SISCER 2023 Module 5: Evaluation of Biomarkers and Risk Models

Part V: Target Performance for Early Phase Biomarker Research July 13-14, 2023 8:30-Noon PT / 11:30-3pm ET

Kathleen Kerr, PhD
Professor of Biostatistics
SISCER Director
University of Washington

Early-Phase Biomarker Research

- Early phase biomarker research project
 - "We seek a biomarker with 80% sensitivity and 90% specificity".... What makes a reasonable goal?
 - We can borrow principles from risk model assessment to inform and set performance targets

Early-Phase Biomarker Research

- If the marker is used to inform a clinical decision about an intervention, the context can help set performance standards
- Example: Seek a biomarker to select women for mammography
 - Let B be the benefit of mammography to a women with undiagnosed breast cancer
 - Let C be the cost/harms of mammography to a women without breast cancer
 - Let ρ be the prevalence of undiagnosed breast cancer in the target population
 - Total benefit derives from positive mammogram in cases: ρ · TPR · B
 - Total harm derives from positive mammogram in controls: $(1-\rho) \cdot FPR \cdot C$

50

Early-Phase Biomarker Research

• For the marker to have net positive value:

$$\rho \cdot TPR \cdot B > (1-\rho) \cdot FPR \cdot C$$

i.e.,
$$\frac{TPR}{FPR} > \frac{1-\rho}{\rho} \frac{C}{B} = \frac{1-\rho}{\rho} r$$
, where r is the Cost/Benefit ratio $\frac{C}{B}$.

Specifying or soliciting $r = \frac{C}{B}$ is difficult

Intuitive Measures of the Cost/Benefit Ratio

One can articulate $r=\frac{C}{B}$ in terms of the maximum number of controls N_{max} we are willing to work up in order to receive the benefit of working up one case.

- The cost of working up N_{max} controls is N_{max} ·C.
- From the definition of N_{max} : $N_{max} \cdot C = B$.
- So $r = \frac{C}{B} = \frac{1}{N_{max}}$

50

Intuitive Measures of the Cost/Benefit Ratio

- What is the minimum level of risk R at which work-up is warranted?
- E.g., a woman might feel a mammogram is warranted if her risk of having breast cancer is at least 5/1000 but not if it is less.
- $\frac{C}{B} = \frac{R}{1-R}$

Example: Chemotherapy for Stage 1 Colon Cancer

- Consider biomarker for risk of recurrence within the first year after surgery for stage 1 colon cancer patients.
- Stage 1 patients are not normally offered chemotherapy, which would reduce risk of recurrence.
- The 1-year recurrence rate for stage 1 patients is 10% (ρ).
- Stage 3 colon cancer patients are routinely offered chemotherapy; without it, their risk of recurrence is 30%.
- Therefore, R≤30%. If we take R=30%, then $r = \frac{C}{B} = \frac{0.3}{1-0.3} = 0.43$.
- Thus $\frac{TPR}{FPR} \ge \frac{1-0.1}{0.1} \times 0.43 = 3.85$.

50

A marker with a single (FPR, TPR) above the target could have clinical utility. Since TPR cannot exceed 1, markers with FPR>1/3.85=26% cannot have clinical utility.

500

Example: Interval Breast Cancer Screening

- Women 50-74 are recommended for screening mammography every two years.
- Suppose we seek a biomarker to identify women for additional screening (mammograms) 8 and 16 months after a negative mammogram.
- During this interval, the expected incidence of breast cancer is 0.15% (0.0015).
- A panel decides that the health care system should support 500 additional mammograms (250 women getting 2 "extra" mammograms) to catch 1 woman with interval cancer.

$$-N_{\text{max}} = 250 \rightarrow r = \frac{1}{250} \rightarrow \frac{TPR}{FPR} \ge \frac{1 - 0.0015}{0.0015} \times \frac{1}{250} = 2.66.$$

Example: Interval Breast Cancer Screening

- $N_{\text{max}} = 250 \rightarrow r = \frac{1}{250} \rightarrow \frac{TPR}{FPR} \ge \frac{1 0.0015}{0.0015} \times \frac{1}{250} = 2.66.$
- If we limit FPR at 5%, then the TPR must exceed 2.66 \cdot 0.05 = 13% for the biomarker to be useful

511

Example: Ovarian Cancer Screening

- Incidence of ovarian cancer in women 50-64 is 25 in 100,000
- We seek a biomarker for annual screening;
 biomarker positive women will receive surgery for definitive diagnosis.
- We require 1 discovery of ovarian cancer for every 10 surgeries. That is, we tolerate 9 unnecessary surgeries to find one cancer.
- $N_{\text{max}} = 9 \rightarrow r = \frac{1}{9} \rightarrow \frac{TPR}{FPR} \ge \frac{1 0.00025}{0.00025} \times \frac{1}{9} = 444.$

513

Example: Ovarian Cancer Screening

- More realistically, marker positive women would receive transvaginal ultrasound to decide on surgery. If TVS is also positive, then surgery.
- If marker results and TVS results are independent (big assumption), then the TPR for the combined test is the TPR for ultrasound (0.755) times the TPR for the marker; the FPR for the combined test is the FPR for ultrasound (0.018) times the FPR for the marker.
- $\frac{0.755 \times TPR}{0.018 \times FPR} \ge 444 \to \frac{TPR}{FPR} \ge 10.6$.
- A biomarker that detects 80% of cancers must have an FPR ≤ 0.075.

Reference

Clinical Chemistry 62:5 737-742 (2016)

Cancer Diagnostics

Early-Phase Studies of Biomarkers: What Target Sensitivity and Specificity Values Might Confer Clinical Utility?

Margaret S. Pepe, ^{1*} Holly Janes, ² Christopher I. Li, ³ Patrick M. Bossuyt, ⁴ Ziding Feng, ⁵ and Jørgen Hilden ⁶