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Path, Causality, and Network Analysis
As humans, we cannot avoid thinking in terms of causality. (Asendorpf 2012.)

Version 22 August 2022

Wright (1921a) developed the method of path analysis as a means of interpreting the cor-
relation between two variables in terms of hypothetical paths of causation between them.
Initially, he was interested in the relative importance of general and specific growth factors
for the variation of bones sizes in small mammals (Wright 1918), but he quickly realized
the broad utility of his new technique and later applied it to many problems in genetics,
agricultural economics, physiology, and ecology. More recently it has been extended and
applied widely in systems biology and genomics. Provided the underlying assumptions
are kept in mind, path analysis provides an extremely powerful, and conceptually simple,
tool. Many of the fundamental principles of quantitative genetics can be derived by its use.
It can also be a powerful approach for analyzing multiple levels of molecular data (such as
joint data on QTL genotypes, mRNA and protein levels, and trait phenotypes).

The purpose of path analysis is the quantification of the relative contributions of causal
sources of variance and covariance once a certain network of interrelated variables has
been accepted (or assumed). While path analysis is not a formal technique proving the actual
sources of causality (which can only come from careful experimentation), it does allows one
to examine the level of support for different causality structures. In response to periodic
abuses and criticism of the technique, Wright (1932, 1934e, 1968, 1983, 1984) repeatedly
emphasized these points. Exceptionally lucid accounts of the theory and applications of
basic path analysis are given by Li (1975) and Pedhazur (1982). Path analysis has grown
from its simple roots and now forms the foundation for the rich fields of causal analysis
(Spirtes et al. 2000; Pearl 2009; Pearl et al. 2016), structural equation modeling (SEM) (Bollen
et al. 1989) and graphical models (Rosa et al. 2011, 2016; Sinoquet and Mourad 2014; Rohrer
2018), the later is also widely used in Bayesian modeling (Wu et al. 2010). Chapter 30 in WL
examines applications of path analysis in determining the nature of selection on traits in
the wild. A nice overview of many of these issues is given by Shipley (2016).

UNIVARIATE ANALYSIS

Through a graphical display, path analysis can greatly facilitate the analysis of a complex
problem. Consider, for example, a system of four measurable variables, one (y) dependent
and three (z1, z2, and z3) potential explanatory values. Such a system can be displayed in
the form of a path diagram (Figure A2.1). Single-headed arrows denotes a direct path from
an explanatory variable to y, implying a cause-and-effect relationship. The connections
between the explanatory variables are represented by double-headed arrows. It is assumed
that y is a linear function of the zi, although nonlinear relationships can be incorporated
by considering z2

i . Finally, unless y is known to be completely determined by the observed
explanatory variables, an arrow is also drawn from the independent residual term, e.

Figure A2.1 displays only one of several possible path diagrams for our four-variable
system. A great deal of information is contained in this diagram. For example, it can easily
be seen that z1 potentially influences y in three ways: directly by the path z1 → y and
indirectly by the paths z1 ↔ z2 → y and z1 ↔ z3 → y. Similarly, z2 influences y through
paths z2 → y, z2 ↔ z1 → y, and z2 ↔ z3 → y, and z3 influences y through z3 → y,
z3 ↔ z2 → y, and z3 ↔ z1 → y. The independent residual term operates only through path
e→ y.
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Figure A2.1 Path diagram for the variable y in terms of three explanatory variables (z1, z2,
and z3) and a residual error (e). p denotes a path coefficient and ρ a correlation (here between
the zi, standardized to have unit variance).

The labels on the double-headed arrows are the simple correlation coefficients (ρ) be-
tween the two denoted variables, while the quantities along single-headed arrows are path
coefficients (p). The path coefficients for this diagram are standardized partial regression
coefficients. If, prior to a multiple regression, each of the variables (y, z1, z2, and z3) are
standardized by subtracting the mean and dividing by the standard deviation so that the
transformed variables all have zero means and unit variances, the subsequent partial re-
gression coefficients equal the path coefficients.

To see this equivalence, we start with the general linear model

y = α + β1z1 + β2z2 + · · ·+ βnzn + e (A2.1a)

where β1, β2, · · · , βn are partial regression coefficients. Subtracting y from the left and its
equivalent (α + β1z1 + β2z2 + · · ·+ βnzn + e) from the right yields

y − y = β1(z1 − z1) + β2(z2 − z2) + · · ·+ βn(zn − zn) + (e− e) (A2.1b)

Squaring this expression and taking expectations, we obtain a general expression for the
variance of y,

σ2(y) =
n∑

i=1

β2
i σ2(zi) + 2

n∑
i=1

n∑
j>i

βiβjσ(zi, zj) + σ2
e (A2.2)

The residual variable is uncorrelated with the remaining variables under a least-squares
analysis (Chapter 3), so covariance terms involving e do not appear in Equation A2.2.
Dividing all terms in Equation A2.2 by σ2(y), recalling that σ(zi, zj) = ρijσ(zi)σ(zj), where
ρij is the correlation between variables i and j, and defining

pyi = βi

[
σ(zi)
σ(y)

]
(A2.3a)

pye =
σ(e)
σ(y)

(A2.3b)

we obtain one of the fundamental equations of path analysis,

1 =
n∑

i=1

p2
yi + 2

n∑
i=1

n∑
j>i

pyiρijpyj + p2
ye (A2.4)

This expression, known as the equation of complete determination, is a simple extension
of the multiple regression equation. The pyi are called path coefficients, and from Equa-
tion A2.3a can be seen to be standardized partial regression coefficients. Thus, the path
coefficients are directly obtainable by multiplying partial regression coefficients by ratios
of observed standard deviations (Equation A2.3a). Path coefficient pyi may be interpreted
as the expected change in y in standard deviations caused by a change in zi in standard
deviations when all other background variables are held constant.



PATH, CAUSALITY, AND NETWORK ANALYSIS 3

Equation A2.4 greatly expands the utility of multiple regression by explicitly parti-
tioning the variance of y into proportional contributions from all of the direct and indirect
paths of influence. The contribution from each path is a simple product of the correlation
coefficients (for each double-headed arrow) and path coefficients (for each single-headed
arrow) along a loop between variables. Thus, the contributions of the direct paths from z1,
z2, z3 and e to y are p2

y1, p2
y2, p2

y3, and p2
ye, respectively. The contributions from the indirect

paths y ← z1 ↔ z2 → y, y ← z2 ↔ z3 → y, and y ← z1 ↔ z3 → y are, respectively,
2py1ρ12py2, 2py2ρ23py3, and 2py1ρ13py3. Each of the indirect paths is counted twice because
they influence y in both directions (double-headed arrows). For example, the contribution
of the path y ← z1 ↔ z2 → y to the variance of y is the same as path y ← z2 ↔ z1 → y.

It is important to note that in computing the joint influence of two explanatory variables
on y, only the direct correlation between the two variables is considered. Hence, y ← z1 ↔
z2 ↔ z3 → y is not a contributing path in Figure A2.1. The entire correlation between z1

and z3 is contained in ρ13. Thus, the general rules of path analysis are that: (i) there is only
one two-headed arrow in any path, and that (ii) the arrows change direction only once
in a path. Unlike correlation coefficients, path coefficients need not have absolute values
less than one. Indeed, the total net contribution over a path can be negative (a negative
correlation). The only constraint on Equation A2.4 is that the total contributions sum to one.

Regressions versus Path Analysis

The key distinction between a regression and a path analysis is that regression attempts
to statistically account for the covariance between explanatory variables, while a path
analysis further attempts to account for the processes generating correlations among the
explanatory variables. Regressions makes no assumption about the causality structure gen-
erating triat correlations, while Crespi (1990) noted that “path-analytic reasoning assumes
that characters are correlated as a result of biological causes that should be used as informa-
tion rather than adjusted away.” A key limitation (and also strength) of a path analysis is
that different assumed path diagrams for a set of variables (causality structures) can result
in rather different biological interpretations (WL Chapter 30).

Example A2.1 As an example of different path diagrams for the same set of variables,
consider the following example from Chapter 30 of WL.
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The explanatory variables here are four plant traits: seed weight (S; the weight of the seed
that gave rise to the focal individual), plant height (H), leaf area (A), and number of leaves (N).
We seek to determine how these influence a measure of fitness, w, namely total seeds from
a plant. For emphasis purposes, direct connections to fitness are denoted by dashed arrows.
Path (A) is the structure for a standard multiple regression, which makes no assumptions
about how the patterns of correlations among the traits arise. Paths (B) and (C) consider how
developmental biology impacts the correlation structure among traits. In these structures
there are also residuals associated with each of the downstream traits, as the influence of any
upstream traits only determines part of their value. In both (B) and (C), the weight of the
seed that founded the plant influences the other three traits being considered. Path model
(B) assumes no hierarchical developmental structure from seed to the three traits, while path
model (C) assumes that seed weight just influences height, and that height then influences the
other two traits. Note that the covariance matrix of all three models is identical. Suppose we
find that seed weight is correlated with fitness. Path diagrams B and C allow us to determine
if S directly impacts fitness, only impacts it indirectly through its impact on downstream traits
that in turn directly impact fitness, or has both direct and indirect effects (path analysis can
quantify the importance of each).

z1

z2

z3

x

y

ex

ey

Figure A2.2 Path diagram for a system in which two dependent variables (x and y) are
jointly influenced by three explanatory variables (z1, z2, and z3) and residuals (ex and ey),
which may be correlated. More complicated path diagrams could have one or more of the
explanatory variables dependent on upstream explanatory variables, e.g., z1 → z2 and/or
z1 → z3 (e.g., Example A2.1). Operationally, when a final path diagram is displayed, many
of the proposed connections may not have statistical support, and these are thus often left
out. Further, the strength of a path is often indicated by the thickness of the arrow, with thick
arrows implying a strong connection and thin arrows a weak connection.

BIVARIATE ANALYSIS

An exceedingly useful property of path analysis is its ability to quantify the degree of
association between two variables in terms of one or more mutually shared explanatory
variables. Figure A2.2 is identical in form to Figure A2.1 except that z1, z2, and z3 are now
causal determinants of two characters, x and y. There are 10 distinct pathways connecting
x and y: three direct paths x ← z1 → y, x ← z2 → y, and x ← z3 → y, and seven indirect
paths x ← z1 ↔ z2 → y, x ← z2 ↔ z1 → y, x ← z1 ↔ z3 → y, x ← z3 ↔ z1 → y,
x← z2 ↔ z3 → y, x← z3 ↔ z2 → y, and x← ex ↔ ey → y. The correlation between x and
y is simply the sum of the products of path coefficients and correlation coefficients along
these paths:

ρxy = px1py1 + px2py2 + px3py3 + px1ρ12py2 + px2ρ12py1 + px1ρ13py3

+ px3ρ13py1 + px2ρ23py3 + px3ρ23py2 + pxeexypye

where exy represents the correlation between the residual terms ex and ey. This expression
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Figure A2.3 Wright’s (1921a) path diagram, slightly modified, for the phenotypes of parents
and offspring. Variables are defined in the text.

may be generalized to define the correlation between any two variables with n common
causal sources of variation,

ρxy =

 n∑
i=1

n∑
j=1

pxiρijpyj

 + pxeexypye (A2.5)

For terms in which i = j, ρij is set equal to one. Just as Equation A2.4 partitions a variance
into components, Equation A2.5 partitions a correlation into a series of paths through shared
explanatory variables.

APPLICATIONS

Path analysis is very useful in quantitative genetics because explicit statements can often be
made about causality. Among the following examples, the first two illustrate how path
analysis can be used to derive some fundamental relationships concerning phenotypic
correlations.

Phenotypic Correlation Between Parents and Offspring

Much of the methodology of quantitative genetics relies on the comparison of phenotypic
measures in close relatives. A common application involves the regression of offspring
on parent, which was one of Wright’s (1921a) earliest uses of path analysis. Defining an
individual’s phenotype (z) to be the sum of its genotypic value (G) and an environmental
deviation (E), the phenotypes of a father (f) and mother (m) may be written

zf = Gf + Ef

zm = Gm + Em

Provided the parents are not sibs, their environmental deviations may be treated as inde-
pendent random variables with respect to G. If, however, mates select each other on the
basis of phenotypes, a correlation may exist between zf and zm. We will denote this corre-
lation by a. Under additive gene action, the genotypic value of an offspring is equal to the
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sum of the gametic contributions from its father (Hf ) and mother (Hm),

Go = Hf + Hm

An unambiguous path diagram can be constructed for such a familial structure (Figure
A2.3). There are four path coefficients: h from genotypic to phenotypic values, e from
environmental effects to phenotypic values, g from genotypic value to gametic value, and s
from gametic value to genotypic value. These are assumed to be constant across generations.

We now consider the correlation between the phenotype of a parent and that of its
offspring, ρop. Here we focus on the father-offspring correlation, although in this example,
identical results arise for mother-offspring analysis. Regardless of which parent is consid-
ered, there are two paths connecting it to its offspring. The first results from the direct
gametic contribution that a parent makes to its offspring; i.e., zf ← Gf → Hf → Go → zo.
The contribution of this path to ρof is the product of four path coefficients, hgsh. The sec-
ond path, which only exists under assortative mating, is an indirect route through a mate’s
gamete, i.e., zf ↔ zm ← Gm → Hm → Go → zo. Its contribution to ρof is ahgsh. Summing
up,

ρof = h2gs(1 + a) (A2.6)

A further simplification of this expression, which eliminates the coefficients g and s,
is possible. The genotypic value Go is determined by the two direct paths Hf → Go and
Hm → Go, each of which contributes a proportion s2 to the variance of Go, and by the
indirect paths Go ← Hf ↔ Hm → Go and Go ← Hm ↔ Hf → Go. The correlation between
Hf and Hm is determined by the single path Hf ← Gf ← zf ↔ zm → Gm → Hm and is
equal to h2g2a. Therefore, each indirect path makes a proportional contribution of (hgs)2a
to the variance of Go. The equation of complete determination for Go is then

1 = 2s2 + 2(hgs)2a

which upon rearrangement yields

s = [2(1 + h2g2a)]−1/2 (A2.7)

Wright (1921a) pointed out that, provided the path coefficients remain constant across gen-
erations, the correlation between a genotype and a gamete that it produces (Gf and Hf ) will
be the same as the correlation between a genotype and a gamete that produced it (Go and Hf ).
It can be seen directly from the path diagram that the first of these correlations is simply g.
There are two paths connecting Go and Hf , (Hf → Go and Hf ← Gf → zf ↔ zm ← Gm →
Hm → Go), however, so their correlation is s + ghahgs. Equating this expression to g,

g = s(1 + h2g2a) (A2.8)

Multiplying Equations A2.7 and A2.8 together, it can be seen that

gs = s2(1 + h2g2a) = 0.5

Thus, Equation A2.6 simplifies to

ρof = h2

(
1 + a

2

)
(A2.9)

which in the absence of assortative mating (a = 0), reduces to

ρof =
h2

2
(A2.10)
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Figure A2.4 Path diagram for the phenotypic correlation between two characters (zx and
zy) in terms of genetic values (Gx and Gy) and environmental deviations (Ex and Ey).

Mate selection on the basis of phenotypes influences the resemblance between parents and
offspring in a particularly simple manner. Perfect disassortative mating (a = −1) com-
pletely eliminates the correlation between parent and offspring phenotypes, while perfect
assortative mating (a = +1) doubles it.

Quantitative geneticists have long referred to the fraction of phenotypic variance that
is additive genetic in basis as the narrow-sense heritability and abbreviated it as h2. The
use of this notation, particularly the square, may seem puzzling. Returning to Figure A2.3,
the origin of h2 can now be seen to be a historical tribute to Wright’s (1921a) path diagram.
Under the additive model of gene action, the equation of complete determination for an
individual’s phenotype is

h2 + e2 = 1

where h2 is the proportion of the phenotypic variance due to the direct path from the
genotypic value.

Correlations Between Characters

Path analysis can also be used to describe the correlation between two different characters,
x and y, in the same individual. Here we denote the two phenotypes as

zx = Gx + Ex

zy = Gy + Ey

where, as usual, Ex has a mean of zero and is independent of Gx, and the same properties
apply to Ey and Gy . The path diagram joining the two traits is drawn in its most general
form in Figure A2.4. The path Gx ↔ Gy indicates the possibility of a correlation between
genotypic values of the two traits, owing to their expression being mutually determined
by shared genes and/or linkage disequilibrium among alleles influencing the two traits
(Chapter 26). Correlation between the environmental effects on the two traits is denoted by
ρe, while those between the genotypic value of one trait and the environmental deviation of
the other are indicated by ρxe,yg and ρxg,ye. The phenotypic correlation between characters
x and y, ρxy , derives from four possible paths: zx ← Gx ↔ Gy → zy , zx ← Ex ↔ Ey → zy ,
zx ← Ex ↔ Gy → zy , and zx ← Gx ↔ Ey → zy. Summing the appropriate products of
path and correlation coefficients,

ρxy = hxρghy + exρeey + exρxe,yghy + eyρxg,yehx (A2.11)

Note that there are only two arrows pointing to zx and that these come from variables
that are uncorrelated (as Ex and Gx are not connected by any paths). The same is true for
zy. Thus, by the equation of complete determination,

h2
x + e2

x = 1
h2

y + e2
y = 1
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Figure A2.5 Path diagram for weight at day 26 as a function of five growth components for
a population of feral pigeons. Numbers on the single-headed arrows are the path coefficients.
The correlations between explanatory variables are given in Table A2.1.

Rearranging and substituting ex =
√

1− h2
x and ey =

√
1− h2

y into Equation A2.11,

ρxy = hxhyρg + ρe

√
(1− h2

x)(1− h2
y)

+ ρxe,yghy

√
1− h2

x + ρxg,yehx

√
1− h2

y (A2.12)

Thus, the phenotypic correlation between two traits is entirely described in terms
of correlations between components of the traits and their heritabilities. Frequently in
quantitative-genetic applications, the correlations between Ex and Gy and between Ey

and Gx are zero. In this case, Equation A2.12 reduces to

ρxy = hxhyρg + ρe

√
(1− h2

x)(1− h2
y) (A2.13)

Growth Analysis

Biological features in which a whole can be considered to be the sum of several individual
parts are numerous. For example, the total diet of a predator often consists of several prey
species, and the total seed set by a plant can be partitioned into contributions from various
flowers. The problem considered here is the size of an individual (or character) at time t, zt.
This can be expressed simply as the sum of the initial size, z1, and an arbitrary number (n)
of subsequent growth increments, z2 to zn,

zt = z1 + z2 + · · ·+ zn (A2.14)

With this type of model, all of the terms on the right necessarily sum to zt, so there is no
residual error term. Moreover, all of the partial regression coefficients (the βi coefficients on
the zi in the multiple regression equation) are equal to one. Returning to Equations A2.1a
and A2.2, it can be seen that the equation of complete determination for zt reduces to

1 =
1

σ2(zt)

 n∑
i=1

σ2(zi) + 2
n∑

i=1

n∑
j≥i

σ(zi, zj)

 (A2.15)
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Table A2.1 Correlations (above diagonal) and path contributions (diagonal and below) of growth
components to weight on day 26 for a sample of 100 feral pigeons. Here * and ** denote correlations
that are significance at the 5% and 1% levels. The diagonal elements (direct contributions to the
variance of w26) are simply the squares of the respectively path coefficients given in Figure A2.5. The
below-diagonal elements denote the contributions resulting from correlations between characters x
and y, and are obtained as 2pxρxypy . (Source: D. Droge, unpubl. data.)

w2 ∆w2 ∆w8 ∆w14 ∆w20

w2 0.014 0.232* 0.100 −0.069 −0.186
∆w2 0.027 0.255 −0.014 −0.316** −0.045
∆w8 0.015 −0.010 0.437 −0.157 −0.096
∆w14 −0.012 −0.244 −0.159 0.584 −0.167
∆w20 −0.027 −0.028 −0.079 −0.158 0.385

Thus, the elements of the variance-covariance matrix for the growth components in Equation
A2.14 provide a complete description of the direct and indirect contributions to the variance
of size at time t.

As an example of the application of Equation A2.15, the growth dynamics of a popula-
tion of feral pigeons will be examined. One hundred birds were weighed at regular intervals
from shortly after birth to fledging. The path analysis here will consider the weight at day
26 as a function of an initial weight at day 2 plus four subsequent six-day growth incre-
ments (days 2–8, 8–14, 14–20, and 20–26). Each growth increment is the difference between
adjacent weighings, so letting wt be the weight on day t, Equation A2.14 becomes

w26 = w2 + (w8 − w2) + (w14 − w8) + (w20 − w14) + (w26 − w20)
= w2 + ∆w2 + ∆w8 + ∆w14 + ∆w20

The path diagram (Figure A2.5) illustrates that there are five direct paths and ten indirect
paths to w26 (each of which must be counted twice). The proportional contributions of
these paths are directly obtainable from the variances and covariances of the observed
variables and are summarized in Table A2.1. Recalling that for this model all βi = 1, the
path coefficients can be computed using Equation A2.3a. For example, the contribution of
direct path w2 → w26 is simply [p(w2, w26)]2 = σ2(w2)/σ2(w26), while the total contribution
from the indirect paths w2 ↔ ∆w2 → w26 and ∆w2 ↔ w2 → w26 is 2σ(w2, ∆w2)/σ2(w26).

Several aspects of the growth properties of this population are revealed by the path
analysis. First, very little of the variation in size at age 26 is accounted for by the size
at birth, i.e., (pw2,w26)

2 = 0.014. Most of it arises from variation in the post-natal growth
rates. Second, all of the indirect paths make negative or negligibly positive contributions to
w26. The sum of the direct (diagonal elements of Table A2.1) and indirect (below-diagonal
elements) paths are 1.675 and−0.675 respectively. The contribution from the path involving
∆w2 and ∆w14 (p = −0.244) is particularly pronounced because of the highly significant
negative correlation between ∆w2 and ∆w14 (ρ = − 0.316). On the other hand, while w2

and ∆w2 are significantly positively correlated (ρ = 0.232), their indirect contribution to
w26 is very small because of the small path coefficient from w2 to w26 (pw2,w26 = 0.12;
Figure A2.5). The preponderance of negative correlations between growth components is
indicative of compensatory growth. Individuals that experience early periods of relatively
rapid growth generally also experience subsequent periods of slowed growth. More details
on this method of growth analysis, as well as estimators for the sampling variance of path
coefficients, may be found in Lynch (1988d).

Causality Analysis in Biological Pathways

As introduced in Chapter 21, an important application of path analysis is in disentangling
the roles of molecular features (such as QTL genotypes, mRNA and protein levels, chro-
matin features, methylation marks, etc.) in influencing a trait. The basic idea was introduced
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Figure A2.6 Suppose a detailed functional genomic analysis has shown that a focal trait is
influenced by the genotype at a QTL and also by mRNA level (a quantitative trait transcript,
QTT), potentially from a different locus than the focal QTL. (A): The impact of the QTL is as
an eQTL that influences the trait only by influencing QTT levels. (B): The QTL has an impact
on the trait independent of QTT levels. (C): The QTL acts on both the QTT and the trait.

by Schadt et al. (2005) and extended by a number of authors (Kulp and Jagalur 2006; Liu
et al. 2008; Millstein et al. 2009; Wu et al. 2010). The term endophenotype refers to any
intermediate molecular phenotype in the mapping of a genotype to a final trait value (such as
mRNA, protein, or metabolite levels; histone acetylation/methylation status, etc.). With the
rise of functional genomics, a very large number of such intermediate features can be scored
(Chapter 21), and critical to our understanding of trait expression is determining the causal
structure of how these components interact. Figure A2.6 shows a simple example wherein
levels of mRNA (T ) from a particular locus influences trait value z (it is quantitative trait
transcript, QTT, for that trait; Chapter 21). The genotype (G) at a focal QTL also influences
the trait phenotype, so that in a simple correlation analysis, both the QTL and QTT appear to
influence the trait (both G and T are correlated with z). However, as Figure A2.6 shows, there
are three different causal structures (we ignore the reverse causal structure, QTL→ trait→
QQT). Note that these options correspond to three different path diagrams. If (A) is correct,
then, conditional on the QTT value, there should be no residual correlation between QTL
genotype and trait value. If (B) is correct, conditioning on the QTT value will not change the
correlation between QTL genotype and trait, while if (C) is correct, the residual correlation
between the QTL and trait will change, but will remain nonzero.

Example A2.2 Consider the situation diagrammed below where a QTL (gene one; repre-
sented by a circle) has an impact on both its own transcript level and that at a second gene,
represented by triangles (Mackay et al. 2009). Transcript levels of both genes are correlated
with the trait value, as is the genotype at the QTL. How can we determine which factor (or
factors) directly impact the trait?

Assuming no other features (confounders) that influence two (or more) of these components
(e.g., Figure 21.3B), the general setting is shown on the left in the above figure. The figure on
the right shows the direct impacts we wish to test: β1 for the direct effect of the QTL on the
trait, βT1 for the direct impact of transcript one level on the trait, and finally βT2 for the direct
impact of transcript two level on the trait. If we have a set of individuals with data vectors
(z, G, T1, T2), then these various β can be estimated from the multiple regression

z = µ + β1G + βT1T1 + βT2T2 + e
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We can also estimate the strength of the paths from gene one to both transcripts (β1Ti), and thus
compute the indirect contribution to the trait, namely β1T1βT1 + β1T2βT2, corresponding
to the paths gene one→ T1 → trait and gene one→ T2 → trait, respectively. See Example
21.3 (and Figure 21.3) for an application of this approach (often called mediation analysis) for
determining the impact of one transcription on another, potentially downstream, transcript
(cis-mediated trans effects).

Finally, some basic terminology for causality, Consider three factors, A, B, and C that
have some causal association. The setting where A → B → C is called a chain, and B is
said to be a mediator. If this is the only path connecting A and C, then conditioning on B
results in A and C being uncorrelated. The setting where A← B → C is called a fork, and
B is said to be a confounder. Conditioning on B again removes the correlation between A
and C. Finally, the setting where A→ B ← C is called an inverted fork, and B is said to be
a collider. Here conditioning on B can result in a false correlation between A and C (Rohrer
2018).

MENDELIAN RANDOMIZATION

The method of Mendelian randomization (MR) combines concepts from path analysis,
meta-analysis (Appendix 6), and GWAS (Chapter 20) to use genetics as a complement
for randomized control trails (RCT; Appendix 9) when examining the causal impact of a
potential risk factor on an outcome (e.g., disease). We can illustrate the basic idea as follows.
Suppose a large population sample shows a correlation between hair loss and sugar intake
(observational epidemiology). It could be that: (i) sugar→ hair loss, (ii) hair loss→ sugar,
(iii) an unmeasured factor (a confounder, U ) influences both, hair loss← U → sugar, or (iv)
some combination of these three scenarios. In an ideal setting of a RCT, one would start with
a very young cohort (ideally at birth), randomly assign them into high and low sugar diet
groups, and follow hair loss over the next fifty years. Of course, such RCTs for assessing
the risk of long-term exposure to some factor are generally only possible in laboratory and
domesticated species under controlled conditions. Even when such an RCT is feasible, its
sample size will almost certainly be too small to detect modest effects (say an odds ratio,
OR, < 1.5). Now suppose a GWAS finds a particular allele that naturally generates high
sugar levels relative to its alternate allele. One could now look at hair loss as a function of
this allele in a random population sample. Further, the massive sample size of a modern
GWAS routinely detects very small effects (ORs on the order of 1.05 or less; Chapter 20). The
randomization of the treatment (sugar level) occurs via Mendelian segregation at conception
by randomly assigning alleles to offspring, with any other environmental factors naturally
randomized over the two groups. This leads to what Hingorani and Humphries (2005)
called “Nature’s randomised trials.”

Strictly speaking, a truly randomized design would contrast variants within a family
(e.g., between sibs), while MR is typically performed on a population sample. As with the
TDT test (Chapter 17), within-family contrasts remove any complications from population
stratification. In a population sample, structure could be present, where both the disease
and one of the variants occur in a subpopulation at higher frequencies than the rest of the
sample, creating an association between them (Chapter 20). Davies et al. (2019) discuss
other sources of bias that can arise in a population-based MR, and how within-family MR
accommodates these concerns.

Even in settings where a short-term RCT is at least conceptually possible, MR still has
advantages. Differences in cost and effort is an obvious one, using a population sample as
opposed to a smaller and more expensive longitudinal RCT. Thus, one can think of an MR as
a screening procedure for candidate associations for a follow-up RCT (such as in drug discov-
ery settings). While (as discussed below), false positives can arise in MR studies, because of
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Figure A2.7 Path diagrams for settings where MR will work (A through C), and where it
can fail (D), in testing the hypothesis that a factor (X in general, with G used when the factor
is a specific genotype) influences disease risk (Y). Solid arrows indicate causal connections,
dashed arrows indicate induced correlations. The instrumental variable (or instrument), G, is
the genotype at a locus influencing the factor being tested. Factor is often denoted as exposure
in the literature, and disease can be generalized to an outcome variable (or state). (A) When
the SNP influences the factor and the factor influences the disease, we see a correlation between
the SNP and the disease state. (B) MR controls for reverse causality (disease→ factor). Because
the disease cannot alter the genotype, there is no SNP–disease correlation. (C) MR controls
for a confounder (U) that influences both the factor and disease state. While U results in a
correlation between the factor and disease state, there is no correlation between the SNP and
disease. (D) MR can fail when the SNP has a pleiotropic effect on both the factor and the
disease. This induces a correlation between the factor and the disease in the presence of a
SNP–disease correlation. Note that pleiotropy could either be strict (the single SNP influences
both traits) or LD-induced, where a linked SNP influences a different trait from the target
SNP. More generally, MR can fail when there is a path from G to Y independent of X. (E) In the
presence of a pleiotropic SNP when the factor also influences the trait, the total association
βY G between G and Y is the sum of two different paths, one direct (SNP→ disease, βp ) and
one indirect (SNP→ factor→ disease; βXGβY X ). (F) When the factor influences the disease,
and both are influenced by a confounder, MR still correctly shows that factor→ disease, but
gives a biased estimate of the true effect, βY X , when G is a weak instrument (Equation A2.17b).

their greater power relative to a RCT, a negative MR result (even if a false negative because
of low power) will likely generate a negative RCT result. The caveat to this statement is that
MR usually involves a rather small change in the exposure, while an RCT typically imparts
a much larger perpetuation, but this may be offset by the fact that MR often represents
life-long exposure whereas RCTs only over the course of the experiment. Further, because
alleles have been allocated at birth, MR deals with the setting where the critical time of
exposure is unknown (i.e., its impact could occur at a younger age than used in the RCT).
MR also accommodates cases where withholding of a treatment might be unethical (e.g.,
Gray and Wheatley 1991) and, conversely, when applying a treatment would be unethical,
such as examining the health risk from pesticide exposure. If genetic variation exists in
the ability to detoxify a suspected agent, this provides an MR solution to test for exposure
risk that is controlled for confounders (Davey Smith and Ebrahim 2003). Finally, one can
use intergenerational Mendelian randomization to test for maternal effects, using the
randomization in the mother of alleles influencing a factor suspected to be involved in a
material risk effect that influences the phenotype of its offspring (Davey Smith and Ebrahim
2004; Lawlor, et al. 2017; Evans et al. 2019).

The basic MR concept was proposed by Katan (1986), with Gray and Wheatley (1991)
later coining the term Mendelian randomization. Katan noted that low cholesterol levels
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correlated with increased cancer risk, but it might be that an early (and undetected) tumor
decreases cholesterol levels long before the cancer is otherwise displayed (reverse causality
with cancer→ cholesterol). However, certain alleles at the ApoE gene naturally have reduced
cholesterol levels, starting from birth. Katan reasoned that one could use control of the ApoE
genotype as a surrogate for control of cholesterol level. If low cholesterol → cancer, then
these low-cholesterol alleles should be over-represented in cancer patents. Conversely, if
cancer→ low cholesterol, then no such association is expected. See Figure A2.7 for the path
diagrams for these, and other, settings.

While the logic of MR is straightforward, as with many issues in quantitative genetics,
the devil is in the details. As noted by Burgess et al. (2019), MR “is an important and valuable
tool for learning about causal relationships using genetic data, but it is also a fallible one. · · ·
fundamentally the approach depends on being able to find genetic variants that are plausible proxies
for intervention on the risk factor.” One should always perform sensitivity analysis (detailed
below) before an MR analysis is considered complete, especially one based on multiple
GWAS hits. As noted by Burgess et al. (2017), if no such analysis is done, then any results
should “be viewed as speculative and incomplete” and “treated with skepticism.”

The development of MR methodologies is a rapidly growing field that we will only
briefly examine. Reviews and discussion are given by Davey Smith and Ebrahim (2003, 2004,
2005), Thomas and Conti (2004), Nitsch et al. (2006), Didelez and Sheehan (2007), Ebrahim
and Davey Smith (2008), Lawlor et al. (2008), Sheehan et al. (2008), Brion et al. (2014),
Davey Smith and Hemani (2014), VanderWeele et al. (2014), Boef et al. (2015), Burgess and
Thompson (2015), Burgess et al. (2015b, 2017a, 2018, 2019), Haycock et al. (2016), Zheng et
al. (2017), Hemani et al. (2018), Slob and Burgess (2019), and Zhu (2020). Power calculations
are discussed by Brion et al. (2013), Freeman et al. (2013), and Deng et al. (2020).

Example A2.3 Benn et al. (2017) used MR to examine whether a low level of LDL cholesterol is
a risk factor for either Alzheimer’s or Parkinson’s disease. Cholesterol is a major component of
myelin sheaths enclosing neurons in the brain, and observational studies suggest a correlation
between lower LDL levels and increased risk for both Alzheimer’s and Parkinson’s. Indeed,
Been et al. found such a significantly increased risk for Parkinson’s in a population sample
of 110,000 Danes. This is of serious concern given the widespread use of statins and other
cholesterol-lowering drugs to reduce heart disease risk. The authors initially focused on two
genes segregating alleles that naturally lower LDL levels, PCSK9 and HMGCR. They first
showed that variants at these loci were independent of known confounding risk factors of
the LDL cholesterol-disease relationship (age, sex, hypertension, smoking, physical activity,
alcohol consumption, educational level, menopausal status). An MR involving 26 variants
at these loci found that LDL-lower alleles showed no increased risk for either neurological
disorder. The authors then considered 380 variants at other LDL-lowering loci detected from
a GWAS. Again, no association between LDL-lowering alleles and increased disease risk was
found. Indeed, collectively these alleles showed a significant reduction of Alzheimer’s risk (OR
0.64, CI 0.52 to 0.79).

Factors probed by MR are not just restricted to presumed molecular intermediates, they
can also be modifiable behaviors. One such example is Chen et al. (2008), who used variants
at ALDH2 as surrogates for alcohol consumption. Individuals homozygous for null ALDH2
alleles experience adverse effects to alcohol, and as a result drink considerably less than
other genotypes. Variants at a second locus (ADH) similarly influence alcohol consumption,
and Howe et al. (2019) used an ADH variant (rs1229984) to examine potential causes for
the correlation in alcohol consumption among couples. One possibility for this correlation
is that the behavior of one partner influences that of the other. A second is mate choice,
seeking a partner with a similar alcohol consumption (assortative mating). A third possibility
is an unknown confounder influencing both mate choice and alcohol consumption (such as
socioeconomic status). Howe et al. found that the rs1229984 status of one partner predicts the
phenotypic (consumption) status of the other. Further, it also predicts the rs1229984 status of
their partner, suggesting that assortative mating drives this observed relationship. A number
of other interesting human examples can be found in the reviews by Davey Smith and Ebrahim
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(2004) and Sheehan et al. (2008).
There are obvious applications of MR beyond human studies. For example, in WL Chapter

20, we discussed a hypothetically observed association between seed level (as a proxy of
fitness) in plants and alkaloid levels (plant secondary compounds). This might suggest a
beneficial role of these compounds, for example by reducing insect damage. However, it
could also represent a confounding effect, with (say) plants grown in nitrogen-rich soil having
both higher fitness and higher alkaloid levels. If a GWAS found SNPs showing variation in
alkaloid production, then if alkaloid→ seeds, higher alkaloid alleles should also have more
seeds, while if there is a confounding effect on both, no such association is expected.

Figure A2.8 The three requirements for Z to be an instrumental variable (or instrument)
for the impact of a factor X on an outcome Y. First, any confounder (U) that influences both
the factor and the disease (Y) is not influenced by Z (lack of path i). We also assume that the
confounder does not influence Z (U→ Z), which is very reasonable when the instrument is a
genotype. Second, Z must directly influence the factor X (path ii is present). Finally, there is
no direct path from Z to Y (path iii is absent).

The Concept of Instrumental Variables (IVs)

The underpinning of MR is the concept of an instrumental variable (IV), or instrument,
a idea originally from economics. This concept first appeared in Appendix B of Philip G.
Wright’s (1928) The tariff on animal and vegetable oils. There was, however, much speculation
that Appendix B was actually written by Philip’s eldest son, Sewall (yes, the inventor of
path analysis). After a detailed analysis, Stock and Trebbi (2003) concluded it was more
likely than not that Philip wrote the Appendix, but there was strong evidence that the key
idea came from Sewall. Brief reviews of the utility, and limitations, of IVs in epidemiological
studies are given by Greenland (2000) and Hernán and Robins (2006).

To more formally define an IV, suppose the goal is to test whether X is causal to Y, and
(if so) estimate the strength βY X of this effect (how much a unit change in X changes Y ).
Let U denote the set of all variables that influence both X and Y (i.e., all the confounders).
Then as shown in Figure A2.8, Z is an IV if it satisfies three conditions: (i) Z is independent
of U , (ii) Z is associated with X , and (iii) Z is independent of Y conditional on X and U
(this is often called the exclusion restriction), namely that there are no paths connecting
Z and Y other than the one that runs through X . If any of these conditions fail, Z is said
to be an invalid instrument. Condition (iii) is the assumption of no (horizontal) pleiotropy
when the IV is a genotype, and is often problematic. Condition (i) can fail in the presence
of population stratification (Chapter 20) or sampling following selective survival (Nitsch
et al. 2006). A more detailed discussion of other routes by which one, or more, of these
assumptions can fail is given by VanderWeele et al. (2014), who, along with Glymour et
al. (2012), also review validation methods. In what follows, we use Z to denote a general
instrumental variable, and G when the instrument is a genetic variant (i.e., the MR setting).

When the IV assumptions hold, then applying the rules of path analysis to Figure
A2.7A, we have

βY Z = βXZ βY X , implying βY X =
βY Z

βXZ
(A2.16a)

where βY Z and βXZ are the regression slopes of Y and X , respectively, on Z. This leads to
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the instrumental variable ratio estimate (or Wald estimate) for βY X ,

β̂IV,R =
β̂Y Z

β̂XZ

(A2.16b)

Thomas et al. (2007) approximated the standard error using the delta method (Equation
A1.19b), whose leading term is

σ2( β̂IV,R ) ' σ2( β̂Y Z )

( β̂XZ )2
(A2.16c)

Equation A2.16c assumes that βXZ is known without error (β̂XZ = βXZ + e, where |e| ¿
|βXZ |), commonly referred to in the MR literature as the NOME assumption (NO Measure-
ment Error; Bowden et al. 2016a). As a result, Equation A2.16c is often called the NOME
weight for the ratio. Improved approximations were given by Thomas et al. (2016), Thomp-
son et al. (2016), and Bowden et al. (2019), while other approaches for obtaining the SE were
discussed by Pierce and Burgess (2013).

When pleiotropy is present (a path from Z to Y without going through X), Equation
A2.16b is a biased estimate of βY Z . As outlined in Figure A2.7E, letting βp be the path
coefficient from pleiotropy, the total association between Z and Y becomes

βY Z = βp + βXZ βY X (A2.17a)

yielding
βY Z

βXZ
= βY X +

βp

βXZ
(A2.17b)

The careful reader might notice that even when βp = 0, G technically still displays pleiotropy
as it impacts both X and (indirectly) Y . The MR literature refers to the effect on Y from G
that is fully mediated through X (βXZ βY X ) as vertical pleiotropy, also called mediated
(Solovieff et al. 2013), secondary (Hodgkin 1998), or spurious pleiotropy (Gruneberg 1938).
Any pleiotropic effect of G on Y that does not pass through X (βp) is called horizontal or
biological pleiotropy (Solovieff et al. 2013). In our following discussion, any mention of
pleiotropy refers to the latter.

Estimating a quantity by the ratio of two estimates can have undesirable statistical
properties. An alternative approach that avoids a ratio is to use two-stage least-squares
(2SLS or TSLS) regression. Assume the instrument is a genotype, G. Under 2SLS, one first
predicts the value of X given G, X̂|G , and then regresses Y on X̂|G, namely,

Yi = αY X + βIV,2S(X̂i|Gi) + ei, where X̂i|Gi = αXG + βXG Gi, (A2.18)

where the estimated slope, β̂IV,2S , for the regression of Y on X|G is taken as the estimate
for βY X . The 2SLS estimator easily generalizes to multiple instruments (predicting X using
a multivariate regression on IVs). This is what a TWAS does, where X is the level of a focal
transcript, which is predicted using the (cis) eQTL genotypes of an individual (Chapter 21).

A key design concern with any MR is the sampling strategy. In a single-sample design,
G, X, and Y would be measured on all the members of some sample. However, the inter-
mediate factor X may be more challenging and/or expensive to measure. A subsample
approach scores X on only some subset of the sample. Pierce and Burgess (2013) showed
that, for a strong instrument (defined below), scoring only 20% of the samples for X results
in almost the same power as scoring the entire sample. A two-sample design can also be
used, wherein the association between X and G is measured in one sample and between Y
and G in a second. Such a setting allows GWAS summary statistics (Chapter 20 and 21) to
be used in place of (often unobtainable) individual-level data. Indeed, these two estimates
could be based on a meta-analysis over a number of studies (Appendix 6). Obviously, bias



16 APPENDIX 2

can arise if these different samples have different features (e.g., differences in confounders,
population or LD structure, etc.). Minelli et al. (2004), Haycock et al. (2016), and Burgess
et al. (2017b) discussed how to use standard sensitivity analysis tools from meta-analysis
(heterogeneity tests, forest and funnel plots; Appendix 6) to look for biases and inconsis-
tencies in the data sets. A final issue is Beavis effects, in that a marker detected as being
significant (under a low power setting) often has its effect overestimated (Chapters 18 and
20). Richmond et al. (2014) recommended using a subsampling approach in such cases,
detecting a G–X association using some part of the sample, and then estimating its effect,
βXG, in the remanding part (e.g., Example 21.1).

When using a valid instrument, MR is a rather robust procedure for demonstrating that
X is causal to Y . However, estimating the actual strength of such an association is a bit more
challenging. One issue is that even when G is a valid IV, it may still be a weak instrument,
having a small impact of X relative to the noise in the system. The term weak as slightly
misleading, as a very small actual effect (G accounts for only a small fraction of the variance
in X) is a weak instrument under small sample size, but becomes strong as the sample size
increases. The rough rule in the literature is that the F statistic for the regression of X on
G should exceed ten for an instrument to be considered strong (Staiger and Stock 1997;
Lawlor et al. 2007). Equation A2.19b shows how this transition from weak to strong occurs
as sample size increases.

The ratio estimate of βY X is biased by finite sample size, which is generally only a
problem when a weak instrument is used. The directional impact of weak instrument bias
depends upon the sampling scheme. In a two-sample design, because the estimates of βXG

and βY G are from independent data, they are independent and (as we show shortly), the
bias shrinks the estimate of βY X towards zero (in the direction of the null). Conversely, under
a one-sample design, the estimate of βY X is skewed towards any confounder effects (Burgess
and Thompson 2011; Pierce and Burgess 2013).

To see this distinction, consider Figure A2.7F, and let Xi, Yi, and Ui be the values of the
factor, disease, and confounder in individual i. Then

Xi = βXGGi + βXUUi + eXi , Yi = βY XXi + βY UUi + eYi (A2.19a)

Under a one-sample design, the value of the confounder Ui is shared by Xi and Yi, while
independent draws of U influence X and Y in a two-sample design. Under the simplifying
assumption of two states of the instrumental variable (1 and 0) and ignoring any effects of
e, Burgess and Thompson (2011) showed (for a one-sample design) that the ratio estimator
implies

βIV,R = βY X + βY U

(
∆U

βXG + βXU∆U

)
(A2.19b)

where ∆U = U1 − U0 is the random sample differences in the mean confounder values
between genotypes. With a weak instrument (|βXG| ¿ |βXU∆U |), then βIV,R ' βY X +
βY U/βXU , showing a bias towards the confounder effect (βY U ). Assuming n of each of the
genotypes in the sample and that U ∼ N(0, σ2

U ), then ∆U ∼ N(0, 2σ2
U/n). Hence, |∆U |

shrinks towards zero as n increases, changing a weak IV into a strong one for sufficiently
largely n, with |βXG| À |βXU∆U | and thus βIV,R ' βY X .

An issue related to weak instruments is canalization, the buffering of fluctuations in
intermediate steps in a pathway to limit downstream perturbations of the final end product.
As noted by Davey Smith and Ebrahim (2003), canalization can result in a rather large change
in X from a genetic variant imparting only a small change in Y . A similar issue could occur
if the variant polymorphism impacts a product that is a few steps removed from the factor
we are tying to test. Finally, the basic MR analysis assumes that Z (or G), X , and Y are
all scalars. We next consider a vector Z (G) of instruments (genotypes) for predicting X .
Extensions allowing for a vector X (a correlated set of exposure factors) and/or a vector
Y (a correlated set of outcomes, such as closely related diseases) have been considered by
Thompson et al. (2005), Burgess and Thompson (2015), Rees et al. (2016), and Sanderson, et
al. (2019).
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Mendelian Randomization Using Multiple Variants

MR can be a powerful tool if one has a valid strong single instrument (e.g., a variant with a
large effect on X). However, most traits are impacted by a large number of loci of modest
to small effect (Chapters 20 and 21). As a result, the early days when MR were mostly
based on Mendelian single factors (e.g., Davey Smith and Ebrahim 2003) gave way to
extensions to exploit polygenic GWAS signals. In this setting there is still a single exposure
(X) and outcome (Y ) variable, but now MR leverages information from multiple GWAS
hits influencing X to test its causality on Y (e.g., Example A2.3).

There are obvious advantages, and pitfalls, to extending an analysis to multiple in-
struments. Even if each has a fairly weak effect on X , their cumulative effect could be
considerable, offering a substantial increase in power. Countering this, as more variants are
added, they bring with them the risk that at least some are invalid instruments (such as dis-
playing horizontal pleiotropy). Finally, LD can induce correlations among multiple GWAS
hits in the same gene, and one must adjust for these. A variety of solutions for treating these
concerns have been suggested, many based on concepts from meta-analysis (Appendix 6).

We start with the strictest assumption, that all of the k tested variants are valid instru-
ments. A second assumption is functionally consistent effects over all variants. While each
variant may have quantitatively different impacts on X (βXG can vary over G ), βY X is the
same for all: no matter how a change ∆X is generated, the resulting average change in Y
is βY X∆X. A example where this assumption might fail is if one SNP is an eQTL, while
another is both an eQLT and an sQTL (Table 21.1). Both SNPs might give the same total
level of transcript, but differential splicing may have a greater impact, so that if X is simply
total transcript amount, βY X will likely vary over these SNPs.

Because most GWAS-based MRs use a two-sample design, we assume this structure in
the rest of our discussion. Let βY j and βXj be the estimated regression slopes of Y and X ,
respectively, on the instrumental variable, variant j. Using Equation A2.16b, one constructs
the ratio estimate, β̂IV,R,j , for each variant. If the IV assumptions (Figure A2.8) hold, these
should all estimate a common parameter (βY X ), subject to sampling noise. We can express
this as a standard fixed-effects meta-analysis (Equation A6.30a),

β̂IV,R,j = βY X + ej , with ej ∼ N
[
0, σ2(β̂IV,R,j)

]
(A2.20a)

This is just a GLM (Chapter 10), with the BLUE estimate ofβY X given by the inverse-variance
weighted average (Equation A6.30b),

βY X =

∑k
j=1 wj β̂IV,R,j∑k

j=1 wj

, where wj =
1

σ2(β̂IV,R,j)
(A2.20b)

Equation A2.20b assumes the estimates over different variants are uncorrelated, but can be
modifed to allow for LD (correlations among variants). Using the approximation for the
standard error of the ratio estimate given by Equation A2.16c (the NOME assumption),

wj · β̂IV,R,j '
(

β2
Xj

σ2(βY j)

)
·
(

βY j

βXj

)
= βY jβXj/σ2(βY j) (A2.20c)

and Equation A2.20b reduces to the inverse-variance weighted (IVW) estimator of Burgess
et al. (2013),

βY X =

∑k
j=1 βY jβXj/σ2(βY j)∑k

j=1 β2
Xj/σ2(βY j)

(A2.20d)

whose standard error is given by Equation A6.30c.
Another approach follows from the concept of polygenic risk scores (Chapter 31). The

idea is that one takes a candidate set of variants and constructs an index of these to serve as
a single instrumental variable. This is the allele scores method of Burgess and Thompson
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(2013). One could either construct an unweighted score (simply counting the number of
risk alleles, namely those increasing X) or weight alleles by some scheme (such as by their
estimated effects as in a polygenic risk score). The idea is to avoid weak instrument bias by
using a single sum as opposed to averaging ratios based on a number of weak instruments.
Simulations by Burgess and Thompson showed that this approach can be powerful when all
of the variants are valid instruments, but can be severely biased when as few at 10% of the
variants are invalid. Further, seriously biased estimates often occur with weighted sums,
as the weights are often incorrectly estimated (e.g., Beavis effects). Burgess et al. (2015a)
detailed how to use summary data and correlated variants in constructing allele score tests.

A number of more robust estimators allowing from some of the instruments (variants)
to be invalid (e.g., show pleiotropy) have been proposed. The simplest two were suggested
by Bowden et al. (2016b), using the notion that the median is often rather robust to outliers
and model departures. Ordering the ratio estimates for the k variants from smallest to
largest, the simple median estimator takes the median (that value which divides the upper
and lower half of the k estimates) as the estimate. Their weighted median estimator is a
modification of this idea, and proceeds as follows. First, a weight is assigned to each of
the estimates (e.g., using Equation A2.20b), which are standardized to sum to one, and the
weights ranked from smallest to largest. Again, the median is taken, but now using the
cumulative sum of the weights, with the variant whose cumulative sum is 50% has its ratio
taken as the group estimate. Their simulations showed that these estimators were consistent
even when up to 50% of the information comes from invalid instrumental variables. It should
be noted that consistency is a large-sample feature. Nonetheless, median estimates serve
as a sensitivity check, in that if the median and IVW estimates are rather similar, one has
more confidence in the MR estimate, while if they radically differ, further exploration into
the data is likely needed.

A number of regression-based approaches have been proposed to handle the general
case of an unknown number of invalid instruments among the variants. The assumption
is that any invalid instrument raises entirely from pleiotropy. From Equation A2.17a, the
resulting total effect of variant j on Y becomes

βY j = βp,j + βY X βXj (A2.21)

where the goal is to estimate the shared βY X effect. As noted by Bowden et al. (2017, 2018),
one signal of pleiotropy (assuming σ2(βp,j) 6= 0) is excessive heterogeneity in the ratio
estimates obtained from different SNPs, which can be tested using a number of heterogeneity
tests from meta-analysis, such the Cochran’s Q (Equation A6.31) or Higgins-Thompson
I2 (Equation A6.37c). Bowden et al. (2019) developed improved weights to yield better
performance of the Q test than under the NOME assumption weights (Equation A2.16).

Even in the presence of pleiotropy, IVW gives a consistent estimate of βY X when two
conditions are jointly satisfied (Bowden 2017). The first is balanced pleiotropy, wherein
E[βp] = 0. The second is the InSide assumption, for Instrument Strength independent
of direct effects (Bowden et al. 2015). This is essentially a weaker version of the exclusion
restriction assumption (the lack of path (iii) in Figure A2.8), and assumes that the magnitude
(and direction) of the pleiotropic effect (βp,j) is uncorrelated with the direct effect βX,j on
X . Note that under balanced pleiotropy while there is no average effect from pleiotropy, it
will result in excess variance of the individual ratio estimates, and hence can be potentially
detected by a heterogeneity test.

Several approaches have been suggested to deal with the presence of directional
pleiotropy, E[βp] 6= 0, which attempt to estimate the common βY X in Equation A2.21
under different assumptions on the distribution of βp,j (summarized in Bowden et al. 2017,
Hermani et al. 2018, Verbanck et al. 2018, Slob and Burgess 2020, Zhu 2020, and Cho et al.
2021). The simplest assumption is that βp,j is the same over all variants. In this setting, the
βY X estimates will not show excess heterogeneity, but the presence of pleiotropy can be
detected by other tests. The most common is the Mendelian randomization-Egger (MR-
Egger regression) approach of Bowden et al. (2015). It is based on the Egger regression test
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(Equation A6.38) from meta-analysis, where a nonzero intercept indicates the presence of a
publication bias (e.g., negative test results are not published). The model becomes

β̂Y j = βp + βY X β̂Xj + ej , with ej ∼ N
[
0, σ2(β̂Y j)

]
(A2.22a)

The intercept term, βp, should be zero in the presence of balanced pleiotropy (this is the
MR-Egger intercept test). This regression accomplishes three goals: testing for the presence
of directional pleiotropy (βp 6= 0), test causality of X → Y (βY X 6= 0), and (most problem-
atic) estimating the effect βY X . More generally, Equation A2.22a can still give a consistent
estimate of βY X when βp,j vary, provided that the InSide assumption holds (Bowden et al.
2017). In this setting, βp is average amount of directional pleiotropy.

Turning to estimation, Bowden et al. (2015) showed that the MR-Egger estimate of βY X

is slightly biased, with

βY X,MR−Eg = βY S

(
σ2(βXj)

σ2(β̂Xj)

)
(A2.22b)

Because σ2(β̂Xj) > σ2(βXj), the estimate of βY X is shrunk towards zero (i.e., back towards
the null), a phenomena known as regression dilution bias. Writing β̂Xj = βXj + ek, so that
σ2(β̂Xj) = σ2(βXj)+σ2(ej), we see that if the βXj are known without error (σ2(ej) = 0, the
NOME assumption), then the βY X,MR−Eg estimate is consistent. Bowden et al. (2015) noted
that this assumption can be tested by quantifying the heterogeneity of the βXj estimates (the
strength of variant j on the exposure factor X) using the Higgins-Thompson I2 measure of
heterogeneity (Equation A6.37c). As discussed in Appendix 6, I2 is the fraction of variation
due differences in effects (and hence ranges from zero to one). Bowden et al. suggested that
if the I2 statistic for the βXj , which they denote at I2

GX , in the analysis exceeds 0.9, then the
NOME assumption is reasonable, and the shrinkage of the βY X estimate is at most 10%.
An I2

GX value close to one implies the variance among the true βXj values is much larger
than their individual sampling errors, σ2(βXj) À σ2(ej). A number of outlier detection
approaches have been proposed to fine-tune regression approaches, such as HEIDI-outlier
(Zhu et al. 2018), MR-PRESSO (Verbanck et al. (2018), and MR-TRYX(Cho et al. 2020).

As stressed by several authors, both MR-Egger and median estimators should be
viewed as sensitivity analysis methods for probing assumptions about the MR. Additional
statistics have been proposed, such as the QR statistic of Bowden et al. (2017). This is just
the ratio of the heterogeneity of data around the MR-Egger fitted slope divided by the het-
erogeneity of data around the IVW slope. A value of QR much less than one indicates that
the MR-Egger is a better and should be given serious consideration. Bowden (2017) stressed
the joint use of both QR and I2

GX to determine in which cases the MR-Egger should be used,
while Burgess and Thompson (2017) provide further discussion on how to interpret various
MR-Egger findings.

An entirely different approach for dealing with pleiotropy is the use of penalized re-
gressions (Example 20.4). Rees et al. (2019) proposed to allow βp,j to vary, but to penalize
their total absolute sum. Under the LASSO (which shrinks most βp,j to zero, generating
variable selection), the estimate is given by

β̂Y X,Lλ = min
βp,j ,βY X

 k∑
j=1

(β̂Y j − βp,j − βY X β̂Xj)2

σ2(β̂Y j)
+ λ

k∑
j=1

|βp,j |

 (A2.23)

This returns both the common factor βY X as well as the pleiotropic effects of any retained
variants (following model selection). One could also use the LASSO for strict model selec-
tion, performing an MR using only those variants whose βp,j have been shrunk to zero.
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Figure A2.9 A simple directed acyclic graph (DAG). The nodes (A, B, C) indicate elements
in a regulatory network, while the arrows (edges) indicate the direction of interaction.

BASIC GRAPH THEORY FOR BIOLOGICAL NETWORKS

One of the rich harvests from functional genomics are elaborate network structures, interac-
tions between molecular elements, such as metabolic pathways, regulatory networks, and
protein-protein maps (showing which proteins physically interact with each other). Given
the rapid accumulation of such information, and its developing importance in quantitative
genetics, we conclude by presenting a few basic concepts from graph theory that appear in
the network literature. Barabási and Oltvai (2004), Vidal et al. (2011), and Hu et al (2016)
review basic concepts with a focus on bioloigcal networks.

Consider Figure A2.9. The items in the network (A, B, and C; for example, proteins) are
referred to as nodes, and the connections (interactions) between them are called edges. An
arrow for an edge indicates a directional interaction, while a line indicates an interaction
with no assumed directionality. In an acyclic graph, no pathways connect a node back
to itself through a series of intermediate nodes (e.g., there are no feedback loops). Most
path diagrams are thus directed acyclic graphs (or DAGs). We can represent the basic
topology (shape) of a graph by a matrix M containing zeros and ones. In an undirected
graph (only lines, no arrows), Mij = 1 if nodes i and j are connected by an edge, resulting
in a square, symmetric matrix (as Mij = Mji). In a directed graph, Mij = 1 indicates that
node i influences node j. In this case, Mij = Mji only if both nodes influence each other, so
that the matrix describing the graph is typically not symmetric. For the directed graph in
Figure A2.9, the resulting matrix (order the columns as A, B, C) is

M =

 0 0 1
1 0 1
0 0 0


More generally, we can replace the elements of M by measures of the strengths (and signs) of
interactions between nodal elements. Note that the object M is a multi-dimensional quan-
titative trait, and thus, provided we can measure it in a set of relatives, we can perform
standard quantitative-genetics tasks (such as separating genetic from environmental varia-
tion). Similarly, with marker data we can also map regQTLs (Table 21.1) that impact various
aspects of M, such as its leading eigenvalue (if we wish to extract a univariate trait), or more
general features in a multivariate setting.

In order to probe the structure of a biological network, we first need to consider the
features of a random graph, as this provides one natural null model. Random graphs, where
edges are randomly connected to nodes, are often called Erdõs-Rényi (1959), ER, graphs
after the two mathematicians who first considered their basic properties. Formally, we start
with n nodes, with p the probability that any two randomly chosen nodes are connected.
We consider several metrics for the structure of a graph and compare how the ER values
differ from those seen in actual biological networks.

The first descriptor of a graph is its degree distribution, P (k), the probability that a
randomly chosen node is linked to exactly k other nodes. Under ER graphs, P (k) follows a
Poisson distribution (Equation 2.21a), with success parameter z = np,
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Figure A2.10 The phase transition in ER graphs at z = 1, where a giant component forms,
in which a large fraction of the nodes in the graph are interconnected.

Pr(X = k) =
(np)k exp(−np)

k!
, for k = 0, 1, · · · (A2.24a)

Note that the probability a random node is not connected to any other (k = 0) is simply
exp(−np), and that the number of expected connections falls off exponentially.

A second descriptor is the path length distribution, d, a measure of how well connected
all of the nodes in the graph are to each other. Formally, this is the distribution of smallest
number of steps that it takes to go from one node in the graph to any other. For an ER graph,
the average path length between any two nodes is roughly given by

dER ∼ ln(n)/ ln(z), z = np (A2.24b)

ER graphs display a very striking phase transition at z = 1 (on average, one connection
between any two randomly chosen nodes), forming a giant component, wherein a large
fraction of the nodes in the graph become interconnected (Figure A2.10). The biological
implication of a giant component is that most of the elements in the graph influence (or at
least interact with) most other elements. Thus, the network moves from a series of discrete,
non-overlapping modules into a single integrated structure. In a classic paper, Kaufmann
(1969) modeled gene circuits as random Boolean networks. In Kaufmann’s model, genes
were randomly connected (formed an ER graph) and simple on/off (Boolean) rules applied
(such as if your neighbor is off, you are on). Kaufmann found that such random networks
showed giant regulatory components, features that appear to show complex order and give
all the appearance of being highly evolved, yet they were entirely random. This raises the
key point that random graphs can show considerable structure. Hence, one must be careful
in inferring evolution simply because a network shows a complex, and highly integrated,
structure.

A final feature about ER graphs is that they are small world, wherein that the average
path distance between any two nodes is short. The classic example of a small-world graph is
the Kevin Bacon conjecture. The assertion is that every actor can be traced back to an actor
who appeared in a film with Ken Bacon. The Bacon number for an actor is the number
of actors (nodes) one must go through to find this connection. Mathematicians have a
similar concept, an Erdõs number. Erdõs was very prolific, and your Erdõs number is how
many mathematicians you must go back through to make a connection with someone who
wrote a paper with Erdõs. Formally, in a small-world graph, the average path distance is
close to that predicted for an ER graph, dER ∼ ln(n)/ ln(z). The critical feature of small-
world graphs is that they propagate information very efficiently. One can transform a
highly regular graph into a small world graph by randomly rewiring a small fraction of the
nodes.



Under a Poisson, a modal value
for number of links, after which
the chance falls off exponentially

Under a power law, no modal
value, but the probability of
many links falls off as a power,
not exponentially, resulting in a few
nodes with a large number of links
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Figure A2.11 Poisson versus power law (scale-free) degree distributions, P(k). Under a
Poisson (left; Equation A2.24a), there is some modal number of links, after which the number
of links falls off exponentially. In contrast, under a power law distribution (right; Equation
A2.24c), there are a few hubs with very many connections.

How do cellular networks depart from random graphs? Most importantly, their degree
distribution often follows a power law,

P (k) ∼ kγ (A2.24c)

This is in contrast to the Poisson distribution for k expected under an ER graphs (Figure
A2.11). Graphs with a power distribution of links are called scale-free. In a scale-free graph,
a few of the nodes will have very many connections. Such nodes are often called hubs, where
just a few locations influence a large number of nodes (such as a single eQTL influencing
a large number of transcripts; Chapter 21). The important feature of scale-free graphs is
that they are fairly robust to perturbations: most randomly chosen nodes can be removed
with little effect on the system. While removing a hub has a critical effect, the chance that a
randomly removed node is a hub is small. A second feature of scale-free networks is that
they are ultra small, meaning that their mean path length is actually shorter than under a
random graph.

Because a scale-free structure gives a network inherent stability, biological homeostasis
may just be a simply consequence of this structure, rather than a highly evolved feature.
How might such scale-free graphs evolve? The answer turns out to be rather simple:
when we add new nodes, the scale-free feature arises when they have a slight preference
to attach to already established nodes. This feature is exactly what is thought to happen
as gene duplication adds more nodes (elements) to a network (e.g., Arabidopsis Interactome
Mapping Consortium 2011).

The initial view that most cellular networks appeared to be scale free has been modified
somewhat (Vidal et al. 2011). While metabolic and protein-protein interaction networks tend
to be scale-free, genetic regulatory networks often show a mixed behavior. With a directional
graph, we can distinguish between the incoming and outgoing degree distribution, namely
the average number of inputs to a node (the number of incoming arrows to a node: how
many other nodes directly influence it) and the average of outputs from a node (the number
of arrows leaving a node: how many other nodes it directly influences). Regulatory networks
often show a scale-free outgoing distribution, meaning that there are a few hubs that can
influence numerous nodes. However, the incoming degree distribution is better fitted with
an exponential, implying that genes directly regulated by the input from a number of nodes
are rare. Han et al (2004) observed two rather different types of hubs in biological networks:
date hubs, whose interactions with their partners varies over time, and party hubs, that are
highly coregulated with their partners. Vidal et al. (2011) suggested that date hubs connect
different functional modules of a network with each other, whereas party hubs largely act
inside functional modules, but also see Agarwal et al. (2010).
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Example A2.4 Apparently well-buffered networks can often be disrupted by single-gene
mutations, resulting in a dramatic increase in phenotypic variance. Rutherford and Lindquist
(1998) called genes (where such mutations can arise) phenotypic capacitors, with the classic
example being heat-shock protein Hsp90, a molecular chaperone (a protein that helps other
proteins fold properly). Hsp90 knockouts in both Drosophila and Arabidopsis show increased
phenotypic variance over a number of traits. One hypothesis is that capacitors are often asso-
ciated with hubs in critical networks. To more broadly search for capacitors, Levy and Siegal
(2008) examined phenotypic variances over a suite of morphological features in a collection
of 4700 single-gene knockout lines in yeast (Saccharomyces cerevisiae). Roughly 300 (∼ 5%) of
these were capacitors, as their knockout lines showed a significant (within-line) increase in
the phenotypic variance over a number of traits. Levy and Siegal found that such genes were
likely to be at hubs in either networks involving physical interactions between their products
(hubs in the protein-protein interaction network) or involving genetic interactions between
loci (hubs in the synthetic lethal interaction network). Masel and Siegal (2009) review general
issues on robustness.


