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Risk Model Assessment

 Risk Model Calibration
— required for a risk model to be valid

— Particularly crucial whenever a model will be used
to convey information to a patient

* Risk Model Performance
— required for a risk model to be useful

— performance assessment depends on what the
model will be used for
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CALIBRATION

Calibration

* Arisk is a number of some import

— “based on my test results, the chance (risk) | have
the disease is 5%”

— “based on my age and family history, my chance of
a breast cancer diagnosis in the next 5 years is 1%”

* |n order to be valid, risks must be calibrated
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What does it mean for a risk model to be calibrated?

e R N

Mean Observed event rate equals average “calibration-in-the-
predicted risk large”
Weak No systematic overestimation or “logistic calibration”

underestimation of risks

Moderate Predicted risks correspond to Often the best we can
observed event rates assess with limited data
Strong For every combination of risk The ideal, but difficult to

factors, predicted risks correspond  assess
to observed event rates

Adapted from Van Calster et al, J Clinical Epidemiology, 2016 104

Mean Calibration

Also called “calibration-in-the-large”

Def: average predicted risk equals the
prevalence

To assess, compare event rate with average
predicted risk

— If 3% of the population is a case, then the risk
model has mean calibration if the average
predicted risk is 3%

Very low bar
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Weak Calibration

* Also called “Logistic calibration”

* Predicted risks are obtained from a previously developed model
for D (e.g., based on logistic regression); the linear combination
of predictors defines the “linear predictor” L=by+b, X; +... b, X,

* RegressDonlL: logit(D)=a+blL
— ais the “calibration intercept”; b is the “calibration slope”
* Def:lIfa=0andb =1, the model is calibrated in the weak sense

* In data not used to fit the model, typically the calibration slope
b<1: large predicted risks are too high and low predicted risks
are too low

— (R tutorial)

Moderate Calibration

« Def: P(D = 1|risk(X;,X,) =1) =71
— here, there are two risk factors X, and X,

* “collapses” data among groups of people with the
same predicted risk

* Common practice to assess: divide available data
into deciles based on predicted risks

* Compare event rate in a decile of individuals with
similar predicted risk = calibration curve

— Next slide: 1 risk model that has good (moderate)
calibration; and 3 poorly calibrated risk models
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Observed Frequency
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Forecasts of rain: are the
risks well calibrated?

From The Signal and the Noise, Nate
Silver, The Penguin Press 2012.

FIGURE 4-8: THE WEATHER CHANNEL CALIBRATION

100% ¢
ok |
80%
0%
BO%
50%
A0%
ElY
208
10%

“o—*

0%
123

0% 20% 30% 40% 50% B0% 0% BO% 90% 100%
Forecast Probability

DObserved Frequency

Predicted Probability

FIGURE 4-7: NATIONAL WEATHER SERVICE CALIBRATION
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Accuracy of three weather forecasting services

100% @
¢ Local TV Meteorologist

@-® The Weather Channel
90% -|m-@ National Weather Service ®
— Perfect
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Source: "The Signal and the Noise™ by Nate Silver | Author: Randy Olson (randalolson.com / @randal_olson) 110

how NOT to assess moderate calibration

* Hosmer-Lemeshow test statistic
* p-value from Hosmer-Lemeshow test

* In small datasets, badly miscalibrated models
may not give a large H-L test statistic or a
significant p-value

* In large datasets, small/unimportant
deviations from good calibration can still lead
to large H-L test statistic or small p-value
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Calibration plots

* Can be sensitive to the choice of the groups
and choice of smoother and other options
(beware of smooths that eliminate “outliers”)

Strong Calibration

b Def: T{Ek(Xl,Xz) == P(D=1|X1,X2)

* Must consider every unique combination of
predictors and ask whether observed and
predicted risks agree for people with that
combination

* Compared to calibration in the moderate sense,
does not “collapse” groups of people with the
same risk(X1, X,)

* Typically only feasible to assess when there are a
limited number of predictors and they are all
categorical
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Predicted risks for Huntington’s Disease

Level | Definition Individuals with 1 HD Genotyped individuals:
Parent: risk=50% risk is 0% or 100%

Observed event rate
equals average
predicted risk

Mean

No systematic over- or
under-estimation of
risks

Weak

Predicted risks
correspond to observed
event rates

Moderate

For every combination
of risk factors, predicted
risks correspond to
observed event rates

Strong

Calibration is not enough

* If the prevalence is p, a calibrated risk model
assigns everyone risk p.

* The goal for a risk model is bigger: to stratify
people into “low risk” and “high risk” groups.
— Achieved perfectly by genotyping the HTT gene,
but less perfectly for most applications.
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RISK MODEL PERFORMANCE

Risk Model Performance

We will discuss three classes of assessment

* Generic measures

— “purely mathematical”

* meaning: they do not directly translate to any clinical,
public health, or public policy impact of using the risk model

* Assessing performance when model will be used
to recommend treatment/intervention to high
risk individuals

* Assessing performance for prognostic enrichment
of clinical trials
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The Distribution of Risk

* Case (D=1) and control (D=0) risk distributions
are fundamental components of all
performance measures

* When examining risk distributions, useful to
include any conventional thresholds for
deciding who is “high risk”

* The logit scale may be more convenient than
the O to 1 risk scale

* Next slide: risk model for simulated data from
DABS website

Distribution of Predicted Risks, 20% risk threshold
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Risk

For Cases and Controls

—— Controls
b —— Cases
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Risk
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Distribution of Risk on Logit Scale
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GENERIC MEASURES OF RISK MODEL
PERFORMANCE (THAT DO NOT USE A
RISK THRESHOLD)
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MRD, AARD, AUC

* MRD = Mean Risk Difference
* AARD = Above Average Risk Difference
e AUC = Area Under the ROC Curve

These summaries are sometimes called measures
of discrimination. They are different ways to
guantify:

How well does the risk model
discriminate/separate cases and controls?

Mean Risk Difference (MRD)

MRD = mean(risk(X) | case)-mean(risk(X) | control)

* Also known as Yates’ slope

* Equals PEV = Proportion of Explained Variation = R? =
var(risk(X))/var(D)

* Change in MRD for two nested models also known as
IDI=Integrated Discrimination Improvement Index

For the DABS data example, mean(risk|case)=0.391,
mean(risk | cntl)=0.069; MRD=0.322
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Above Average Risk Difference (AARD)

AARD = P(risk(X)>p|case) — P(risk(X)>p| control)
AARD =0.797 - 0.198 = 0.599 in the DABS example

* Can also write as: HRp(p) = HRp(p) or TPR(p) -
FPR(p)

* RU(p)=NB(p)/p (will come to RU and NB shortly)
— NB(r)=p HRp(r)-(1- p)éHRg(r); set r=p and divide by p

AUC for a Risk Model

AUC = Area Under the ROC Curve =P( risk_,.(X) > risk_4(X) )

case
* lIgnores the meaning of risk
* AUC not a clinically relevant measure of predictive
performance
— Arguably roughly similar to MRD in terms of clinical relevance
* Rather than AUC, it might be more clinically relevant to

average TPR over a relevant range of FPR (rather than
entire range)

— pAUC
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ROC Curve for a risk model

0s

04

ROC Curve for a risk model

* A disadvantage of ROC curves for risk models
is that the curve does not show the risk
threshold corresponding to each (FPR, TPR).

* The next slide shows an alternative to the ROC
curve that overcomes this disadvantage.
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As an alternative to ROC, plot TPR and FPR
versus risk threshold
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Risk threshold

EVALUATING A RISK MODEL FOR
RECOMMENDING TREATMENT
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Use Risk to Decide Treatment

* Sometimes the intended use of a risk model is to
determine who should be treated

— e.g., screen high risk individuals for cancer

— e.g., treat individuals at high risk of a heart attack with
statins

— e.g., treat cancer patients with high risk of relapse
with adjuvant chemotherapy

* What risk threshold should define “high risk”?

Benefits and Costs of Treatment

* Assume there is some expected benefit B to
treating a case

— life extended, morbidity reduced
* Assume there is some cost C to treating a
control

— cost includes side effects of treatment,
stress/anxiety, toxic exposures, as well as
monetary cost
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Choice of Risk Threshold

Classical Decision Theory Result

Treatment offers benefit B to a case and cost Cto a
control. Then the optimal high risk threshold r, is

C C
- — & — =
"WE xR B

TH
1—1y

Vickers and Elkin, Decision Curve Analysis. Medical Decision Making 2006.

Pauker and Kassierer, The threshold approach to clinical decision making. NEJM
1980.

Choice of Risk Threshold

Classical Decision Theory Result: Outline of Proof
C C Ty

= & —
"HE B

B 1-ry
When should patients choose treatment?
* When expected result of treatment >0
* E(benefit|D=1,X)P(D=1]|X)-E(cost| D=0,X)P(D=0|X)>0
B-P(D=1|X)-C-P(D=0|X) >0
B-P(D=1]|X) > C-P(D=0]X)
P(D=1]|X) C

>
1—P(D=1|X) ~ B
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Choice of Risk Threshold

Specifying a Cost-Benefit ratio C/B implies a
rational choice of risk threshold.

Equivalently, a risk threshold is rational when it
corresponds to the Cost/Benefit ratio.

Choice of Risk Threshold: Example 1

20% risk threshold for treatment is equivalent to

= 0.2
C+B

C 0.2 0.2

B=1-02 og 0%

The cost of treating a control equals 1/4% the
benefit of treating a case.
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Choice of Risk Threshold: Example 2

Gail (JNCI, 2009) evaluated risk models for
breast cancer in terms of decisions about
prophylactic tamoxifen use in 50-59 year old
white women. Tamoxifen can reduce the risk of
breast cancer but increases the risk of other
serious diseases. Under some strong
assumptions, he estimated

C/B =0.0077 - r, =0.0076 per year

Choice of Risk Threshold: Other Methods

Choose threshold r satisfying some performance
criterion

 Find r such that t, proportion of cases are
detected and treated; t, = P(risk(X) > r|D=1)

 Find r such that only f, proportion f controls are
worked up or treated; f,= P(risk(X) > r| D=0)

* Find r such that v, proportion of the population is
worked up or treated; v, = P(risk(X) > r)

These approaches might be used when budget or
resource constraints drive the choice of risk
threshold.
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Proportion of Cases and Controls High Risk

HRp(ry)  =P(risk(X)>r,|D=1)
=% cases in High Risk category
=TPR or sensitivity

HRp(ry) =P(risk(X)>r,|D=0)
=% controls in High Risk category
=FPR or 1-specificity

Ideally, HRp(r,)=1 and HRp(r,,) =O0.

Net Benefit of a Risk Model

Overall population impact of the risk model -
combines HRp(r,) and HRp(r,) :

NB(r,)=B P(D=1) HRp(r,,) - C P(D=0) HR5(r,,)
B{P(D=1) HRp(r,) - — P(D=0) HRp(r,) }

1-ry

P(D=1) HRp(r,) - —2— P(D=0) HR(r,,)

1-ry
In the last expression, Net Benefit is interpreted “in units of B”

B = expected benefit of treatment for a case
C = expected cost of treatment for a control
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Given a risk threshold r , that defines “high risk”
for treatment recommendation:

Key summary measures:

HRp(ry) = P(r(X)>r, |D=1)

HRp(r,) = P(r(X)> r, | D=0)

NB(ry,) = net benefit of using the model with threshold r,
= P(D=1) HRp(r,) - —P(D=0) HR5(r,)

1—T'H

This expression for NB assumes r,, has been
rationally selected, i.e. r,, corresponds to the
benefits and costs of treatment

Example (DABS simulated data)

* Dis CVD over 10 years
— P(D=1)=10.17%
— Marker X
* Suppose r =20%:
— HRp(ry) =65.2%
— HRp(r,) = 8.9%
— NB(r,)=0.046 - benefit of statins to subject who
would have a CVD event without them
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Standardized Net Benefit

NB(r,) = P(D=1) HRp(r,) - —-P(D=0) HR5(r,)

1-ry
Maximum value of NB is P(D=1) = p
* The best we can do is treat all cases and no controls

Standardized Net Benefit = NB(r,,) / p

ry 1-p
= HRp(ry) - ==~ HRp(r)
= TPR discounted by an appropriate amount of FPR
Interpretation: sNB is 2% —> risk model achieves the
same standardized net benefit that we would achieve

by detecting z% of cases and no controls

Example, continued

* sNB=0.046/0.1017=0.455=45.5%

* The maximum possible benefit is to detect and treat
all 1017 cases and no controls per 10,000. We can
achieve 45.5% of this benefit using the risk model
based on the marker X.

* With this model, 65.2% of cases are above the high
risk threshold but discounting for controls also
classified as high risk, we achieve the equivalent of
45.5% of cases classified as high risk (and no
controls)

* Achieve the same net benefit to the population as
45.5% of cases and no controls called high risk.
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Assessing Net Benefit Graphically

* Decision Curves

— Proposed in: Vickers and Elkin, “Decision Curve
Analysis: A Novel Method for Evaluation Prediction
Models.” Medical Decision Making, 2006.

— Additional ref: Kerr, Brown, Zhu, and Janes:
“Assessing the Clinical Impact of Risk Prediction
Models with Decision Curves: Guidance for Correct
Interpretation and Appropriate Use.” J Clinical
Oncology, 2016.

* Related to Relative Utility Curves

— Papers by Baker, e.g. “Putting Risk Prediction in
Perspective” Relative Utility Curves.” JNCI, 2009.

Net Benefit

* If there is agreement on a rational risk threshold
r,, for recommending treatment, we have seen
that Net Benefit is:

HRp(ry) p - HR5(ry) (1-p)

which equals
P(case & high risk) - P(cntl & high risk) 1r—’:
—'H

TH
1-r

* Estimate with:
o _ # positive cases  # positive cntls ry

NB

n n 1—TH



SISCER 2019, Module 3, Part Il

Net Benefit & Decision Curves

* A (rationally-chosen) risk threshold r,
encapsulates the benefits (B) of treating a
case compared to the harm/cost (C) of
treating a control

* A Decision Curve plots NB against the risk
threshold ry,

Decision Curve Example 1

* Simulated data on 20,000 patients and a
single marker X

* Marker is Normal(0,1) in controls
* Marker is Normal(1,1) in cases
* 10% of population are cases

* Using Bayes rule calculate
risk(X) =P(D | X)
— (we don’t need to model risk as a function of X)
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— None
All
-~ risk.true

008
|

0.04 0.08
| |

Net benefit

-0.02

-0.04

T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14

Threshold probability

Understanding the plot

* If the policy is “treat none,” then NB is:

T
# positive cases/20000 - # positive cntls/20000 1 :I
—TH
T
=0-0-—2
1-ry
=0

e Therefore the “treat none” policy has NB=0 for
any benefits and costs.
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Understanding the plot

* If the policy is “treat all,” then NB is:

# cases/20000 - # cntls/20000 TH
1-ry
e m (1. A)._TH
=p—(1-p) -~

e Even though r,, is not used to decide treatment
under the “treat all” policy, it is used to
capture/summarize benefits and costs.

* The curve for “treat all” might look like a straight line, but it isn’t.

Understanding the plot

* If the policy is to use the risk model to
recommend treatment, then NB is estimated
by considering each risk threshold and the
number of cases and controls that exceed the
threshold:

# positive cases  # positive cntls 1y

n n 1-ry
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Interpreting the plot

— HNone
All
== risktrue

0.08
I

0.06
1

Net benefit
0.02
1

-0.02

-0.04

I T T T I T T
0.02 0.04 0.06 0.08 0.10 012 0.14

Threshold probability

Interpreting the plot

» Suppose the risk threshold is 6%

— The NB for using the risk model is 0.055
* The same sNB as a rule that treated 0.055/p = 55% of
cases and no controls.
— The NB for the “treat all” strategy is 0.043.

* The same sNB as a rule that treated 0.043/p = 43% of
cases and no controls .
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Interpreting the plot

* Itis challenging to interpret Net Benefit. The
main use of these plots may be to examine
whether a risk model has the potential to add
value — examine whether NB is higher than “treat
all” /"treat none” - for a range of plausible risk
thresholds

* If there is consensus on the risk threshold, the
plot is unnecessary (potentially distracting)

— E.g., if clinicians agree that patients should be treated
with statins if 10-year risk of CVD is at least 20%.

Decision Curve Example 2

* Simulated data on 20,000 patients and a
single marker X

* Marker is Normal(0,1) in controls
* Marker is Normal(1,1) in cases
* 25% of population are cases

* Use Bayes rule to calculate
risk(X)=P(D|X)
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Decision Curve Example 3

Simulated data on 20,000 patients and a
single marker X

Marker is Normal(0,1) in controls

Marker is Normal(1,1) in cases

1.5% of population are cases

Using Bayes rule calculate
risk(X)=P(D|X)

Net benefit

-0.04 -0.03 -0.02 -0.01 0.00

-0.05

— None
All
—-- Example3

T
0.02

T
0.04

T T T T T
0.06 0.08 0.10 0.12 0.14

Threshold probability
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Decision Curve Example 4

Prospective study of 570 men scheduled for
prostate biopsy.

New marker: Urinary PCA3 (an RNA that is
over-expressed in prostate cancer cells)

Existing marker: Serum PSA

Clinical risk factors: age, results of digital
rectal exam

n=541 men, prevalence 36%

Decision Curve Example 4

* Here, we compare
— clinical model (using age and DRE results)

— biomarker-aided prediction: (additionally use
Serum PSA and PCA3 to predict risk of disease

* | used logistic regression to estimate risk for
each set of predictors.
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ROC Curves
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* |tis tempting to try to use Decision Curves to
choose r,, to maximizes Net Benefit. This is
wrong.

— Net Benefit depends on benefits and harms, captured
by r,.

— The data used to make the plot contain no
information of the benefit of treatment to cases or
the harms of treatment to controls.

— r, must be selected from other considerations
(data?), then used to evaluate the relative merits of
policies.

* Decision curves are potentially useful when there
iS N0 consensus on an appropriate treatment
threshold, to compare the performance of
different risk models across a range of plausible
thresholds.

* In the prostate cancer example, the risk model
that used biomarkers only offers higher Net
Benefit than the clinical model if r, exceeds about
25%

— It is likely that patients and clinicians would say ry is
much smaller than 25%.
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Notes on Decision Curves
and Net Benefit

* The curve for “treat all” and “treat none”
always cross at the prevalence:

¢ NBtreat-allzl'p - 1(1_p) )
Oifandonlyifr,=p

TH _
1-ry

TH
1_

=p - (1-p)

TH

* Moreover:

III

— “treat all” beats “treat none” if ry,< p

III

— “treat none” beats “treat all” if r,> p.

Alternative Formulation

* Most published Decision Curves use “treat
none” as the reference

* “Opt-in Decision Curves”
— implicitly assume the default is “treat none”
— high risk patient opt into treatment

* But what if standard is “treat all” and we

envision opting low-risk patients out of
treatment?

— benefits accrue from controls who avoid cost C at
the expense of cases who miss out on B
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Alternative Formulation

Opt-out Decision Curves use “treat all” as the
reference and display the “opt-out Net Benefit”

Ty

NBOPt=U = (1 — p)LRp(ry) — p LRp(ry)
H
NBOPt=0Ut — [ R (7,) — _p _1-Tqg LRy (1)
S p\Tn 1- p\Ty
p TH
\
true negative rate false negative rate

Example 1 revisited:
Opt-in and Opt-out Decision Curves

None

oo

05

10
|
L

T
0.00 0.05 0.10 015

169
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Example 1 revisited:
Opt-out Decision Curve

10

05
L

—

Standardized Net Benefit
0.0
!

w
g
— D ~rnisktrue
All
2 ] —— Mone
! T T T T
0.00 0.05 0.10 0.15
Low Risk Threshold
[ I I 1
1:100 1:30 115 1:10
Cost:Benefit Ratio

170

Opt-out Decision Curves

* More useful than the more common opt-in
decision curves when current policy is treat-
all.

e Better-suited to evaluate the evidence for
switching from treat-all to risk-based
treatment

Bricf Report

Assessing the Clinical Impact of Risk
Models for Opting Out of Treatment

SSAGE

Kathleen F. Kerr (7, Marshall D. Brown, Tracey L. Marsh, and Holly Janes 171



SISCER 2019, Module 3, Part Il

= —— risk score (simulated)
s 2 -—- risk score (reported)
3 - All
s 94 == | None
2 o
S ©
5 ©
o A
B o
N
T oo
8 o
=l
5 © L.
(7_) (=]
r T T T 1
0.00 0.05 0.10 0.15 0.20

High Risk Threshold

T T T 1
1:100 1:10 1:5 1:4
Cost:Benefit Ratio

All

- —— risk score (simulated)
----- None

Standardized Opt-out Net Benefit
00 02 04 06 08 10

T < T — !
0.00 0.05 0.10 0.15 0.20
Low Risk Threshold

f T T 1
1:100 1:10 1:5 1:4
Cost:Benefit Ratio 172

Baker’s Relative Utility Curves

* Baker’s Relative Utility Curves use treat-none as
the reference above p and treat-all as the
reference below p.

— Thus the reference policy changes at p
— Creates “hill shaped” curves that crest at p
— Relative Utility is related to standardized Net Benefit
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Baker, Cook, Vickers, & Kramer (2009)
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Journal of the Royal Statistical Society: Series A (Statistics in Society)
Volume 172, Issue 4, pages 729-748, 2009
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-985X.2009.00592.x/full#f1

Key Assumptions of all Decision
Curves/Relative Utility Curves

* Expected benefit of treatment B is the same
for all cases; expected cost of treatment C is
the same for all controls

— Biomarker does not predict treatment effect

* Risk threshold ry is rational — reflects the
Cost:Benefit Ratio

* Reminder: under these assumptions, curves
show the Net Benefit of the risk model to the
population
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Don’t forget uncertainty

* To focus on interpretation, | showed Decision
Curves without confidence intervals

* Unfortunately, Decision Curves often appear in
the literature without any acknowledgement of
uncertainty

* Asin any other inference from biomedical data,
we should acknowledge the uncertainty in our
inferences

— Confidence intervals in plots and/or tables of Net
Benefit (R demo)

EVALUATING A RISK MODEL FOR
PROGNOSTIC ENRICHMENT OF
CLINICAL TRIALS
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Prognostic Enrichment

 Sometimes the intended use of a risk model is
to identify patients at high risk for inclusion in
a clinical trial

— Temple (2010) called this “Prognostic Enrichment”

Temple, Enrichment of Clinical Study Populations, Clinical Pharmacology
and Therapeutics, 2010

Prognostic Enrichment: Example

* ADPKD patients: 20% will experience
substantial decline in renal function in one
year (D)

* new therapy believed to reduce the risk of D

* Designing a trial to have 90% power to detect
a 30% reduction in the risk of D would require
1643 patients

— possibly prohibitively expensive
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Prognostic Enrichment Biomarker

* Suppose a biomarker has some ability to identify
ADPKD patients at higher risk of D

* For example, suppose that 40% of biomarker-
positive patients will experience D (compared to
20% of all ADPKD patients)

* Conducting the trial in biomarker-positive
patients requires 651 patients to have 90% power
to detect a 30% reduction in the risk of D

— may be much more practical

Prognostic Enrichment Biomarker

Examine the impact of using the biomarker on:
* trial sample size

* total number of patients to screen to enroll
trial
— proxy for calendar time to enroll trial

* total cost of patient screening & patients in
trial



SISCER 2019, Module 3, Part Il

Prognostic Enrichment Biomarker

Trial sample size: calculated based on statistical testing and
clinical parameters

* Based on the desired power 0<1-f<1, Type | error rate
O<o<1, event rate without intervention O<n<1, and event
rate with intervention 0<t<1, the sample size SS across the
two arms of the trial for a two-sided test is SS =

2
<¢-1(1—§) 2(E5)(1-25)+¢ 1 (1-B) n(l—rt)+1'(1—‘r)>
2 X 7 ,

where T # T and. ¢ ~1(x) is the quantile function of the
standard Normal distribution such that ¢ ~1(x) = z where
P[Z<z]=x. For a one-sided test the formula is the same except

replacing ¢ ~1(1 — %) with ¢71(1 — @)

Prognostic Enrichment Biomarker

Total number of patients to screen to enroll trial

» Suppose we use threshold t to decide eligibility
for the trial. That is, the fraction t of patients
at lowest risk for D are screened from the trial.

* That implies that 1/(1-t) patients must be
screened to identify one patient eligible for the
trial.

* Therefore total patients screened =
(Trial Sample Size) / (1-t)
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Prognostic Enrichment Biomarker

total cost of patient screening & patients in trial

* Let C1 be the cost of running a patient through
the trial and let C2 be the cost of screening a
patient for the trial using the biomarker

* Total Cost with screening threshold t is

SS C2
TC =C1 XSS+ C2X——=S85(C1+-—)
1-—t 1-—t
* However, when t=0 no screening is needed so
in this special case TC = C1 X §S

Prognostic Biomarker 1

Event rate without prognostic enrichment: 20%
AUC of biomarker: 0.72
Cost to measure biomarker: $S100

Cost to run one patient through trial: $S400

* Specifying trial design to have 90% power to
detect a 30% reduction in event rate using a=
0.025 with one-sided testing
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ROC Curve for Specified Biomarkers Event Rate Among
100- Biomarker-Positive Patients
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Prognostic Biomarker 2

e Event rate without prognostic enrichment: 20%
* AUC of biomarker: 0.92

* Cost to measure biomarker: $S100

* Cost to run one patient through trial: $400

* Specifying trial design to have 90% power to
detect a 30% reduction in event rate using a=
0.025 with one-sided testing
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ROC Curve for Specified Biomarkers Event Rate Among
100- Biomarker-Positive Patients
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Prognostic Enrichment — Other
Important Considerations

* Generalizability

— by definition, the intervention will not be tested on
patients screened out of the trial

— this may lead to investigators to err on the side of less
stringent screening

* Ethics

— In oncology, the primary motivation for prognostic
enrichment is traditionally not cost. Rather, therapies are
often toxic and only ethical to test on patients with poor
prognosis (very likely to have the bad clinical outcome)

— The “event-rate in biomarker positive patients” becomes a
guantity of primary interest

— Such ethical considerations may lead investigators to err on
the side of more stringent screening.

Insight into the utility of markers for
prognostic enrichment

* Sometimes (nominally) unimpressive markers
might helpful for prognostic enrichment
— e.g. prognostic biomarker 1 had modest AUC, 0.72

* This is because the biggest “gains” in reduced
sample size are at the low end of the event
rate (next slide)

— Detecting a 30% reduction in the event rate

requires much larger sample sizes if the event rate
is 10% (vs 7%) compared to 20% (vs 14%)

* “a little bit of enrichment can go a long way”
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S8 for 80% Power to Detect 30% Reduction In Event Rate

Event Rate in Control Arm
192

Summary of Part

* In order for a risk model to be valid it must be
well-calibrated
— Otherwise cannot interpret predicted risks as risks

— Recommend graphical assessment (moderate
calibration)

— Recommend assessing strong calibration when
possible

¢ Risk model discrimination

— Can use ROC curve; more informative to use an
alternative that shows the risk threshold

— Presented AUC and other numeric measures



SISCER 2019, Module 3, Part Il

Summary of Part |l

* Decision Curves

— Potentially useful to evaluate risk-based treatment
policies over a range of plausible risk thresholds
* Challenging to interpret values of NB

— Aids the assessment of the population impact of
treatment policies

— If standard is “treat all”, opt-out Decision Curves better
suited than the common opt-in Decision Curves

* | prefer standardized Net Benefit over Net Benefit
— Maximum sNB always 1.0 (or 100%)
— Slightly easier to interpret

Summary of Part

* Evaluating a risk model (or biomarker) for
prognostic enrichment of a clinical trial. Key
considerations:

— trial sample size

— total patients screened to enroll trial/calendar
time to enroll

— cost savings of smaller trial vs. cost of screening
— generalizability
— ethics of eligibility criteria



