=0) HR5(ry,) }

1-ry

= P(D=1) HRp(r,) - —% P(D=0) HR5(r,)

1-ry
In the last expression, Net Benefit is interpreted “in units of B”

B = expected benefit of treatment for a case
C = expected cost of treatment for a control
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Net Benefit Example: DABS simulated data

* Dis CVD over 10 years
— P(D=1)=10.17%
— Marker X
* Suppose r =20%:
— HRp(ry) =65.2%
— HRp(r,) = 8.9%
— NB(r,)=0.046 - benefit of statins to subject who
would have a CVD event without them

140

Standardized Net Benefit

NB(r,) = P(D=1) HRp(r,) - —2—P(D=0) HR5(r,)

1-ry
Maximum value of NB is P(D=1) = p
* The best we can do is treat all cases and no controls

Standardized Net Benefit = NB(r,) / p

1—
= HRp(ry) - 1-=—F HRp(ry)

= TPR discounted by an appropriate amount of FPR

Interpretation: sNB is 2% —> risk model achieves z% of
the benefit of a perfectly discriminating model

141
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DABS Simulated Data Example, continued:
interpreting standardized net benefit

* sNB=0.046/0.1017=0.455=45.5%

* The maximum possible benefit is to detect and treat
all 1017 cases and no controls per 10,000. We can
achieve 45.5% of this benefit using the risk model.

* With this model, 65.2% of cases are above the high
risk threshold; discounting for controls also classified
as high risk, we achieve the equivalent of 45.5% of
cases classified as high risk and 0% of controls

* Achieve the same net benefit to the population as
45.5% of cases and no controls called high risk.

Assessing Net Benefit Graphically

* Decision Curves

— Proposed in: Vickers and Elkin, “Decision Curve
Analysis: A Novel Method for Evaluation Prediction
Models.” Medical Decision Making, 2006.

— Additional ref: Kerr, Brown, Zhu, and Janes:
“Assessing the Clinical Impact of Risk Prediction
Models with Decision Curves: Guidance for Correct
Interpretation and Appropriate Use.” J Clinical
Oncology, 2016.

* Related to Relative Utility Curves

— Papers by Baker, e.g. “Putting Risk Prediction in
Perspective” Relative Utility Curves.” JNCI, 2009.
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Net Benefit

* If there is agreement on a rational risk threshold
r,, for recommending treatment, we have seen
that Net Benefit is:

HRp(ry) p - HRp(1y) (1-p)

TH
1-r
which equals

P(case & high risk) - P(cntl & high risk) —

1-ry

* Estimate with:
oo _ # positive cases  # positive cntls ry

NB

n n 1—TH

Net Benefit & Decision Curves

* A (rationally-chosen) risk threshold r,
encapsulates the benefits (B) of treating a
case compared to the harm/cost (C) of
treating a control

* A Decision Curve plots NB against the risk
threshold ry,
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Decision Curve Example 1

* Simulated data on 20,000 patients and a
single marker X

* Marker is Normal(0,1) in controls
* Marker is Normal(1,1) in cases
* 10% of population are cases

* Using Bayes rule calculate
risk(X) =P(D | X)
— (we don’t need to model risk as a function of X)

— None
All
-~ risk.true

008
|

0.04 0.08
| |

Net benefit
002
1

-0.02 0.00
|

-0.04

T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14

Threshold probability
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Understanding the plot

* If the policy is “treat none,” then NB is:

r
# positive cases/20000 - # positive cntls/20000 1 :I
—TH
T
=0-0-—2
1-ry
=0

e Therefore the “treat none” policy has NB=0 for
any benefits and costs.

Understanding the plot

* If the policy is “treat all,” then NB is:

# cases/20000 - # cntls/20000 TH
1-ry
e m (1. A). _TH
=p-(1-p) -~

e Even though r,, is not used to determine
treatment under the “treat all” policy, it is used to
capture/summarize benefits and costs.

* The curve for “treat all” might look like a straight line, but it isn’t.
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Understanding the plot

* If the policy is to use the risk model to
recommend treatment, then NB is estimated
by considering number of cases and controls
that exceed the risk threshold:

# positive cases  # positive cntls 1y

n n 1-ry

Interpreting the plot

— HNone
All
=== risktrue

0.08
I

0.06
1

———————————————————————————

0.04
1
¥

Net benefit
0.02
1

-002 000

-0.04

I T T T I T T
0.02 0.04 0.06 0.08 0.10 012 0.14

Threshold probability
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Interpreting the plot

* Suppose the risk threshold is 6%

— The NB for using the risk model is 0.055
* The same sNB as a rule that treats 0.055/p = 55% of
cases and no controls
— The NB for the “treat all” strategy is 0.043.

* The same sNB as a rule that treats 0.043/p = 43% of
cases and no controls

Interpreting the plot

* Itis challenging to interpret Net Benefit. The
main use of these plots may be to examine
whether a risk model has the potential to add
value — examine whether NB is higher than “treat
all”/“treat none” - for a range of plausible risk
thresholds

* If there is consensus on the risk threshold, the
plot is unnecessary (potentially distracting)

— E.g., if clinicians agree that patients should be treated
with statins if 10-year risk of CVD is at least 20%.
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Net benefit

Decision Curve Example 2

Simulated data on 20,000 patients and a
single marker X

Marker is Normal(0,1) in controls
Marker is Normal(1,1) in cases
25% of population are cases

Use Bayes rule to calculate
risk(X)=P(D|X)

154

0.25
1

ne
Al
--- Example2

0.20

015
1

0.05
1

0.00
1

-0.08

T T T T T T T
0.02 0.04 006 0.08 010 012 014

Threshold probability

It is more difficult for risk-based
treatment to “beat” Treat-All when
prevalence is high.
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— e Notice the scale change

1T —=  between Examples 1 and 2.

| With higher prevalence there

| are more Benefits and fewer
Costs.

I
025
I

— None
Al
-=- Example2

Net benefit
-0.04 -002 000 002 004 0.08 0.08
1
0.20
I

0.15
1

T T T T T T T
0.02 0.04 0.06 0.08 010 012 014

Net benefit
0.10

Threshold probability

0.05
I

0.00
I

-0.05

T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14

Threshold probability 156

Decision Curve Example 3

Simulated data on 20,000 patients and a
single marker X

Marker is Normal(0,1) in controls

Marker is Normal(1,1) in cases

1.5% of population are cases

Using Bayes rule calculate
risk(X)=P(D|X)

157
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]
All
--- Example3

0.00
I

Net benefit
-0.02 -0.01

-0.03

-0.04

-0.05

I I T I I T T
0.02 0.04 0.06 0.08 0.10 012 014

Threshold probability

Decision Curve Example 4

* Prospective study of 570 men scheduled for
prostate biopsy.

 New marker: Urinary PCA3 (an RNA that is
over-expressed in prostate cancer cells)

* Existing marker: Serum PSA

* Clinical risk factors: age, results of digital
rectal exam

* n=541 men, prevalence 36%
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Decision Curve Example 4

* Here, we compare
— clinical model (using age and DRE results)

— biomarker-aided prediction: (additionally use
Serum PSA and PCA3 to predict risk of disease

* | used logistic regression to estimate risk for
each set of predictors.

ROC Curves

1.0

0.8
|

AUC=0.69
AUC=0.6

0.6
|

Sensitivity

0.4

— Clinical Model
—— Clinical+Biomarkers

T T T T T T
1.0 08 06 04 0.2 0.0
Specificity
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1.0

— ClinicalwBiomarkers
ClinicalModel
all

— none

08
]

0g6
]

Standardized Net Benefit
04

02
|

/'

This plot displays SNB

00
L

e 00 0.1 02 03 04 05 06
279 axis helps Risk Threshold

interpret “all” and | | ‘ ‘ | ‘
“none” curves 1100 110 1:3 35 9:10 32

Cost:Benefit Ratio

162

* It is tempting to use Decision Curves to choose
r, to maximize Net Benefit. This is wrong.

— Net Benefit depends on benefits and harms,
captured by r,,.

— The data used to make the plot contain no
information of the benefit of treatment to cases
or the harms of treatment to controls.

— ry must be selected from other considerations

(data), then used to evaluate the relative merits of
treatment policies.
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* Decision curves are potentially useful when there
is N0 consensus on an appropriate risk threshold.
Compare different risk models across a range of
plausible thresholds.

* In the prostate cancer example, the risk model
that used biomarkers only offers higher Net
Benefit than the clinical model if r, exceeds ~25%

— It is likely that patients and clinicians would say r is
much smaller than 25%.

Notes on Decision Curves
and Net Benefit

* The curve for treat-all and treat-none always
cross at the prevalence:

NBtreat-allzl'p - 1(1'p) A =p - (1‘p) i 0

1-ry - 1-ry a

ifand only ifr,=p

* treat-all beats treat-none for ry< p
* treat-none beats treat-all for r ;> p.
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Alternative Formulation

* Most published Decision Curves use treat-none
as the reference

* These are “opt-in Decision Curves”
— implicitly assume the default is treat-none
— high risk patient opt into treatment

* But what if standard is treat-all and we envision
opting low-risk patients out of treatment?

— benefits accrue from controls who avoid cost C at
the expense of cases who miss out on B

Alternative Formulation

Opt-out Decision Curves use treat-all as the
reference and display the “opt-out Net Benefit”

Ty

NBOPt=U = (1 — p)LRp(ry) — p LRp(ry)

Ty

1-ry

LRy (ry)
AN

true negative rate false negative rate

sNBOPt-O“t; LRp(ry) = 15—
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Standardized Net Benefit

1.0

00

05

Example 1 revisited:

Opt-in and Opt-out Decision Curves

10

— D~riskt
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— Non
T T
0.00 005 010 015

Standardized Net Benefit

10

05
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05

-10

High Risk Threshold
115
Cost Benefit Ratio

08

110

|

Standardized Net Benefit
00
1

0
B
— D ~risktrue
All
| — None
! f T T T
0.00 0.05 0.10 015
Low Risk Threshold
T T T 1
1:100 1:30 1:15 1:10

Cost:Benefit Ratio

Example 1 revisited:

Opt-out Decision Curve
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Opt-out Decision Curves

* More useful than opt-in decision curves when

treat-all is current standard.

e Better suited to evaluate the evidence for

switching from treat-all to risk-based

treatment

Brief Report

Assessing the Clinical Impact of Risk
Models for Opting Out of Treatment

Kathleen F. Kerr (), Marshall D. Brown, Tracey L. Marsh, and Holly Janes
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Relative Utility Curves

* Baker’s Relative Utility Curves use treat-none as
the reference above p and treat-all as the
reference below p.

— Thus the reference policy changes at p
— Creates “hill shaped” curves that crest at p
— Relative Utility is related to standardized Net Benefit
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Baker, Cook, Vickers, & Kramer (2009)
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Journal of the Royal Statistical Society: Series A (Statistics in Society)
Volume 172, Issue 4, pages 729-748, 2009
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Key Assumptions of all Decision
Curves/Relative Utility Curves

* Expected benefit of treatment B is the same
for all cases; expected cost of treatment C is
the same for all controls

— Biomarker does not predict treatment effect

* Risk threshold ry is rational — reflects the
Cost:Benefit Ratio

* Reminder: under these assumptions, curves
show the Net Benefit of the risk model to the
population

Don’t forget uncertainty

* To focus on interpretation, | showed Decision
Curves without confidence intervals

* Unfortunately, Decision Curves often appear in
the literature without any acknowledgement of
uncertainty

* Asin any other inference from biomedical data,
we should acknowledge the uncertainty in our
inferences

— Confidence intervals in plots and/or tables of Net
Benefit (R demo)



Kerr SISCER 2023 Module 5: Part Il

EVALUATING A RISK MODEL FOR
PROGNOSTIC ENRICHMENT OF
CLINICAL TRIALS

Prognostic Enrichment

 Sometimes the intended use of a risk model is
to identify patients at high risk for inclusion in
a clinical trial

— Temple (2010) called this “Prognostic Enrichment”

Temple, Enrichment of Clinical Study Populations, Clinical Pharmacology
and Therapeutics, 2010
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Enrichment Strategies for
Clinical Trials to Support
Determination of
Effectiveness of Human Drugs

and Biological Products
Guidance for Industry

U.5. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)

March 2019
ClinicalMedical
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Three broad categories of enrichment strategies as listed below are addressed in this guidance:

(1) Strategies to decrease variability — These include choosing patients with baseline
measurements of a disease or a biomarker characterizing the disease in a narrow range
(decreased interpatient variability) and excluding patients whose disease or symptoms
improve spontaneously or whose measurements are highly variable (decreased
intrapatient variability). The decreased variability provided by these strategies would
increase study power (see section III.. Decreasing Variability).

(2) Prognostic enrichment strategies — These include choosing patients with a greater
likelihood of having a disease-related endpoint event (for event-driven studies) or a
substantial worsening in condition (for continuous measurement endpoints) (see section
IV.. Prognostic Enrichment Strategies — Identifying High-Risk Patients). These
strategies would increase the absolute effect difference between groups but would not be
expected to alter relative effect.

(3) Predictive enrichment strategies — These include choosing patients who are more likely
to respond to the drug treatment than other patients with the condition being treated.
Such selection can lead to a larger effect size (both absolute and relative) and can permit
use of a smaller study population. Selection of patients could be based on a specific
aspect of a patient’s physiology. a biomarker. or a disease characteristic that is related in
some manner to the study drug’s mechanism. Patient selection could also be empiric
(e.g.. the patient has previously appeared to respond to a drug in the same class) (see
section V.. Predictive Enrichment — Identifying More-Responsive Patients).
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Prognostic Enrichment: Example

* ADPKD patients: 20% will experience
substantial decline in renal function in one
year (D)

* new therapy believed to reduce the risk of D

* Designing a trial to have 90% power to detect
a 30% reduction in the risk of D would require
1643 patients

— possibly prohibitively expensive

Prognostic Enrichment Biomarker

* Suppose a biomarker has some ability to identify
ADPKD patients at higher risk of D

* For example, suppose that 40% of biomarker-
positive patients will experience D (compared to
20% of all ADPKD patients)

* Conducting the trial in biomarker-positive
patients requires 651 patients to have 90% power
to detect a 30% reduction in the risk of D

— may be much more practical
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Prognostic Enrichment Biomarker

Examine the impact of using the biomarker on:
* trial sample size

 total number of patients to screen to enroll
trial
— proxy for calendar time to enroll trial

* total cost of patient screening & patients in
trial

Prognostic Enrichment Biomarker

Trial sample size: calculated based on statistical testing and
clinical parameters

* Based on the desired power 0<1-f<1, Type | error rate
O<o<1, event rate without intervention O<n<1, and event
rate with intervention 0<t<1, the sample size SS across the
two arms of the trial for a two-sided test is SS =

<¢> 1a-9 [2(B5)(1-E5)+p~ - p)/rA-m+r(A-1) )
2 X
(m-1)?

where T # T and. ¢ ~1(x) is the quantile functlon of the
standard Normal distribution such that ¢ ~1(x) = z where
P[Z<z]=x. For a one- -sided test the formula is the same except

replacing ¢ ~1(1 — —) with ¢71(1 — @)

)
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Prognostic Enrichment Biomarker

Total number of patients to screen to enroll trial

» Suppose we use threshold t to decide eligibility
for the trial. Thatis, the fraction t of patients
at lowest risk for D are screened from the trial.

* That implies that 1/(1-t) patients must be
screened to identify one patient eligible for the
trial.

* Therefore total patients screened =
(Trial Sample Size) / (1-t)

Prognostic Enrichment Biomarker

total cost of patient screening & patients in trial

» Let C1 be the cost of running a patient through
the trial and let C2 be the cost of screening a
patient for the trial using the biomarker

* Total Cost with screening threshold t is
SS C2
TC =C1xS5S+C2 xl——tZSS(Cl +Tt)
* However, when t=0 no screening is needed so
in this special case TC = C1 X §S



Kerr SISCER 2023 Module 5: Part Il

Prognostic Biomarker 1

Event rate without prognostic enrichment: 20%
AUC of biomarker: 0.72
Cost to measure biomarker: $100

Cost to run one patient through trial: $S400

 Specifying trial design to have 90% power to
detect a 30% reduction in event rate using a=
0.025 with one-sided testing
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Prognostic Biomarker 2

Event rate without prognostic enrichment: 20%
AUC of biomarker: 0.92
Cost to measure biomarker: $100

Cost to run one patient through trial: $S400

 Specifying trial design to have 90% power to
detect a 30% reduction in event rate using a=
0.025 with one-sided testing
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ROC Curve for Specified Biomarkers Event Rate Among
4 Biomarker-Positive Patients
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ROC Curve for Specified Biomarkers Event Rate Among
100- 1 L.L Biomarker-Positive Patients
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Prognostic Enrichment — Other
Important Considerations

* Generalizability
— by definition, the intervention will not be tested on
patients screened out of the trial
— this may lead to investigators to err on the side of less
stringent screening

* Ethics

— In oncology, the primary motivation for prognostic
enrichment is traditionally not cost. Rather, therapies are
often toxic and only ethical to test on patients with poor
prognosis (very likely to have the bad clinical outcome)

— The “event-rate in biomarker positive patients” becomes a
guantity of primary interest

— Such ethical considerations may lead investigators to err on
the side of more stringent screening.
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Insight into the utility of markers for

prognostic enrichment

* Sometimes (nominally) unimpressive markers
are helpful for prognostic enrichment
— e.g. prognostic biomarker 1 had modest AUC, 0.72

* This is because the biggest “gains” in reducing

sample size are at the low end of the event

rate (next slide)

— Detecting a 30% reduction in the event rate

requires much larger sample sizes if the event rate
is 10% (vs 7%) compared to 20% (vs 14%)

* “a little bit of enrichment can go a long way”

S8 for 80% Power to Detact 30% Reduction In Event Rate

02 04 06 08 10

Event Rate in Control Arm
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Prognostic Enrichment - Resources

* Biomarker Prognostic Enrichment Tool
— BioPET for trials with binary outcomes
— BioPETsurv for survival outcomes

R packages

— BioPET for binary trial endpoints

— BioPETsurv for time-to-event trial endpoints

* prognosticenrichment.com

Kerr et al, BioPET methodology, Clinical Trials 2017
Cheng et al, BioPETsurv methodology, PLoS One 2020
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O & prognosticenrichment.com g

Biomarker Prognostic Enrichment Tool

Prognostic Enrichment (Temple, 2010; PMID 20944560} is a clinical trial strategy of evaluating an intervention in a patient
population with a higher rate of an unwanted clinical event than the broader patient population. A higher event rate in an
enriched study population translates to a lower sample size for the clinical trial. This can have both practical and ethical
advantages.

Our methodology evaluates biomarkers for prognostic enrichment of clinical trials. Using information about the biomarker(s) and
clinical trial design, our methods calculate clinical trial mefrics (event rate, sample size, cost, etc) for different levels of
enrichment

Our methodology is implemented as two webtools: BioPET evaluates biomarkers for trials with dichotomous/binary cutcomes;
BioPETsurv is for tnals with survivaltime-to-event outcomes.
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Summary of Part Il

* |n order for a risk model to be valid it must be
well-calibrated

— Otherwise, cannot interpret predicted risks as risks

— Recommend graphical assessment (moderate
calibration)

— Should assess strong calibration when possible
* Risk model discrimination

— Can use ROC curve; more informative to use an
alternative that shows the risk threshold

— Presented AUC and other numeric measures

Summary of Part Il

* Decision Curves

— Potentially useful to evaluate risk-based treatment
policies over a range of plausible risk thresholds
* Challenging to interpret values of NB

— Aids the assessment of the population impact of
treatment policies

— If standard is treat-all and motivation is to opt low-

risk patients out of treatment, use opt-out Decision
Curves

» standardized Net Benefit is easier to interpret
than Net Benefit

— Maximum sNB always 1.0 (or 100%)
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Summary of Part Il

* Evaluating a risk model (or biomarker) for
prognostic enrichment of a clinical trial. Key
considerations:

— trial sample size

— total patients screened to enroll trial/calendar
time to enroll

— cost savings of smaller trial vs. cost of screening
— generalizability
— ethics of eligibility criteria
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\\A\IJ/’/ \\\A//
- i Misconceptions about Biomarkers ~ —
- G and Risk Models :

* Decision curves are useful to identify the best risk threshold. 3§

* To assess whether to add new biomarker to a risk model,
multiple stages of hypothesis testing are needed.

* The best biomarker to improve a risk model is the one with
strongest association with the outcome.

* To improve prediction, a new biomarker should be independent
of existing predictors.

* We can often use biomarkers to identify which patients will
benefit from treatment.

EIVN



