
Appendix 3

Further Topics in Matrix Algebra

and Linear Models

Version 7 Jan 2021

This appendix builds on Chapters 9 and 10, presenting additional results from matrix
algebra and linear model theory. We start by introducing two useful matrix operations,
generalized inverses (for solving singular systems of equations) and the square root of a
matrix (for obtaining a set of uncorrelated variables). These results are then used for a formal
derivation of several properties of generalized least-squares (GLS) estimators. We next
examine how linear model sums of squares can be written as quadratic forms and how these
sums of squares are used in formal hypothesis testing and in the construction of confidence
intervals. We then turn to equivalent linear mixed models (which allow calculations for one
model to be performed on a potentially much simpler model), and the conclude with brief
introductions to matrix derivatives and matrix decompositions.

GENERALIZED INVERSES AND SOLUTIONS TO SINGULAR
SYSTEMS OF EQUATIONS

Linear systems of equations are ubiquitous in quantitative genetics and we have presented
solutions for such systems by assuming that the appropriate matrices are nonsingular, and
hence can be inverted. However, in the real world of large, complex, and unbalanced data
sets, the existence of an inverse is by no means guaranteed. Consider the solution of the
matrix equation y = Ax for the unknown vector x. If A is square and nonsingular, then
x = A−1y is the unique solution. However, what happens if A is singular or is nonsquare?
In this case either: (i) the system has no solution and is said to be inconsistent, or (ii)
there are an infinite number of solution (the solution set is a line, plane, or hyperplane). An
example of an inconsistent system is

x1 + x2 = 1
x1 + x2 = 2

which cannot be satisfied by any (x1, x2). Likewise, a system with an infinite number of
solutions is

x1 + x2 = 1
2 x1 + 2 x2 = 2

which has a line of solutions of the form x2 = 1−x1 for arbitrary x1. While these two simple
systems can be solved by inspection, a more systematic approach is required for arbitary
systems. This is provided by using generalized inverses.

Generalized Inverses

Suppose a matrix A− exists such that

AA−A = A (A3.1)

where A is p× q and A− is q×p (note that A need not be square). Premultiplying both sides
of the equation Ax = y by AA− gives

AA−Ax = Ax = AA−y

1



2 APPENDIX 3

and hence
A(x−A−y) = 0

implying that, if the system is consistent, a solution is

x = A−y (A3.2)

Given the analogy with the inverse of a nonsingular square matrix, a matrix A− satisfying
Equation A3.1 is called a generalized inverse (g-inverse, conditional inverse, pseudo-
inverse) of A. While the notation of using A− to denote the generalized inverse of A is
widely used in the quantitative genetics, the notation A+ is also used in other literatures.

Unless A is nonsingular, Equation A3.1 does not define a unique matrix, so we refer
to A− as a generalized inverse instead of the generalized inverse. A unique generalized
inverse, the Moore-Penrose inverse, can be obtained by imposing three additional con-
ditions: (i) A−AA− = A−; (ii) (AA−)T = AA−, and (iii) (A−A)T = A−A. However, for
our purposes any A− satisfying Equation A3.1 is sufficient. Equation A3.38 shows how
generalized inverses can be computed using the singular value decomposition (Equation
A3.36a), with other approaches given by Henderson (1984a). More detailed treatment of the
properties of generalized inverses are given by Pringle and Rayner (1971), Rao and Mitra
(1971), Dhrymes (1978), and Searle (1982), and we summarize some of these results below.

Consistency and Solutions to Consistent Systems

When dealing with linear models for complex designs, it is not immediately clear if the
resulting OLS/GLS equations have solutions. Generalized inverses provide a check of con-
sistency, and hence of whether a system of equations has any solutions. A linear system
Am×q xq×1 = ym×1 is consistent if and only if

AA−y = y (A3.3)

Given a consistent system, all solutions have the form

x = A−y + (I−A−A)c (A3.4)

where c is an arbitrary q × 1 column vector. For example, taking c = 0 recovers Equation
A3.2, while if A−1 exists, then I − A−1A = 0 and the solution x = A−1y is unique. To see
that any expression of the form of Equation A3.4 is a solution, note that

Ax = A(A−y + [I−A−A]c)

= AA−y + (A−AA−A)c = y + (A−A)c
= y

which follows from Equations A3.3 and A3.1, respectively.

Example A3.1. Consider the following system of equations

x1 + 2x2 + 3x3 = 5

2x1 + x2 + 2x3 = 6

which can be written in matrix form as Ax = y, with

A =
(

1 2 3
2 1 2

)
, x =

 x1

x2

x3

 , y =
(

5
6

)
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The matrix

A− =

−11/26 9/13
4/13 −3/13
7/26 −1/13


satisfies AA−A = A and thus is a generalized inverse of A. Matrix multiplication shows
that AA− = I, implying AA−y = y. Thus, Equation A3.3 is satisfied and this system of
equations is consistent for any y. One solution is x = A−y, or x1

x2

x3

 =

−11/26 9/13
4/13 −3/13
7/26 −1/13

 (
5
6

)
=

1
26

 53
4
23


More generally, since

I−A−A =

 1/26 2/13 −3/26
2/13 8/13 −6/13
−3/26 −6/13 9/26


then from Equation A3.4, any solution to this system of equations has the form x1

x2

x3

 =
1
26

 53
4
23

 +

 1/26 2/13 −3/26
2/13 8/13 −6/13
−3/26 −6/13 9/26

  c1

c2

c3


which reduces to  x1

x2

x3

 =
1
26

 53
4
23

 + c ·

 1
4
−3


where c is an arbitrary constant.

Although an infinite number of solutions exists when A is singular, particular linear
combinations (or contrasts) of the elements of x may have unique values. For example,
consider the system x1 + x2 = 1. Here there are an infinite number of solutions for (x1, x2),
but only a single solution, 1, for the contrast x1 + x2.

Consider some linear combination bT x =
∑

bixi. If the vector of constants b satisfies

bT A−A = bT (A3.5a)

then bT x has a unique solution given by

bT x = bT A−y (A3.5b)

To see this, note that Equation A3.4 gives the general solution as

bT x = bT (A−y + [I−A−A]c)

= bT A−y + (bT I− bT A−A)c

= bT A−y + (bT − bT )c

= bT A−y

which is independent of the arbitrary vector c. Likewise, a matrix of contrasts, Bx, has a
unique solution BA−y, provided B satisfies BA−A = B
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Example A3.2. Consider the system of equations from Example A3.1. Is there a unique
solution for the two linear contrasts c1 = x2 − 4x1 and c2 = x3 + 3x1? In matrix form,(

c1

c2

)
=

(
x2 − 4x1

x3 + 3x1

)
= Bx

where

B =
(
−4 1 0

3 0 1

)
and x =

 x1

x2

x3


Using the generalized inverse for A from Example A3.1, matrix multiplication shows that

BA−A =
(
−4 1 0

3 0 1

)
= B

Hence, the matrix version of Equation A3.5b gives the unique solution for this vector of
contrasts as(

c1

c2

)
= BA−y =

(
−4 1 0

3 0 1

) −11/26 9/13
4/13 −3/13
7/26 −1/13

 (
5
6

)
=

(
−8

7

)

To see that this solution is indeed unique, note that we can rearrange the contrast equations
to obtain x2 = c1 + 4x1 and x3 = c2 − 3x1. Substituting into the original set of equations
(Example A3.1),

x1 + 2x2 + 3x3 = x1 + 2(c1 + 4x1) + 3(c2 − 3x1) = 2c1 + 3c2 = 5

2x1 + x2 + 2x3 = 2x1 + (c1 + 4x1) + 2(c2 − 3x1) = c1 + 2c2 = 6

so that the original set of two equations and three unknowns reduces to a two equation-two
unknown system. In matrix form this is(

2 3
1 2

) (
c1

c2

)
=

(
5
6

)
Since the coefficient matrix is invertible (its determinate is 2 · 2− 3 · 1 6= 0 ), there is a unique
solution for this pair of contrasts (c1 = −8 and c2 = 7).

Estimability of Fixed Factors

The above results have implications for the estimation of fixed factors in the general linear
model, y = Xβ + e. Recall that the OLS solution for a vector β of fixed effects is β̂ =
(XT X)−1XT y (Equation 10.9a). If the design matrix X has full column rank (all columns of
X are independent), (XT X)−1 exists and the OLS solution for β is unique. However, when
(XT X) is singular (and hence does not have a unique inverse), it is not possible to obtain
unique OLS estimates for all the fixed factors in a model. For example, suppose β1 indicates
a sex effect (male vs. female) and β2 indicates the effect of a particular diet. If the design is
such that no females used this diet while all males did, we do not have separate information
on both sex and diet effects and hence can only estimate β1 + β2 rather than being able to
estimate both β1 and β2 separately.

A linear combination of factors bT β is said to be estimable for a given design matrix
X if there exists some column vector a that satisfies

E[aT y] = bT β (A3.6a)
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Estimability thus implies that there is some linear combination aT y of the original data
whose expected value equals the desired linear combination of factors. Since E[y] = Xβ,
this definition implies that bT β is estimable if there exists a column vector a that satisfies
E[aT y] = aT E[y] = aT Xβ = bT β, implying (aT X− bT )β = 0, or that

XT a = b (A3.6b)

An alternative (and equivalent) condition is that b satisfies

bT (XT X)−(XT X) = bT (A3.6c)

Henderson (1984a) gives other equivalent conditions. Equation A3.6c implies that if XT X is
nonsingular, all linear combinations of β are estimable. Note that Equation A3.6c is identical
to the condition given by Equation A3.5a (taking A = XT X), implying that these solutions
are also unique estimates. If estimable, the OLS solution of the vector bT β given by

OLS(bT β) = bT
(

XT X
)−

XT y (A3.6d)

is unique and is independent of which generalized inverse is actually used.

Example A3.3. Consider the linear model y = Xβ, where

β =

 β1

β2

β3

 and X =

 1 1 0
1 1 0
0 0 1

 , giving XT X =

 2 2 0
2 2 0
0 0 1


Note that XT X is singular (it has rank 2 as its first two columns are identical), so we cannot
obtain unique estimates of all three parameters. For this design matrix, are β3, β1 + β2, and
β1 all estimable? These three combinations correspond to vectors of bT = (0, 0, 1), (1, 1, 0),
and (1, 0, 0), respectively. For the first two b vectors, we can find a vector a that satisfies
XT a = b, namely,

XT

 0
0
1

 =

 0
0
1

 and XT

 1/2
1/2
0

 =

 1
1
0


so that, from Equation A3.6b, these two linear combinations, β3 and (β1 + β2), are estimable.
However, because

XT

 a1

a2

a3

 =

 a1 + a2

a1 + a2

a3

 6=
 1

0
0


β1 is not estimable as a1 + a2 cannot simultaneously equal zero and one, and hence there
exists no vector a that satisfies XT a = b for this particular combinations of X and b.

THE SQUARE ROOT OF A MATRIX

The concept of the square root of a symmetric nonsingular matrix provides another useful
matrix tool for the analysis of linear models. In particular, using the square root of the
covariance matrix transforms a vector of correlated variables into a new vector of variables
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with covariance matrix I, implying that the transformed variables are uncorrelated with
unit variance.

Consider a symmetric nonsingular matrix V and define V1/2 as the matrix satisfying

V1/2V1/2 = V (A3.7a)

In effect, V1/2 is the square root of a matrix, in that, when squared, we recover V. Denoting
the inverse of V1/2 as V−1/2, we also have the following properties

V−1/2V1/2 = I, V−1/2V−1/2 = V−1, and V−1/2V = V1/2 (A3.7b)

Likewise, both V1/2 and its inverse are symmetric. As shown below, the diagonalization
decomposition of V leads to expressions for V1/2 (Equation A3.33b) and V−1/2 (Equation
A3.33c). Finally, the square root matrix of I is simply I, with

I−1/2I1/2 = I, I−1/2I−1/2 = I, and I−1/2I = I (A3.7c)

Suppose the random vector y has covariance matrix V and consider the new vector
z = V−1/2y. Recalling Equation 9.21b, the resulting covariance matrix for z becomes

Var(z) = V−1/2Var(y)V−1/2 = V−1/2VV−1/2 = V−1/2V1/2 = I (A3.8a)

Thus, the transformed variables have unit variance and are uncorrelated. Suppose y is an
n× 1 column vector with y ∼MVN(µ, V). It follows that

z = V−1/2(y− µ) ∼MVN(0, I) (A3.8b)

so that zi ∼ N(0, 1), and hence the transformed variables are independent unit normals.
Thus,

(y− µ)T V−1(y− µ) = (y− µ)T V−1/2V−1/2(y− µ)
= zT z

=
n∑

i=1

z2
i ∼ χ2

n (A3.9)

The last step follows by recalling that the sum of n squared (and independent) unit nor-
mal random variables follows a χ2 distribution with n degrees of freedom (Appendix 5).
Thus when y is multivariate normal, the quadratic form (y − µ)T V−1(y − µ) follows a χ2

distribution. As we will see shortly, Equation A3.9 is the basis for goodness-of-fit tests of
linear models. We will return to other matrix decompositions that can be used to remove
correlations at the end of the appendix, where we also examine the relationship between
the eigenstructures of V, V1/2, and V−1/2.

DERIVATION OF THE GLS ESTIMATORS

One important application of the square root of a matrix is that it allows us to obtain
generalized least-squares (GLS) estimators from ordinary least-squares (OLS) estimators.
Suppose the linear model is

y = Xβ + e with e ∼ (0, σ2
e R)

Premultiplying both sides by R−1/2 gives

z = Zβ + f with f ∼ (0, σ2
e I)



MATRIX ALGEBRA AND LINEAR MODELS 7

where
z = R−1/2y, Z = R−1/2X, f = R−1/2e

OLS can be applied to this model since the transformed residuals are uncorrelated and
homoscedastic. Thus, GLS estimates are obtained from the OLS solution by substituting

z = R−1/2y for y, Z = R−1/2X for X, f = R−1/2e for e (A3.10)

Substituting into the OLS solutions (Equation 10.9a) gives the GLS estimate of β as

β̂ =
(

( XT R−1/2 ) ( R−1/2X )
)−1

( XT R−1/2 ) ( R−1/2y )

=
(

XT R−1X
)−1

XT R−1y

Likewise, substituting into the OLS covariance expression (Equation 10.11a) gives the re-
sulting covariance matrix for the GLS estimates as

Var( β̂ ) = σ2
e

(
XT R−1X

)−1

If the residuals follow a multivariate normal distribution, e ∼ MVN(0, V), and y =
Xβ + e is indeed the correct model, then for ŷ = Xβ, y − ŷ ∼ MVN(0, V) and it follows
from Equation A3.9 that

(y− ŷ)T V−1 (y− ŷ) ∼ χ2
n−p (A3.11a)

The degrees of freedom for the χ2 distribution equals the number of observations minus the
number of estimated parameters. Equation A3.11a provides a χ2 test for the goodness-of-fit
of a particular linear model. If V is a diagonal matrix, then

(y− ŷ)T V−1 (y− ŷ) =
n∑

i=1

( yi − ŷi )2

Vii
∼ χ2

n−p (A3.11b)

QUADRATIC FORMS AND SUMS OF SQUARES

The analysis of linear models relies very heavily on sums of squares (Chapter 22), which
can be expressed in matrix notation as quadratic forms (Equation 9.17a). To introduce the
reader to the machinery used to work with sums of squares, we first present expressions for
the mean and variance of a quadratic form, and then express linear model sums of squares
as quadratic forms.

Moments of Quadratic Forms

When x is a vector of random variables, the quadratic form xT Ax is a scalar (1× 1) random
variable. If x has mean µ and (nonsingular) covariance matrix V, Equation 9.22 gives the
expected value of this quadratic form as

E(xT Ax) = tr(AV) + µT Aµ (A3.12a)

where the trace of a square matrix, tr(M) =
∑

Mii, is the sum of its diagonal elements.
Further, if x ∼ MVN(µ, V), then as shown in Searle (1971), the variance of the quadratic
form is given by

σ2(xT Ax) = 2 tr (AVAV) + 4µT AVAµ (A3.12b)
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The Sample Variance Expressed as a Quadratic Form

As an introduction to expressing sums of squares as quadratic forms, consider the sample
variance for n observations,

Var(x) =
1

n− 1

n∑
i=1

(xi − x)2

Define the unit matrix Jn×k as an n× k matrix in which every element is unity, e.g.,

Jn×1 =

 1
...
1

}
n , J2×3 =

(
1 1 1
1 1 1

)
, etc.

Likewise, define the matrix

N =
1

n− 1

(
I− 1

n
J
)

=
1

n− 1


1− 1/n −1/n · · · −1/n
−1/n 1− 1/n · · · −1/n

...
...

. . .
...

−1/n −1/n · · · 1− 1/n

 (A3.13a)

where here J is n× n. Noting that

Nx =
1

n− 1

(
x− 1

n
Jx

)
=

1
n− 1

 x1 − x
...

xn − x

 (A3.13b)

it follows that
xT Nx = Var(x) (A3.14a)

To see this, observe that

xT Nx =
1

n− 1
( x1 · · · xn )

 x1 − x
...

xn − x


=

1
n− 1

n∑
i=1

xi( xi − x ) =
1

n− 1

(
n∑

i=1

x2
i − x

n∑
i=1

xi

)
(A3.14b)

=
1

n− 1

n∑
i=1

(xi − x )2 = Var(x)

The last step follows by noting that

−x
n∑

i=1

xi = −2x
n∑

i=1

xi + n x2

Example A3.4. Since we have expressed Var(x) as a quadratic form, we can use Equation
A3.12a to compute its expected value and Equation A3.12b to compute its sampling variance.
If x ∼ (µ, V), the expected value of Var(x) is

E[ Var(x) ] = E(xT Nx) = tr(NV) + µT Nµ
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To compute this expression, first note from Equation A3.14b that

µT Nµ =
1

n− 1

n∑
i=1

( µi − µ )2

Likewise, from Equation A3.13b

NV =
V

n− 1
− JV

n(n− 1)

which has diagonal elements

(NV)ii =
1

n− 1

(
σ2(zi)−

∑
j σ(zi, zj)

n

)
After some simplification, we have

tr(NV) =
n∑

i=1

(NV)ii =
1
n

n∑
i=1

σ2(zi)−
2

n(n− 1)

∑
i<j

σ(zi, zj)

Putting these results together gives

E[Var(x)] =
1
n

n∑
i=1

σ2(zi)−
2

n(n− 1)

∑
i<j

σ(zi, zj) +
1

n− 1

n∑
i=1

( µi − µ )2

where µ =
∑

µi/n. In the simple situation where all observations have the same mean and
variance (µi = µ, σ2(zi) = σ2) and are uncorrelated, this reduces to

E[ Var(x) ] = σ2

Turning now to the sample variance of Var(x), if we are willing to assume that x is
multivariate normal, then from Equation A3.12b,

σ2[Var(x)] = σ2(xT Nx) = 2 tr [NVNV] + 4µT NVNµ

If, for example, V = σ2 I (the xi are uncorrelated with common variance), then

NVNV = σ4 NN =
σ4

(n− 1)2

(
I− 1

n
Jn×n

) (
I− 1

n
Jn×n

)
=

σ4

(n− 1)2

(
I− 2

n
Jn×n + n−2 Jn×n Jn×n

)
The ijth element in Jn×n Jn×n is n, giving J2n×n = n Jn×n. Hence, the ith diagonal element
of NVNV is

σ4

(n− 1)2

(
1− 2

n
+ n−2n

)
=

σ4

n(n− 1)

giving tr(NVNV) = σ4/(n − 1). When all of the means are equal, it follows that Nµ = 0
and the second term in Equation A3.12b vanishes, yielding

σ2[ Var(x) ] =
2σ4

n− 1
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Sums of Squares Expressed as Quadratic Forms

In the same fashion that we decomposed the total variance into genetic and phenotypic
components (Chapters 4–7), we can decompose the total variance of a response vector y
into the variance accounted for by the linear model and the remaining (error or residual)
variance. This is typically done by considering three sums of squares, with the total sum
of squares (SST) being the sum of two components, the error (or residual) sum of squares
(SSE) and the model sum of squares (SSM),

SST = SSM + SSE

The total sum of squares measures the total variability in the data, while the model sum of
squares measures the amount of variation accounted for by the linear model. As noted in
our discussions of univariate regression in Chapter 3, the fraction of total variance explained
by a linear model is given by the coefficient of determination,

r2 =
SSM

SST
= 1− SSE

SST
(A3.15)

As summarized in Table A3.1, the sums of squares have different forms under OLS and
GLS. Under OLS, the residuals are assumed to be independent with common variance σ2

e .
In this case, each observation/residual is weighted equally, and the total sum of squares is
simply

SST =
n∑

i=1

( yi − y )2

Sums of squares can be expressed as a quadratic form of the vector of observations y,
allowing the use of Equations 3A.12a and 3A.12b to obtain their expectations and variances.
Recalling Equation A3.14b and A3.13a,

SST = yT

(
I− 1

n
J
)

y (A3.16a)

where J is n× n.
Now consider the error sum of squares,

SSE =
n∑

i=1

( yi − ŷi )2 =
n∑

i=1

ê 2
i

Since ê = y− ŷ and ŷ = Xb = X
(

XT X
)−1

XT y, we have

SSE = êT ê, where ê =
[
I− X

(
XT X

)−1

XT

]
y (A3.16b)

Expanding this expression and noting that XT X
(

XT X
)−1

= I, this simplifies to

SSE = yT

[
I− X

(
XT X

)−1

XT

]
y (A3.16c)

Finally, the model sum of squares is the difference between the total and error sums of
squares,

SSM = SST − SSE = yT

[
X

(
XT X

)−1

XT − 1
n

J
]

y (A3.16d)
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Table A3.1 Summary of useful results for the general linear model, y = Xβ + e, under OLS and
GLS assumptions for the distribution of residuals. The Q matrix for the listed sums of squares is the
matrix in the quadratic form, yT Qy, while J is a matrix where each element is 1.

Ordinary Least Squares, OLS Generalized Least Squares, GLS

Assumed distribution of residuals:

e ∼ (0, σ2
e I) e ∼ (0, σ2

e R)

Least-squares estimator of β:

β̂ = (XT X)−1XT y β̂ = (XT R−1X)−1XT R−1y

Covariance matrix for β̂:

(XT X)−1σ2
e (XT R−1X)−1σ2

e

Estimated residual variance, σ̂2
e

(y−Xb)
T (y− Xb)

n− rank(X)
(y−Xb)

T R−1(y− Xb)
n− rank(X)

Predicted values, ŷ = Xβ̂:

X(XT X)−1XT y X(XT R−1X)−1XT R−1y

Covariance matrix for predicted values, ŷ:

X(XT X)−1XT σ2
e X(XT R−1X)−1XT σ2

e

SST , total sums of squares quadratic form matrix, Q:

I− 1
n

J R−1 − 1
n

R−1/2JR−1/2

SSM , model sums of squares quadratic form matrix, Q:

X
(

XT X
)−1

XT − 1
n

J R−1X
(

XT R−1X
)−1

XT R−1

− 1
n

R−1/2JR−1/2

SSE , error sums of squares quadratic form matrix, Q:

I− X
(

XT X
)−1

XT R−1 − R−1X
(

XT R−1X
)−1

XT R−1

χ2 goodness of fit statistic (assuming residuals are MVN):

χ2 =
(y− ŷ)T (y− ŷ)

σ2
e

χ2 =
(y− ŷ)T R−1(y− ŷ)

σ2
e

Note that

SSM =
n∑

i=1

( ŷi − y )2

so that (for OLS) the model sum of squares is the sum of squared deviations of the predicted
values from the overall mean.

The sums of squares under generalized least-squares (GLS) are slightly different, as we
have to correct for heteroscedasticity and/or the lack of independence among the residuals.
Assume that the residuals have covariance matrix σ2

e R. From Equation A3.10, y is replaced
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by R−1/2y and X is replaced by R−1/2X in the above OLS expressions for sums of squares.
Hence, the total sum of squares for GLS becomes

SST = yT R−1/2

(
I− 1

n
J
)

R−1/2y

= yT

[
R−1 − 1

n
R−1/2JR−1/2

]
y (A3.17a)

Likewise, the error sum of squares becomes

SSE = êT R−1ê

= yT

[
R−1 − R−1X

(
XT R−1X

)−1

XT R−1

]
y (A3.17b)

and the model sum of squares becomes

SSM = yT

[
R−1X

(
XT R−1X

)−1

XT R−1 − 1
n

R−1/2JR−1/2

]
y (A3.17c)

TESTING HYPOTHESES ABOUT LINEAR MODELS

Because sums of squares are very closely related to the variances accounted for by the
various components of a particular linear model, it should not be surprising that these
sums form the basis of hypothesis testing. Such tests can be quite involved, especially if we
are evaluating the various components of a complex model. Here we consider the simplest
case of the nested comparison of a full model with a reduced one.

If the residuals are multivariate-normally distributed with

e ∼MVN(0, σ2
e I) for OLS; e ∼MVN(0, σ2

e R) for GLS

then (recalling Equation A3.11a and A3.11b), SSE/σ2
e is the sum of squared unit normals

and hence is χ2-distributed. In particular, with n observations and p estimated parameters,

SSE

σ2
e

∼ χ2
n−p (A3.18)

as a degree of freedom is lost for each estimated model parameter.
Suppose we have n observations and wish to compare two linear models: a full model

fitting p parameters and a reduced model which uses only a subset (q < p) of the parameters
in the full model. Do the additional (p− q) fitted parameters provide a significant increase
in the amount of variation accounted for by the model? Let SSEf

and SSEr
denote the ap-

propriate (OLS or GLS) error sums of squares for the full and reduced models, respectively.
Under the null hypothesis (that the full model provides the same fit as the reduced model),
the difference in error sums of squares (SSEr − SSEf

) is distributed as constant (σ2
e ) times

a χ2
p−q . Likewise, from Equation A3.18, SSEf

∼ σ2
e χ2

n−p. Recalling the definition of the F
distribution (the ratio of two scaled chi-square distributions; Appendix 5) it follows that(

SSEr
− SSEf

)
/ (p− q)

SSEf
/ (n− p)

=
(

n− p

p− q

) (
SSEr

SSEf

− 1
)

(A3.19)

is distributed as Fp−q,n−p under the null hypothesis of no improved fit.
For example, we can ask if a particular linear model accounts for a significant fraction of

the variation in y by considering that model versus the simplest reduced model, yi = µ+ ei
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(namely, that none of the model factors have any effect). It is easily seen that the least-squares
solution for µ is y for OLS and the weighted mean for GLS, giving SSEr

= SST. Since the
number of parameters in the reduced model is q = 1, the test for whether a particular linear
model accounts for a significant amount of the variation is(

n− p

p− 1

) (
SST

SSEf

− 1
)

=
(

n− p

p− 1

) (
r2

1− r2

)
(A3.20)

where r2 is the coefficient of determination for the full model (Equation A3.15). This test
statistic follows an Fp−1,n−p distribution.

Construction of Confidence Intervals

When residuals are MVN, then OLS/GLM estimates are also MVN, with

β̂ ∼MNV
(
β, Vb

)
(A3.21)

where Vb is given by Equation 10.11a for OLS estimates and by Equation 10.13b for GLS
estimates. Confidence intervals immediately follow from the MVN property that subsets
are also MVN (Chapter 9). Hence, the standard 95% confidence normal interval holds for a
given GLM estimate, with

β̂i ± 1.96
√

Vii (A3.22a)

where Vii is the ith diagonal element in Vb. Similarly, the P value for a two-sided test of
the hypothesis that βi = βi,o is given by

Pr

(
|U | ≥

∣∣∣∣∣ β̂i − βi,o√
Vii

∣∣∣∣∣
)

(A3.22b)

where U is a unit normal random variable.
Multivariate joint confidence intervals are in the form of ellipses (for two dimensions)

and ellipsoids for high dimensions. To motivate the form of these intervals, we first consider
Hotelling’s T2 statistic. This is essentially the multivariate extension of the classic univariate
t test, where for z ∼ N(µ0, σ

2/n),

t =
(z − µ0)2

S2/n

for the null hypothesis that the mean is µ0 given that the sample variance of z is S2 (and
hence the sample variance for z is S2/n). Squaring both sides, we can express this as

t2 = (z − µ0)(S2/n)−1(z − µ0)

Hotelling’s T 2 statistic generalizes this to multivariate form, where for z ∼MNV(µ0, S/n),

T 2 = (z− µ0)
T (S/n)−1(z− µ0) (A3.23a)

Under the null hypothesis (µ = µ0),(
n− p

(n− 1)p

)
· T 2 ∼ Fp,n−p (A3.23b)

Confidence ellipsoids follow from these expressions under MVN assumptions. Because
β̂ ∼MNV(β, Vb), the set of all β values that are consistent (at the 1−α percent level) with
the observed data satisfies

(β̂− β)T V−1

b (β̂− β) ≤
(

(n− 1)p
n− p

)
Fp,n−p(1− α) (A3.24)
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The critical value Fp,n−p(1−α) corresponds to the value of an F distribution with p numer-
ator and n− p denominator degrees of freedom that satisfies

Pr [Fp,n−p ≤ Fp,n−p(1− α)] = 1− α

The quadratic form given by Equation A3.24 describes an ellipsoid centered at β̂ whose
axes are given by the eigenvectors of Vb (WL Appendix 5 examines the analysis of such
quadratic forms).

Example A3.5. Suppose that an analysis of a GLM returns the following values

β̂ =
(

1
−2

)
, Vb =

(
0.11 −0.02
−0.02 0.05

)
The two univariate 95% confidence intervals become

β̂1 ± 1.96
√

0.11 (±0.65), and β̂2 ± 1.96
√

0.05 (±0.44)

or (0.35, 1.65) for β1 and (−2.44,−1.66) for β2.

EQUIVALENT LINEAR MIXED MODELS

Two mixed models are said to be equivalent if they have the same mean vector E(y) and
covariance matrix σ(y, y). The utility of equivalent models is that the parameters of one
model can always be expressed as linear combinations of the parameters of any equivalent
model. Hence, by choosing an appropriate equivalent model, one can often greatly simplify
computations. An example of this approach is the reduced animal model of Quaas and
Pollak (1980) discussed in Chapter 30. Likewise, Equation 30.23, for estimating the BLUP
values of dominance effects as a function of estimated breeding values, also follows from
using equivalent models. Additional examples from BLUP are given by Henderson (1985c).
Our purpose here is to briefly introduce the use and construction of equivalent models.

Consider two different mixed linear models, both using the same vector y of observa-
tions but with different assumed vectors of fixed (β vs. β∗) and random (u and e vs. u∗ and
e∗) effects. Model 1 is

y = Xβ + Zu + e, where u ∼ (0, G) and e ∼ (0, R)

while model 2 is

y = X∗β∗ + Z∗u∗ + e∗, where u∗ ∼ (0, G∗) and e∗ ∼ (0, R∗)

Recalling our treatment of general mixed linear models (Chapter 10), Equation 10.19 implies
that for model 1,

y ∼ (Xβ, V), where V = ZGZT + R

while for model 2,

y ∼ (X∗β∗, V∗), where V∗ = Z∗G∗ZT
∗ + R∗

Thus, these two models are equivalent if

Xβ = X∗β∗ (A3.25a)
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and V = V∗, or
ZGZT + R = Z∗G∗ZT

∗ + R∗ (A3.25b)

Equations A3.25a and A3.25b provide the framework for constructing equivalent mod-
els, and hence obtaining models that are potentially easier to analyze. Consider the situation
where our interest is in the prediction of random effects and we wish to obtain an equivalent
model that considers the same fixed effects but uses a different vector of random effects. (For
example, instead of considering a vector of both parental and offspring breeding values, we
might simply consider the vector of parental breeding values, using the parental estimates
to subsequently estimate the breeding values in their offspring.) If the original model is

y = Xβ + Zu + e, where u ∼ (0, G), and e ∼ (0, R)

and we wish to construct an equivalent model using any vector of random effects u∗ ∼
(0, G∗) with

y = Xβ + Z∗u∗ + e∗, where u∗ ∼ (0, G∗), and e∗ ∼ (0, R∗)

For these models to be equivalent requires that V = V∗, hence it immediately follows from
Equation A3.25b that the covariance matrix for the vector of new residual values, e∗, is
given by

R∗ = R + ZGZT − Z∗G∗ZT
∗ (A3.26)

Given an estimate of u∗, an estimate of u can be directly obtained, as parameters of a linear
model can always be expressed as linear combinations of the parameters of any equivalent
model. In this case, given the BLUP estimate (û∗) of u∗, the BLUP estimate of u is given by

û = CG−1û∗ (A3.27)

where C is the covariance matrix between u∗ and u, and G is the covariance matrix associated
with u (Henderson 1977b). This is just the linear regression of u∗ on u (see Equation 9.27).
Note that the vectors u∗ and u can have different dimensionality, so that if u∗ is r × 1 and
u is q × 1, then C is an r × q matrix with Cij = σ(u∗i, uj).

DERIVATIVES OF VECTORS AND MATRICES

Our next-to-last topic in matrix algebra concerns the derivatives of vector- and matrix-
valued functions, which we use rather extensively in Chapter 31. We present a few simple
results here, and the reader is referred to Morrison (1976), Graham (1981), and Searle (1982)
for more details. Consider first the simplest function of vector x, namely the product of x
and either a vector (a) or matrix (A) of constants. The derivatives of these functions with
respect to the vector x become

∂ aT x
∂ x

=
∂ xT a
∂ x

= a (A3.28a)

∂ Ax
∂ x

= AT (A3.28b)

Turning to quadratic forms, if A is symmetric, then

∂ xT Ax
∂ x

= 2Ax (A3.29a)

Three useful identities involving quadratic forms follow

∂ (a− x)T A(a− x)
∂ x

= −2A(a− x) (A3.29b)

∂ (a− Bx)T (a− Bx)
∂ x

= −2BT (a− Bx) (A3.29c)

∂ (a− Bx)T A(a− Bx)
∂ x

= −2BT A(a− Bx) (A3.29d)
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Two final useful identities follow from the chain rule of differentiation,

∂ exp[ f(x) ]
∂ x

= exp[ f(x) ] · ∂ f(x)
∂ x

(A3.30a)

∂ ln[ f(x) ]
∂ x

=
1

f(x)
· ∂ f(x)

∂ x
(A3.30b)

Example A3.6. The OLS solution for a linear model is the value of β that minimizes the
residual sum of squares given y and X. In matrix form,

n∑
i=1

e2
i = eT e = (y− Xβ)T (y− xβ)

Taking the derivative with respect to β and using Equation A3.29c (with a = y, B = X, and
x = β ) gives

∂ eT e
∂ β

=
(y− Xβ)T (y− xβ)

∂ β
= −2XT (y− Xβ)

Setting this equal to zero gives XT Xβ = XT y, which has solution

β =
(

XT X
)−1

XT y

If XT X is singular, a generalized inverse is used instead.

Example A3.7. Writing the MVN distribution as

ϕ(x) = a exp
(
−1

2
· (x− µ)T V−1 (x− µ)

)
where a = π−n/2 |V|−1/2, then from Equation A3.30a,

∂ ϕ(x)
∂ x

= ϕ(x) ·
∂

[ (
− 1

2

)
· (x− µ)T V−1 (x− µ)

]
∂ x

Applying Equation A3.29b yields

∂ ϕ(x)
∂ x

= −ϕ(x) ·V−1 (x− µ) (A3.31a)

Note that ϕ(x) is a scalar and hence its order of multiplication does not matter, while the
order of the other variables (being matrices) is critical. Similarly, we can consider the MVN as
a function of the mean vector µ, in which case Equation A3.30a implies

∂ ϕ(x, µ)
∂ µ

= ϕ(x, µ) ·V−1 (x− µ) (A3.31b)
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MATRIX DECOMPOSITIONS

Any matrix can be decomposed into a product of simpler matrices. This is the singular
value decomposition (SVD), which is the foundation for AMMI analysis of genotype ×
environment interactions (Chapter 26), and also provides a method for obtaining a gener-
alized inverse (Equation A3.38). With a square symmetric matrix, a special case of the SVD,
diagonalization, provides significant insight on the eigenstructure of inverses, square roots,
and other functions of a diagonalizable matrix. We consider diagonalization first before
concluding by briefly examining the SVD.

Diagonalization of a Covariance Matrix

We previously introduced the square-root decomposition of a nonsingular symmetric ma-
trix, V = V1/2V1/2 (Equation A3.7a), and showed its utility in generating a new set of un-
correlated random variables (Equation A3.8a). This particular decomposition immediately
follows from the more general diagonalization decomposition. In particular, a symmetric
matrix A (such as a covariance matrix) can be diagonalized as

A = UΛUT (A3.32a)

where Λ is a diagonal matrix and U = ( u1, u2, · · · , un ) is an orthonormal matrix. The
columns of such matrices have unit length (||ui|| = 1) and are orthogonal (uT

i uj = 0 for
i 6= j). These conditions also imply that U is a unitary matrix, with its inverse being given
by its transpose, U−1 = UT . Unitary matrices generate a rigid rotation (the angle between
the vectors x and y is the same as the angle between the transformed vectors Ux and Uy) of
the original coordinate system to a new coordinate system given by U (WL Appendix 5).

If λi and ei are the ith eigenvalue and its associated unit eigenvector of A, then

Λ = diag(λ1, λ2, · · · , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 · · · · · · λn

 (A3.32b)

and
U = ( e1, e2, · · · , en ) (A3.32c)

U describes a rotation of the original coordinate system to a new coordinate system given by
the eigenvectors of A, while the diagonal elements of Λ give the amount by which vectors
of unit length in the original coordinate system are scaled in the transformed system. If we
use the decomposition Λ =

∑n
i=1 Λi, where Λi is a diagonal matrix whose elements are all

zero, except for λi, then Equation A3.32a becomes

A = U

(
n∑

i=1

Λi

)
UT =

n∑
i=1

UΛiUT =
n∑

i=1

λieieT
i (A3.32d)

Note that eieT
i , the outer product of e with itself (Equation 9.8b), is an n×n matrix. Equation

A3.32d is called the spectral decomposition, spectral factorization, or eigendecomposition
of A (WL Appendix 5).

Using Equation A3.32a, it is easy to show that

A−1 = UΛ−1UT (A3.33a)

To see this, note that

A−1A =
(

UΛ−1UT
) (

UΛUT
)

= UΛ−1
(

UT U
)

ΛUT = UΛ−1ΛUT = UUT = I



18 APPENDIX 3

Similar logic yields

A1/2 = UΛ1/2UT (A3.33b)

A−1/2 = UΛ−1/2UT (A3.33c)
Ak = UΛkUT for any integer k (A3.33d)

Further, the square root decomposition follows as

A1/2A1/2 =
[
UΛ1/2UT

] [
UΛ1/2UT

]
= UΛ1/2

[
UT U

]
Λ1/2UT

= UΛ1/2IΛ1/2UT = UΛ1/2Λ1/2UT

= UΛUT = A

Likewise, using Equation A3.32a, we see that premultiplying A by UT and then postmulti-
plying by U gives a diagonal matrix whose elements are the eigenvalues of A

UT AU = UT (UΛUT )U = (UT U)Λ(UT U) = Λ (A3.34)

Finally, because Λ is diagonal, the ith diagonal elements of Λ−1, Λ1/2, Λ−1/2, and Λk

are λ−1
i , λ1/2

i , λ−1/2
i , and λk

i , respectively, implying that if λi is an eigenvalue of A, then λ−1
i ,

λ
1/2
i , λ

−1/2
i , and λk

i , respectively, are eigenvalues of the matrices A−1, A1/2, A−1/2, and Ak.
Note that Equations A3.33a through A3.33d further imply that the matrices A, A−1, A1/2,
A−1/2, and Ak all have the same eigenvectors, namely the columns of U.

Correlations can be Removed by a Matrix Transformation

As we saw with the square-root transform (Equation A3.8a), a powerful use of diagonaliza-
tion is that it allows one to extract a set of n uncorrelated variables for any n×n nonsingular
covariance matrix, Vx (associated with the random vector, x). Consider the transformation

y = UT x (A3.35a)

where U = (e1, e2, · · · , en) contains the normalized eigenvectors of Vx. Because U is an
orthonormal matrix, this transformation is a rigid rotation of the axes of the original
(x1, · · · , xn) coordinate system to a new system given by (e1, · · · , en). Applying Equation
9.21b and Equation A3.34, respectively, the covariance matrix for y is

Vy = UT Vx U = Λ (A3.35b)

where Λ is a diagonal matrix whose elements are the eigenvalues of Vx,

σ(yi, yj) =
{

λi if i = j

0 if i 6= j

The rigid rotation introduced by U thus creates a set of n uncorrelated variables, the ith of
which is given by

yi = ei
T x (A3.35c)

This is the length of the projection of x onto the ith eigenvector of Vx (WL Appendix 5), so
that the axes of the new coordinate system are given by the orthogonal set of eigenvectors
of Vx.

Defining the matrix B as
B = U Λ−1/2 (A3.35d)
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the vector y = BT x has a covariance matrix of Vy = I, which means that this transformation
creates a set of uncorrelated variables, each with unit variance. To see this, note that

Vy = BT Vx B =
(

UΛ−1/2
)T (

UΛUT
) (

UΛ−1/2
)

= Λ−1/2
(

UT U
)

Λ
(

UT U
)

Λ−1/2

= Λ−1/2 Λ Λ−1/2 = I (A3.35e)

Recall that earlier we used another transformation, y = V−1/2
x x, where from Equation

A3.33c
V−1/2

x = UΛ−1/2UT = BUT

Because U is a unitary matrix, the transformations given by V−1/2
x and B are simply rigid

rotations of each other. An alternative to both these transformations is the Cholesky de-
composition, A = CT C, of a square, symmetric matrix A, where C is an lower triangular
matrix (all elements above the diagonal are zero). If C is the Cholesky decomposition for
Vx, then y = C−1x also returns a covariance matrix, Vy, of I.

The Singular-Value Decomposition (SVD)

Any n× p matrix A can be decomposed as the product of three matrices: an n× p diagonal
matrix Λ and two unitary matrices, U which is n × n and V which is p × p. The resulting
singular value decomposition (SVD) is given by

An×p = Un×nΛn×pVT
p×p (A3.36a)

We have indicated the dimensionality of each matrix to allow the reader to verify that each
matrix multiplication conforms. The (nonzero) diagonal elementsλ1, · · · , λs ofΛ correspond
to the singular values of A and are ordered by decreasing magnitude. Returning to the
unitary matrices U and V, we can write each as a row vector of column vectors,

U = (u1, · · · , ui, · · ·un), V = (v1, · · · , vi, · · · vp) (A3.36b)

where ui and vi are n- and p-dimensional column vectors (often called the left and right
singular vectors, respectively). Since both U and V are unitary, each column vector has
length one and are mutually orthogonal (i.e., if i 6= j, uiuT

j = vivT
j = 0). Since Λ is

diagonal, it immediately follows from matrix multiplication that we can write any element
in A as

Aij =
s∑

k=1

λk uik vkj (A3.36c)

where λk is the kth singular value and s ≤ min(p, n) is the number of nonzero singular
values (s is the rank of A). Since only the first s diagonal elements of Λ are nonzero, the
SVD can also be written as

An×p = Un×sΛs×sVT
s×p, with U = (u1, · · · , us), V = (v1, · · · , vs) (A3.36d)

This is the compact SVD. Since Λ is diagonal, we can express Equation A3.36c as

Aij = uiΛvT
j (A3.36e)

A final useful identity is that the total variation of A (the sum of all its squared values)
equals the sum of its squared singular values,

∑
ij

A2
ij =

s∑
k=1

λ2
k (A3.36f)
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A key feature of the singular value decomposition arises from the Ekart-Young theorem
(1936), which relates the best approximation of a matrix by some lower-rank (say rank
m < s) matrix. Define as our measure of goodness of fit between a matrix A and a lower
rank approximation Â as the sum of squared differences over all elements,∑

ij

(Aij − Âij)2

Eckart and Young showed that the best fitting approximation Â of rank m < s is given from
the first m terms of the singular value decomposition (the rank-m SVD),

Âij =
m∑

k=1

λk uik vkj (A3.37a)

For example, the best rank-2 approximation is given by

Aij ' λ1 ui1 vj1 + λ2 ui2 vj2 (A3.37b)

where λi is the ith singular value of the A matrix, u and v are the associated singular vectors
(see Example A3.8). The fraction of total variation of a matrix accounted for by taking the
first m terms in its SVD is

m∑
k=1

λ2
k/

∑
ij

A2
ij =

λ2
1 + · · ·+ λ2

m

λ2
1 + · · ·+ λ2

s

(A3.37c)

Finally, the SVD immediately allows one to compute a generalized inverse of A. Using
the compact SVD (Equation A3.36d), it follows that if An×p = Un×sΛs×sVT

s×p, then

A−p×n = Vp×sΛ
−1
s×sUT

s×n (A3.38)

To show this, we need to show that Equation A3.38 satisfies Equation A3.1, AA−A = A.
Rearranging and using the fact that V and U are unity matrices (their inverse is their
transpose),

AA−A =
[
Un×sΛs×sVT

s×p

] [
Vp×sΛ

−1
s×sUT

s×n

] [
Un×sΛs×sVT

s×p

]
= Un×sΛs×s

[
VT

s×pVp×s

]
Λ−1

s×s

[
UT

s×nUn×s

]
Λs×sVT

s×p

= Un×sΛs×sIs×sΛ
−1
s×sIs×sΛs×sVT

s×p

= Un×sΛs×sΛ
−1
s×sΛs×sVT

s×p

= Un×sΛs×sVT
s×p = A

We can also use the SVD to solve much more general sets of linear equations. Until
now, we have been assuming n equations and p unknowns, with n = p. More generally, we
may wish to find solutions for the system

An×p xp×1 = cn×1 (A3.39a)

When n > p, the system is said to be overdetermined, while it is said to be underdetermed
when n < p. We can solve this system using the SVD as follows:

An×p xp×1 = cn×1

Un×sΛs×sVT
s×p xp×1 = cn×1

Vp×sΛ
−1
s×s[U

T
s×nUn×s]Λs×sVT

s×p xp×1 = Vp×sΛ
−1
s×sUT

s×ncn×1

Vp×s[Λ−1
s×sΛs×s]VT

s×p xp×1 = Vp×sΛ
−1
s×sUT

s×ncn×1

[Vp×sVT
s×p] xp×1 = Vp×sΛ

−1
s×sUT

s×ncn×1

xp×1 = Vp×sΛ
−1
s×sUT

s×ncn×1 (A3.39b)
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where each term above in brackets is an identity matrix.
Finally, we can connect the SVD with diagonalization as follows. Consider an n × p

data matrix, X, where X is of rank s ≤ p < n. The covariance matrix for this data has the
form of XT X. Using the SVD of X, we have

XT X = [Un×sΛs×sVT
s×p]

T [Un×sΛs×sVT
s×p]

= Vp×sΛs×s[UT
s×nUn×s]Λs×sVT

s×p

= Vp×sΛs×sΛs×sVT
s×p

= Vp×sΛ
2
s×sVT

s×p

where we have used ΛT
s×s = Λs×s, as Λs×s is diagonal. Comparison to Equation A3.23

shows that the elements of V correspond to the eigenvectors of the covariance matrix, while
the eigenvalues are given by the squares of the singular values, λi = s2

i .

Example A3.8. Consider the follow performances of three soybean lines in five different
environments in New York from a larger dataset given by Gauch (1992). Each entry represents
the average of four replications. For environments, the first letter denotes the testing location,
while the two numbers denote the year of the test. For ease of presentation, we have rounded
entry means and the associated row and column means.

Genotypes
Environment EVAN WILK CHIP row mean Ê

A77 2725 2471 2333 2510 494
V79 1111 578 1278 989 −1027
R81 2038 1386 2350 1925 −91
I85 1736 1607 1588 1644 −372
G85 3258 2961 2813 3011 995

column mean 2174 1801 2072 |2016

Ĝ 158 −215 56

Denote the entry means of genotype i in environment j by zij , the environment and
genotype means by z·j and zi· and the grand mean by z·· (= 2016). Under an OLS fixed-effects
model, the estimated main effects are given by µ̂ = z··, Êj = z·j − z··, and Ĝi = zi· − z··,
and these are given in the above table. The interaction terms are estimated by

ĜEij = zij − (µ̂ + Ĝi + Êj)

For example, for EVAN in A77, ĜE = 2725− (2016 + 158 + 494) = 57. The resulting GE
table of interactions becomes

Genotypes
Environment EVAN WILK CHIP

A77 57 176 −233
V79 −36 −196 233
R81 −45 −324 369
I85 −66 178 −112
G85 89 165 −254

Now let’s examine singular value decomposition (SVD) approximations for this table
of GE values, which writen in matrix form (using columns equaling genotypes and rows
environments) as

GE =


57 176 −233
−36 −196 233
−45 −324 369
−66 178 −112

89 165 −254


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In R, the compact SVD (Equation A3.36d) of a matrix X is given by the command svd(X) ,
returning the compact SVD of GE as

0.40 0.21 0.18
−0.41 0.00 0.91
−0.66 0.12 −0.30

0.26 −0.83 0.11
0.41 0.50 0.19


 746.10 0 0

0 131.36 0
0 0 0.53

  0.12 0.64 −0.76
0.81 −0.51 −0.30
0.58 0.58 0.58



The first singular value accounts for 746.102/(743.262 + 131.362 + 0.532) = 97.0% of
the total variation of GE, while the second singular value accounts for 3.0%, so that together
they account for essentially all of the total variation. The rank-1 SVD approximation of GE is
given by setting all of the diagonal elements of Λ except the first entry to zero,

GE1 =


0.40 0.21 0.18
−0.41 0.00 0.91
−0.66 0.12 −0.30

0.26 −0.83 0.11
0.41 0.50 0.19


 746.10 0 0

0 0 0
0 0 0

  0.12 0.64 −0.76
0.81 −0.51 −0.30
0.58 0.58 0.58


Similarly, the rank-2 SVD is given by setting all but the first two singular values to zero,

GE2 =


0.40 0.21 0.18
−0.41 0.00 0.91
−0.66 0.12 −0.30

0.26 −0.83 0.11
0.41 0.50 0.19


 746.10 0 0

0 131.36 0
0 0 0

  0.12 0.64 −0.76
0.81 −0.51 −0.30
0.58 0.58 0.58


The resulting rank-1 and rank-2 approximations for GE are

GE1 =


34.57 189.94 −224.67
−35.78 −196.59 232.54
−57.51 −316.03 373.81

22.33 122.71 −145.15
36.04 198.02 −234.23

 , GE2 =


56.95 175.95 −233.05
−36.28 −196.28 232.72
−44.91 −323.91 369.09
−66.03 177.97 −112.03

88.94 164.94 −254.06


Since there are only three non-zero singular values, the rank-3 SVD returns the matrix GE,
i.e., GE3 = GE. For example, consider the G x E term for EVAN and A77. The rank-1 SVD
value for this entry is 34.57, the rank-2 VSD value is 56.95, and the rank-3 (full rank) just the
original value of 57.

Example A3.9. From Equation A3.38, a generalized inverse of GE is given by

 0.12 0.81 0.58
0.64 −0.51 0.58
−0.76 −0.30 0.58

  1
746.10 0 0

0 1
131.36 0

0 0 1
0.53

  0.40 −0.41 −0.66 0.26 0.41
0.21 0.00 0.12 −0.83 0.50
0.18 0.91 −0.30 0.11 0.19



=

 0.1989 1 −0.3253 0.1170 0.2106
0.1971 1 −0.3271 0.1256 0.2060
0.1965 1 −0.3254 0.1237 0.2058


Denoting this matrix as GE−, matrix multiplication shows that Equation A3.1 is satisfied, namely
that GE GE−GE = GE, showing that GE− is indeed a generalized inverse of GE.
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