SISCER Module 3 Part IV:

A. Combining Biomarkers and Developing Risk Models;

B. Setting Target performance for Early Phase Biomarker Research

Kathleen Kerr, Ph.D.
Professor
Department of Biostatistics
University of Washington

Caveat

 This set of material should provide you with some guidance, but will not provide you with a recipe.

A shared experience

- Investigators interested in predicting an outcome D have a collection of modestly predictive biomarkers
- They combine the markers together with logistic regression. This results in...
- ... a modestly predictive combination

40

Framingham risk factors individually...

Framingham risk factors individually...

Framingham risk factors in combination

AKI biomarkers individually...

407

AKI biomarkers in combination

- The previous examples used linear combinations to combine predictors
- Is the problem that we don't know the right way to combine markers? Should we use something more sophisticated than logistic regression?
- Let's return to our BiNormal Model

Lessons from the example:

- A marker with no predictive capacity by itself can have positive incremental value.
- Incremental value is **not** a monotone function of marginal predictive capacity.
- To get large incremental value, we may need new biomarkers that are as good or better than existing markers.

Observations about the example:

- In the example, the true risk scores are known theoretically and exactly
 - risk(D | M1)
 - risk(D | M2)
 - risk(D | M1, M2)
- In particular, we are not estimating risk
 P(D | M1, M2).
- Conclusion: "better methods for combining biomarkers" is not what is lacking in this example

419

Lessons from Machine Learning

- Lim et al (2000) compared 33 classification algorithms on 32 datasets
 - 22 algorithms to build decision trees
 - 9 statistical algorithms
 - 2 neural network algorithms
- The best performing algorithm "was not statistically different" from 20 other algorithms.
- · Logistic regression came in second

Lessons from Machine Learning

- Christodoulou et al (2019) reviewed published papers that reported both logistic regression and a machine learning technique to develop a predictive model
- For studies using best practices to avoid bias results, no evidence of a systematic benefit for machine learning or logistic regression
 - LR included penalized, "boosted", and "bagged" versions
 - Evaluative metric: AUC

42

Lessons from Machine Learning

- There is no universally "optimal" way of combining biomarkers
 - For every method, there is probably some data structure for which it is optimal.

Lessons from Statistics and Machine Learning

- Different methods are optimal for different data structures, so should we try out lots of methods?
 - We should worry about "model selection" bias
 - If we try out lots of methods on our data and choose the best, we will have biased estimates of model performance without special methods
 - For modestly sized datasets in biomedicine, choose something sensible and move on.

423

Recent efforts to provide reporting standards and guidelines for publications reporting new risk models: TRIPOD and RiGoR

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration

Karel G.M. Moons, PhD; Douglas G. Altman, DSc; Johannes B. Reitsma, MD, PhD; John P.A. Ioannidis, MD, DSc; Petra Macaskill, PhD; Ewout W. Steyerberg, PhD; Andrew J. Vickers, PhD; David F. Ransohoff, MD; and Gary S. Collins, PhD

(TRIPOD co-published in 11 journals)

Kerr et al. Biomarker Research (2015) 3:2 DOI 10.1186/s40364-014-0027-7

Open Access

REVIEW

RiGoR: reporting guidelines to address common sources of bias in risk model development

Kathleen F Kerr^{1*}, Allison Meisner¹, Heather Thiessen-Philbrook², Steven G Coca³ and Chirag R Parikh⁴

TRIPOD

- Response to common problems with risk models presented in the literature
- In some areas many risk models are being developed (diabetes, prostate cancer), making it challenging for clinicians to decide which one to use.
- This problem is exacerbated by poor reporting.
 - The existence of existing models not acknowledged, new model not compared to existing models
 - Failure to provide information on the actual model (!)
- https://www.tripod-statement.org/

425

RiGoR

- Similar effort to TRIPOD
- Focus is addressing possible sources of bias that can arise in risk model development
- Various terms are used to describe these biases
 - optimistic bias
 - overoptimistic bias
 - overfitting bias
 - selection bias
 - parameter uncertainty bias (Steyerberg)
 - model uncertainty bias (Steyerberg)
- Better to have terms that are descriptive and specific

 The RiGoR paper proposes the terms "resubstitution bias" and "model-selection bias" for two sources of bias that commonly arise in risk model development

427

Resubstitution bias

- If the same data are used to fit a risk model and evaluate its performance, the evaluation will be biased in the "optimistic" direction
 - The process of applying a model to the dataset used to fit the model has been called "resubstitution"
 - Fairly extensive set of methods exist to correct for this bias when evaluating a risk model
 - bootstrapping
 - cross-validation
 - Harrell, Regression Modeling Strategies text and rms R package: "optimism-corrected AUC" etc
 - R demo

Model-selection bias

- If we pre-specify the exact form for our prediction model, and use the data only to estimate model parameters, then only resubstitution bias is a concern
- More likely we used the data to help us choose our model
 - transformations of our variables
 - what variables to include in the model
 - form of the model (square terms, interaction terms)
- Even if we correct for resubstitution bias in our evaluation of the final model, we can still have modelselection bias

429

Model-selection bias

- Methods here are less-developed
- If using bootstrapping or cross-validation, a common practice is to incorporate modelselection into the procedure
 - not entirely clear how well this works
 - requires a completely algorithmic method of model-selection
 - note that it doesn't actually assess the final, fitted model

Sample-splitting

- Randomly split the data into a training set and a test set (often 50-50, or 2/3-1/3)
 - all model development on the training set
 - when the final model is "locked down", evaluate its performance on the test set
 - addresses both resubstitution bias and model-selection bias
- · Criticized for its statistical inefficiency
 - only using a fraction of the data to build/train your model
 - still, if you have lots of data this might be the best option

43

Sample-splitting

- In order for sample-splitting to provide an unbiased assessment of model performance, you get "one look" at the test data
- Must "lock down" one or a few models to evaluate on the test data
- If you evaluate a model on the test data, then revisit the training data to try to come up with a better model, you are no longer getting an unbiased assessment
 - Now the test data are informing model development

Internal vs. External Validation

- All of the methods just discussed are methods of "internal" model validation
- "external" validation is a more challenging and more important hurdle: how does the model perform on a new sample of data from the appropriate clinical population?

433

One Method for Correcting for Resubstitution Bias

- "optimism-corrected estimate of model performance"
- Harrell text: "bias-corrected or overfittingcorrected estimate of predictive accuracy"
- (Illustrated in R Demo)

One Method for Correcting for Resubstitution Bias

- 1. Fit the (pre-specified) model (call it M) and calculate its performance on the same dataset.
 - "apparent performance" of M
- 2. Draw a bootstrap sample of size n. Re-fit the model to the bootstrap sample, get M*.
- Evaluate M* on both the original dataset and the bootstrap dataset used to get M*. The difference between these is the estimate of optimism.
- 4. Repeat steps 2-3 many times. The average of the estimated optimisms across many bootstrap samples is the estimate of optimism. Subtract the estimated optimism from the apparent estimate of performance.

435

Summary

- There is no general "optimal" way to build a prediction model
- Logistic regression has been observed to work well in lots of settings
 - need special methods for high-dimensional settings, not addressed here
- The variable that is most predictive on its own will not necessarily offer the most improvement to an existing risk model
- To improve upon an existing risk model we should not necessarily seek markers that are independent of existing markers

Summary

- Risk models are often poorly reported in the literature. Consult reporting standards to do better (TRIPOD, RiGoR)
- Beware of optimistic biases in risk model development: resubstitution bias and modelselection bias
 - There are plenty of other opportunities for biases to enter a study, e.g. selection of cases and controls

43

References for part A

- Bansal and Pepe, When does combining markers improve classification performance and what are implications for practice? Statistics in Medicine, 2013.
- McIntosh and Pepe, Combining several screening tests: optimality of the risk score. Biometrics, 2002.
- Lim, Loh, and Shih, A Comparison of Prediction Accuracy, Complexity and Training Time of Thirty-Three Old and New Classification Algorithms. *Machine Learning*, 2000.
- Chrisodoulou, Ma, Collins, Steyerberg, Verbakel, van Calster, A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction model. *J of Clinical Epidemiology* 2019
- Gary Collins et al, TRIPOD papers and website 2015
- Kerr et al, RiGoR, Biomarker Research 2015
- Harrell, Regression Modeling Strategies, Springer

Early-Phase Biomarker Research

- Early phase biomarker research project
 - "We seek a biomarker with 80% sensitivity and 90% specificity".... What makes a reasonable goal?
 - We can borrow principles from risk model assessment to inform and set performance targets

439

Early-Phase Biomarker Research

- If the marker is used to direct a clinical decision about an intervention, the context can help set performance standards
- Example
 - Seek a biomarker to select women for mammography
 - Let B be the benefit of mammography to a women with undiagnosed breast cancer
 - Let C be the cost/harms of mammography to a women without breast cancer
 - Let ρ be the prevalence of undiagnosed breast cancer in the target population
 - The total benefit derives from positive tests in cases: $\rho \cdot TPR \cdot B$
 - The total harms derives from positive tests in controls: (1–p) \cdot FPR \cdot C

Early-Phase Biomarker Research

• For the marker to have net positive value:

$$\rho \cdot TPR \cdot B > (1-\rho) \cdot FPR \cdot C$$

i.e., $\frac{TPR}{FPR} > \frac{1-\rho}{\rho} \frac{C}{B} = \frac{1-\rho}{\rho} r$, where r is the Cost/Benefit ratio $\frac{C}{B}$.

Specifying or soliciting $r = \frac{C}{B}$ is difficult

441

Intuitive Measures of the Cost/Benefit Ratio

- One can articulate r=C/B in terms of the maximum number of controls N_{max} we are willing to work up in order to receive the benefit of working up one case.
- The cost of working up N_{max} controls is N_{max}·C.
- From the definition of N_{max} : N_{max} ·C=B.
- So $r = \frac{C}{B} = \frac{1}{N_{max}}$

Intuitive Measures of the Cost/Benefit Ratio

- What is the minimum level of risk R at which work-up is warranted?
- E.g., a woman might feel a mammogram is warranted if her risk or having breast cancer is at least 5/1000 but not if it is less.
- $\frac{C}{B} = \frac{R}{1-R}$

443

Example: Chemotherapy for Stage 1 Colon Cancer

- Consider biomarker for risk of recurrence within the first year after surgery for stage 1 color cancer patients.
- Stage 1 patients are not normally offered chemotherapy, which would reduce risk of recurrence.
- The 1-year recurrence rate for stage 1 patients is 10% (ρ).
- Stage 3 colon cancer patients are routinely offered chemotherapy; without it, their risk of recurrence is 30%.
- Therefore, R≤30%. If we take R=30%, then $r = \frac{0.3}{1-0.3} = 0.43$.
- Thus $\frac{TPR}{FPR} \ge \frac{1-0.1}{0.1} \times 0.43 = 3.85$.

A marker with a single (FPR, TPR) above the target could have clinical utility. Since TPR cannot exceed 1, markers with FPR>1/3.85=26% cannot have clinical utility.

Example: Interval Breast Cancer Screening

- Women 50-74 are recommended for screening mammography every two years.
- Suppose we seek a biomarker to identify women for additional screening (mammograms) 8 and 16 months after a negative mammogram.
- During this interval, the expected incidence of breast cancer is 0.15%.
- A panel decides that the health care system should support 500 additional mammograms (250 women getting 2 "extra" mammograms) to catch 1 woman with interval cancer.

$$-N_{\text{max}} = 250 \rightarrow r = \frac{1}{250} \rightarrow \frac{TPR}{FPR} \ge \frac{1 - 0.0015}{0.0015} \times \frac{1}{250} = 2.66.$$

447

Example: Interval Breast Cancer Screening

- $N_{\text{max}} = 250 \rightarrow r = \frac{1}{250} \rightarrow \frac{TPR}{FPR} \ge \frac{1 0.0015}{0.0015} \times \frac{1}{250} = 2.66.$
- If we limit FPR at 5%, then the TPR must exceed $2.66 \cdot 0.05 = 13\%$ for the biomarker to be useful

Example: Ovarian Cancer Screening

- Incidence of ovarian cancer in women 50-64 is 25 in 100,000
- We seek a biomarker for annual screening;
 biomarker positive women will receive surgery for definitive diagnosis.
- We require 1 discovery of ovarian cancer for every 10 surgeries. That is, we tolerate 9 unnecessary surgeries to find one cancer.
- $N_{\text{max}} = 9 \rightarrow r = \frac{1}{9} \rightarrow \frac{TPR}{FPR} \ge \frac{1 0.00025}{0.00025} \times \frac{1}{9} = 444.$

Example: Ovarian Cancer Screening

- More realistically, marker positive women would receive transvaginal ultrasound to decide on surgery. If TVS is also positive, then surgery.
- If marker results and TVS results are independent (big assumption), then the TPR for the combined test is the TPR for ultrasound (0.755) times the TPR for the marker; the FPR for the combined test is the FPR for ultrasound (0.018) times the FPR for the marker.
- $\frac{0.755 \times TPR}{0.018 \times FPR} \ge 444 \to \frac{TPR}{FPR} \ge 10.6$.
- A biomarker that detects 80% of cancers must have an FPR ≤ 0.075.

Reference for part B

Clinical Chemistry 62:5 737-742 (2016)

Cancer Diagnostics

Early-Phase Studies of Biomarkers: What Target Sensitivity and Specificity Values Might Confer Clinical Utility?

Margaret S. Pepe, 1* Holly Janes, 2 Christopher I. Li, 3 Patrick M. Bossuyt, 4 Ziding Feng, 5 and Jørgen Hilden 6