
Appendix 7
Introduction to Bayesian Analysis

Uncertainty is the refuge of hope. Henri Frederic Amiel. Version 17 Dec 22

The history of statistical methods in genetics closely parallels advances in computation.
Before the widespread use of computers, method-of-moments approaches were common
as they are relatively easy to obtain. Here, a summary statistic of the data is computed
whose expected value is the parameter of interest (e.g., using the sample mean, x, as an
estimate of the true mean, µx, as E[ x ] = µx). In the mid-1970s, maximum-likelihood
(ML) methods became much more common place, as they offer a very flexible platform for
statistical analysis (estimation, determining precision, and hypothesis testing), but at the
cost of numerically searching an often highly complex multidimensional likelihood surface
(Appendix 4). Both these approaches typically return point estimators for the variables of
interest, along with some measure of their uncertainty. As opposed to these classical (or
frequentist) approaches, Bayesian statistics (which can be viewed as a natural extension of
likelihood methods) is concerned with generating the full distribution for the parameters, Θ,
given the data, x, namely, obtaining the posterior distribution, p(Θ | x). As such, Bayesian
statistics provides a much more complete picture of the uncertainty in the estimation of the
unknown parameters, especially after the confounding effects of nuisance parameters are
removed.

Our treatment here is intentionally quite brief. A number of texts have presented ex-
cellent treatments of the statistical theory (e.g., Lindley 1965; Berger 1985; Carlin and Louis
2000; Lee 2012; Gelman et al. 2013). Blasco (2017) provided a very lucid introduction to
applications in quantitative genetics, while Sorensen and Gianola (2002) offered a more
comprehensive treatment. While very deep (and very subtle) differences in philosophy
separate hard-core Bayesians from hard-core frequentists (Efron 1986; Glymour 1981), our
treatment of Bayesian methods is motivated simply by their use as a powerful statistical
tool. This appendix focuses on the basic theory, while the computational approaches that
make these methods feasible are examined in Appendix 8.

WHY ARE BAYESIAN METHODS BECOMING MORE POPULAR?

In addition to providing a more formal framework for dealing with parameter uncertainty,
two specific features have fueled the rapid growth of Bayesian approaches in genetics and
genomics. First, under a Bayesian analysis, all parameters are random effects as opposed to
fixed effects (Chapter 10). This has profound implications for degrees of freedom. Consider
a gene expression study with 30,000 features (genes of interest), whose mRNA levels are
contrasted over a set of 100 normal liver cells versus 100 cancerous ones. If we treat the
differential expression level of any particular gene as a fixed effect (an unknown constant to
be estimated) we will very quickly use all of the degrees of freedom, given the small sample
size. Conversely, if these levels are treated as random effects, with the expression difference
associated with a particular gene being a random variable drawn from some underlying
(and unknown) distribution, then the only degrees of freedom lost will be those used to
estimate the associated parameters for this underlying distribution (typically, its variance).
Further, prediction of the random realization that corresponds to a particular gene borrows
information over all the genes. Thus, a Bayesian analysis can handle high-dimensional
experiments in which the number of parameters, p, greatly exceeds the number of observa-
tions, n, in a framework that fully manages the uncertainty over all these estimates. Second,
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Bayesian methods are computationally feasible, as approaches such as MCMC (Appendix
8) allow high-dimensional datasets to be analyzed in a computationally efficient manner.
In settings with a large number of nuisance parameters or a high-dimensional dataset, a
Bayesian approach not only has considerable appeal, it may be the only approach that is
even feasible.

BAYES’ THEOREM

The foundation of Bayesian statistics is Bayes’ theorem, which was introduced in Chapter
3. From Equation 3.3b,

Pr(θ |x) =
Pr(x | θ) Pr(θ)

Pr(x)
(A7.1)

In Bayesian statistics, x represents an observable variable (the data), while θ represents a
parameter describing the distribution of x. In this setting, Pr(θ) is the prior distribution
of possible parameter values, while Pr(θ |x) is the subsequent posterior distribution of θ
given the observed data x and the prior. In classical statistics, the unknown parameters are
treated as fixed and the data are considered random, whereas under a Bayesian analysis,
the data are considered fixed and the unknown parameters that generated the data are
considered random.

Equation A7.1 also holds for continuous random variables, with the probability den-
sity function, p, replacing the discrete probability value, Pr. In particular, the continuous
multivariate version of Bayes’ theorem is

p(Θ | x) =
p(x |Θ) p(Θ)

p(x)
=

p(x |Θ) p(Θ)∫
p(x, Θ) dΘ

(A7.2)

where Θ = (θ1, θ2, · · · , θn) is a vector of n (potentially) continuous variables. As with the
univariate case, p(Θ) is the assumed prior distribution of the unknown parameters, while
p(Θ | x) is the posterior distribution given the prior, p(Θ), and the data, x.

The origin of Bayes’ theorem has a fascinating history (Stigler 1983). It is named after the
Rev. Thomas Bayes, a priest who never published a mathematical paper during his lifetime.
The paper in which the theorem appears was posthumously read before the Royal Society
by his friend Richard Price in 1764. Stigler suggests it was first discovered by Nicholas
Saunderson, a blind mathematician and optician who, at age 29, became Lucasian Professor
of Mathematics at Cambridge (the position held earlier by Issac Newton). This is an example
of Stigler’s Law of Eponymy (Stigler 1980), wherein no discovery or invention is named
after its first discoverer (an eponym). As is fitting, Stigler’s law is self-consistent, as this
phenomenon was previously mentioned by Merton (1965).

Example A7.1. Consider a recessive color locus in cattle in which the genotypes BB and Bb are
black, while bb is red. Two black-coated parents are crossed, and produce some red offspring,
which implies that both parents must be Bb. A black-coated son of theirs is crossed to n red
dams (bb), and all of his offspring are black. What is the posterior probability that he is BB?

To solve this problem using Bayes’ theorem, we first define the indicator random variable

θ =
{

0 son is Bb

1 son is BB

Given that both parents are Bb, the expected priors for their offspring are 1/4 for BB and 1/2 for
Bb, resulting in a 3/4 prior for a black-coated offspring. Further, from conditional probability
(Equation 3.3a), the prior that a black offspring is BB is

Pr(BB | Black) =
Pr(BB, Black)

Pr(Black)
=

Pr(BB)
Pr(Black)

=
1/4
3/4

= 1/3
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where we used the fact that all BB are black, so that Pr(BB, Black) = Pr(BB). Hence, the prior
becomes

Pr(θ) =
{

0 is 2/3
1 is 1/3

Further
Pr(all n offspring are black | sire is BB) = 1

Pr(all n offspring are black | sire is Bb) = (1/2)n

and
Pr(all n black) = Pr(all black | BB)*Pr(BB) + Pr(all black | Bb)*Pr(Bb)

= 1 · 1/3 + (1/2)n · (2/3)

If we combine the above values, Bayes’ theorem yields

Pr(θ = 1 |n black offspring) =
Pr(n | θ = 1) Pr(θ = 1)

Pr(n)
=

1 · (1/3)
1 · (1/3) + (1/2)n · (2/3)

which returns values of 0.5, 0.67, 0.8, 0.89, 0.94, and 0.998 for n = 1, 2, 3, 4, 5, and 10, respectively.

FROM LIKELIHOOD TO BAYESIAN ANALYSIS

The method of maximum likelihood (Appendix 4) and Bayesian analysis are closely related.
Suppose `(Θ | x) is the assumed likelihood function. Under ML estimation, we would com-
pute the mode of the likelihood function (the maximal value of `, as a function of Θ given
the data x), and use the local curvature around the mode to construct confidence intervals.
Hypothesis testing follows using likelihood-ratio (LR) statistics. The strengths of ML esti-
mation rely on its large-sample properties, namely, that when the sample size is sufficiently
large, we can assume both normality of the estimators and that most LR tests follow χ2

distributions. These features, nice as they are, may not hold for small samples. Conversely,
a Bayesian analysis is exact for any sample size, given a specified prior.

To transition from a likelihood to a Bayesian analysis, we start with some prior distri-
bution, p(Θ), that captures our initial knowledge (or best guess) about the possible values
of the unknown parameters. From Bayes’ theorem, the data (likelihood) is combined with
the prior to produce a posterior distribution,

p(Θ | x) =
1

p(x)
· p(x |Θ) · p(Θ) (A7.3a)

= (normalizing constant) · p(x |Θ) · p(Θ) (A7.3b)

= constant · likelihood · prior (A7.3c)

as p(x |Θ) = `(Θ | x) is simply the likelihood function (Appendix 4) and 1/p(x) is a constant
(with respect to Θ). Consequently, the posterior distribution is often written as

p(Θ | x) ∝ `(Θ | x) p(Θ) (A7.3d)

where the symbol ∝ means “proportional to” (equal up to a constant). Note that the con-
stant p(x) normalizes p(x |Θ) · p(Θ) to one (making the posterior is a formal probability
distribution), and hence can be obtained by integration

p(x) =
∫
Θ

p(x |Θ) · p(Θ) dΘ (A7.4)
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The dependence of the posterior on the prior (which can easily be assessed by trying different
priors) provides an indication of how much information on the unknown parameter values
is contained in the data (the curvature of the likelihood surface). If the posterior is highly
dependent on the prior, then the data likely has little signal (a flat likelihood surface),
while if the posterior is largely unaffected by different priors, then the data are likely highly
informative (a sharply peaked likelihood surface). To see this, taking logs on Equation A7.3c
yields

log(posterior) = log(likelihood) + log(prior) + constant (A7.5)

When the likelihood signal is strong, it largely dominates the prior in the resulting posterior,
but when a likelihood is weak, the prior can dominate.

Marginal Posterior Distributions

Often only a subset of the unknown parameters is of concern, with the rest being nuisance
parameters that are of no interest, but still must be fitted in the model. A strong feature
of Bayesian analysis is that we can account for all the uncertainty introduced into the
parameters of interest by any uncertainty in the values of nuisance parameters. This is
accomplished by integrating the nuisance parameters out of the posterior distribution to
generate a marginal posterior distribution for the parameters of interest. For example,
suppose the mean and variance of data coming from a normal distribution are unknown,
but our real interest is only in the variance. Estimating the mean introduces additional
uncertainty into our variance estimate, which is not fully captured by standard classical
approaches. Under a Bayesian analysis, the marginal posterior distribution for σ2 is simply

p( σ2 | x) =
∫

p( µ, σ2 | x ) dµ

The resulting marginal posterior for σ2 captures all of the uncertainty in the estimation of µ
that influences the uncertainty in σ2. This is an especially nice feature when a large number
of nuisance parameters must be estimated.

The marginal posterior may involve several parameters (generating joint marginal
posteriors). Suppose we write the vector of unknown parameters as Θ = (Θ1, Θnu), where
Θnu is the vector of nuisance parameters. Integrating over Θnu yields the desired marginal
for the vector Θ1 of parameters of interest as

p(Θ1 | y) =
∫
Θnu

p(Θ1, Θnu | y) dΘnu (A7.6)

While these complex integrals appear quite daunting (and indeed almost always are from
an analytic standpoint), generating draws from the marginal distribution is usually very
straightforward using MCMC methods (which are examined in Appendix 8).

SUMMARIZING THE POSTERIOR DISTRIBUTION

How do we extract a Bayesian estimator for some unknown parameter, θ? If our mindset
is to use some sort of point estimator (as is usually done in classical statistics), then there
are a number of candidates. We could follow maximum likelihood and use the mode of the
posterior distribution (its maximal value)

θ̂ = max
θ

[ p( θ | x )] (A7.7a)

We could take the expected value of θ (its mean) given the posterior

θ̂ = E[ θ | x ] =
∫

θ p( θ | x )dθ (A7.7b)
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Another candidate is the median of the posterior, which is more robust than the mean to
outliers. Here the estimator satisfies Pr(θ > θ̂ | x) = Pr(θ < θ̂ | x) = 0.5, hence∫ +∞

θ̂

p( θ | x )dθ =
∫ θ̂

−∞
p( θ | x )dθ =

1
2

(A7.7c)

However, using any of the above estimators, or even all three simultaneously, loses the full
power of a Bayesian analysis, as the full estimator is the entire posterior density itself . If
we cannot obtain the full form of the posterior distribution, then these estimates of general
features of the distribution can be presented. However, as we will see in Appendix 8, we
can generally obtain the full posterior by simulation using MCMC sampling, and hence the
Bayesian estimate of a parameter is often presented as a frequency histogram (potentially
smoothed) of the MCMC-generated samples from the posterior distribution (an empirical
posterior). Typically, when such a histogram is displayed, it is usually accompanied by one
or more of the summary statistics given by Equation A7.7a—A7.7c (as well as other metrics,
such as the variance and skewness).

Highest Density Regions (HDRs)

Given the posterior distribution, the construction of uncertainty intervals is straightforward.
For example, a 100(1− α)% “confidence interval” is given by any (Lα/2, Hα/2) satisfying∫ Hα/2

Lα/2

p(θ | x) dθ = 1− α

To reduce the set of possible candidate intervals, one typically uses highest density regions,
or HDRs, where, for a single parameter, the HDR 100(1 − α) region(s) are the shortest
intervals giving an area of (1−α). More generally, if multiple parameters are being estimated,
the HDR region(s) are those with the smallest volume in the parameter space. HDRs are also
referred to as Bayesian confidence intervals or (better yet) credible intervals.

It is critical to note that there is a profound difference between a confidence interval (CI)
from classical (frequentist) statistics and a Bayesian analysis. The interpretation of a classical
confidence interval is that if we were to repeat the experiment a sufficiently large number
of times, and construct CIs in the same fashion, the fraction of the resulting collection of
CIs that enclose the unknown parameter approaches (1 − α). Thus, the frequentist CI is a
measure of the frequency of occurrences in independent experiments in which the CI encloses
the true value (and hence the term frequentist for this type of statistics). In contrast, with
a Bayesian HDR, there is a probability of (1 − α) that the interval contains the true value
of the unknown parameter. While at first blush these two interpretations of CIs appear
to be essentially identical, they are not, and indeed they are fundamentally (but subtly)
different. Often the CI and Bayesian intervals span essentially the same values, but again
the interpretational difference remains. The key point is that the Bayesian prior allows us
to make direct probability statements about θ, while under classical statistics we can only
make statements about the behavior of the statistic if we consider repeating an experiment
a large number of times. Given the important conceptual difference between classical and
Bayesian intervals, Bayesians typically avoid using the term confidence interval, using the
term credible interval instead.

Bayes Factors and Hypothesis Testing

In the classical hypothesis-testing framework, we have two alternatives. The null hypothe-
sis, H0, that the unknown parameter, θ, belongs to some set or interval, Θ0 (θ ∈ Θ0), versus
the alternative hypothesis, H1, that θ belongs to the alternative set, Θ1 (θ ∈ Θ1). Θ0 and Θ1

contain no common elements (Θ0 ∩Θ1 = ®) and the union of Θ0 and Θ1 contains the entire
space of values for θ (i.e., Θ0 ∪Θ1 = Θ).

In the classical frequentist framework, one uses the observed data to test the significance
of a particular hypothesis, and (if possible) compute a p value (the probability, p, of observing
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a value equal to, or more extreme than, that of the test statistic if the null hypothesis is indeed
correct). Initially, one would think that the idea of a hypothesis test is trivial in a Bayesian
framework, as using the posterior distribution provides the expected p values directly. For
example,

Pr(θ > θ0) =
∫ ∞

θ0

p( θ | x) dθ and Pr(θ0 < θ < θ1) =
∫ θ1

θ0

p( θ | x) dθ

The fault in this logic under a Bayesian framework is that we also have prior information and
Bayesian hypothesis testing addresses whether, given the data, we are more or less inclined
to believe the hypothesis than was suggested from the prior. Hence, the prior probabilities
influence hypothesis testing. To formalize this idea, let

p0 = Pr(θ ∈ Θ0 | x) and p1 = Pr(θ ∈ Θ1 | x) (A7.8a)

denote the probabilities, given the observed data, x, that θ is in the null (p0) and alternative
(p1) hypothesis sets. Note that these are posterior probabilities. Because Θ0 ∩ Θ1 = ® and
Θ0 ∪Θ1 = Θ, it follows that p0 + p1 = 1. Likewise, for the prior probabilities we have

π0 = Pr(θ ∈ Θ0) and π1 = Pr(θ ∈ Θ1) (A7.8b)

Thus the prior odds of H0 versus H1 are π0/π1, while the posterior odds are p0/p1.
The Bayes factor, B0, in favor of H0 versus H1 is calculated by the ratio of the posterior

odds divided by the prior odds,

B0 =
p0/p1

π0/π1
=

p0π1

p1π0
(A7.9a)

The Bayes factor is loosely interpreted as the odds in favor of H0 over H1 as given by the
data and our prior opinion. Because π1 = 1−π0 and p1 = 1−p0, we can also express this as

B0 =
p0(1− π0)
π0(1− p0)

(A7.9b)

By symmetry, note that the Bayes factor, B1, in favor of H1 versus H0 is simply B1 = 1/B0.

Example A7.2. Suppose that the prior distribution of θ is such that Pr(θ > θ0) = 0.10, while
for the posterior distribution Pr(θ > θ0 | x) = 0.05. The latter is significant at the 5% level
in a classical hypothesis-testing framework, but the data only doubles our confidence in the
alternative hypothesis relative to our belief based on prior information. If Pr(θ > θ0) = 0.50
for the prior, then a 5% posterior probability would greatly increase our confidence in the
alternative hypothesis. Consider the first case in this example, where the prior and posterior
probabilities for the null were π0 = 0.1 and p0 = 0.05, respectively. The Bayes factor in favor
of H1 versus H0 is

B1 =
π0(1− p0)
p0(1− π0)

=
0.1 · 0.95
0.05 · 0.9

= 2.11

Similarly, for the second example, where the prior for the null was π0 = 0.5,

B1 =
0.5 · 0.95
0.05 · 0.5

= 19

Here, the data showed close to a 20-fold improvement (relative to the prior) in support of H1.
Bayes factors and p values represent fundamentally different approaches to an analysis and
are not formally comparable. However, a loose interpretation is that a factor of 20 is akin to the
level of support of a p = 0.05, and a factor of 100 to p = 0.01.
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When the hypotheses are simple (i.e., single values), say Θ0 = θ0 vs. Θ1 = θ1, then

pi ∝ p(θi) p(x | θi) = πi p(x | θi) for i = 0, 1

Thus
p0

p1
=

π0 p(x | θ0)
π1 p(x | θ1)

(A7.10a)

and from Equation A7.9a, the Bayes factor (in favor of the null) reduces to

B0 =
p(x | θ0)
p(x | θ1)

(A7.10b)

which is simply a likelihood ratio (Appendix 4).
When hypotheses are composite (containing multiple elements), the situation is slightly

more complicated. First, note that the prior distribution of θ conditioned on H0 or H1 is

pi(θ) = p(θ)/πi for i = 0, 1 (A7.11)

as the total probability θ ∈ Θi = πi, so dividing by πi normalizes the distribution to integrate
to one. Thus,

pi = Pr(θ ∈ Θi | x) =
∫

θ∈Θi

p(θ | x)dθ

=
1

p(x)

∫
θ∈Θi

p(θ)p(x | θ)dθ

= πi

∫
θ∈Θi

p(x | θ)pi(θ)dθ (A7.12)

where the second step follows from Bayes’ theorem, while the final step follows from
Equation A7.11. The Bayes factor in favor of the null hypothesis becomes

B0 =
(

p0

π0

) (
π1

p1

)
=

∫
θ∈Θ0

p(x | θ)p0(θ)dθ∫
θ∈Θ1

p(x | θ)p1(θ)dθ
(A7.13)

which is a ratio of the weighted likelihoods of Θ0 and Θ1.

THE CHOICE OF A PRIOR

Obviously, a critical feature of any Bayesian analysis is the choice of a prior. The key is that
when the data have a sufficiently strong signal, even a poor choice of a prior will still not
greatly influence the posterior. In a sense, it is an asymptotic (large-sample) property of
Bayesian analysis in that all but pathological priors (those with zero probability where the
true value lies) can be overcome by sufficient amounts of data. As mentioned above, one can
check the impact of the prior by assessing the stability of posterior over a collection of diverse
priors. The location of a parameter (mean or mode) and its precision (the reciprocal of the
variance) of the prior is usually more critical than its actual shape in terms of conveying
prior information. The shape (family) of the prior distribution is often chosen to facilitate
calculation of the posterior, especially through the use of conjugate priors that, for a given
likelihood function, return a posterior in the same distribution family as the prior (e.g., a
gamma prior returns a gamma posterior when the likelihood is Poisson). We will return to
conjugate priors, but first we will discuss other approaches for construction of priors.
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Figure A7.1 A uniform prior on one scale does not result in a flat prior on a transformed scale.
Suppose a flat prior on (0,10000) is assumed for both the additive and residual variances. To
mimic what happens under MCMC, we display these priors by using the resulting histograms
generated from a large number of random draws, with a uniform expected to return a flat
histogram. Left: The resulting prior for the standard deviation of either variance (the square
root of a random draw). Right: The resulting prior for h2, the ratio of a random draw for the
additive variance divided by this value plus a random draw for the residual variance. Neither
of these priors result in a uniform prior (namely, a flat histogram) on the transformed scale.

Diffuse Priors

One of the most commonly used priors is the flat or diffuse (also called uninformative or
naive) prior, which is simply a constant

p(θ) =
1

b− a
for a ≤ θ ≤ b (A7.14a)

This conveys that we have no a priori reason to favor any particular parameter value over
another. With a flat prior, the posterior is just a constant C times the likelihood

p(θ | x) = C `(θ | x) (A7.14b)

and we typically write that p(θ | x) ∝ `(θ | x). In many cases, classical expressions from
frequentist statistics are obtained by Bayesian analysis through assuming a flat prior (e.g.,
the posterior mode is the MLE).

If the variable (i.e., parameter) of interest ranges over (0,∞) or (−∞, +∞), then, strictly
speaking, a flat prior does not exist as, if the constant takes on any nonzero value, the integral
does not exist. In such cases a flat prior (i.e., assuming p[θ | x] ∝ `[θ | x]) is referred to as an
improper prior, and care must be taken to ensure that the product of the prior and the
likelihood results in a proper posterior (i.e., `[θ | x] has a finite integral over the parameter
range). This is by no means certain.

Another complication involved in using a uniform prior arises when the question of
interest resides on a different scale than that used for the prior. A variable uniform on one
scale may be far from uniform on a transformed scale. Figure A7.1 shows two examples
based on the assumption that there was a flat prior on the variance. A uniform prior on the
variance does not result in a uniform prior on the standard deviation (e.g., Van Dongen 2006).
Likewise, if one assumes that the additive and residual variances have flat priors, this does
not imply a flat prior for h2, but rather a prior that is sharply peaked at 1/2. When assuming
a flat prior, care must be taken that it is truly uninformative on the appropriate scale of
biological interest. Otherwise, the choice of what superficially appears as an unbiased prior
may instead create a bias that the signal in the data must overcome.
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The Jeffreys Prior

Jeffreys (1961) proposed a general prior based on the Fisher information information, F , of
the likelihood. Recall (Equation A4.7b) that

F (θ | x ) = −E

[
∂2 ln `(θ | x )

∂ θ2

]
The Jeffreys prior is as follows:

p(θ) ∝
√

F (θ | x ) (A7.15)

A full discussion, with derivation, can be found in Lee (2012).
When there are k parameters, F is the k × k Fisher information matrix of the expected

second partials, where the elements of F are calculated by

F( Θ | x )ij = −Ex

[
∂2 ln `(Θ | x )

∂θi ∂θj

]
In this case, the Jeffreys prior becomes

p(Θ) ∝
√

det[F(θ | x ) ] (A7.16)

Example A7.3. Consider the likelihood of x successes in n independent draws from a bino-
mial with a success parameter of θ,

`(θ | x) = Cθx(1− θ)n−x

where the constant C does not involve θ. Taking logs gives

L(θ | x) = ln [ `(θ | x) ] = ln C + x ln θ + (n− x) ln(1− θ)

Thus
∂L(θ | x)

∂θ
=

x

θ
− n− x

1− θ

and likewise

∂2L(θ | x)
∂θ2

= − x

θ2
− (−1) · (−1)

n− x

(1− θ)2
= −

(
x

θ2
+

n− x

(1− θ)2

)
Because E[ x ] = nθ, then

−E

[
∂2 ln `(θ | x )

∂ θ2

]
=

nθ

θ2
+

n(1− θ)
(1− θ)2

= n θ−1(1− θ)−1

The resulting Jeffreys prior for this likelihood becomes

p(θ) ∝
√

θ−1(1− θ)−1 ∝ θ−1/2(1− θ)−1/2

which is a U-shaped beta distribution with parameters α = β = 1/2 (Equation A7.37a). This
prior puts more weight on extreme values relative to assuming a uniform over (0,1), see Figure
A7.3.
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Example A7.4. Suppose our data consists of n independent draws from a normal distribu-
tion with an unknown mean and variance, µ and σ2. In Example A4.3, we showed that the
information matrix in this case is

F = n

 1
σ2

0

0
1

2σ4


Because the determinant of a diagonal matrix is the product of the diagonal elements, det(F) ∝
σ−6, giving the Jeffreys prior for µ and σ2 as

p(Θ) ∝
√

σ−6 = σ−3

Because the joint prior does not involve µ, this implies a flat prior for µ (i.e., p[µ] = c). Note
here that the prior distributions of µ and σ2 are independent, as

p(µ, θ) = c · σ−3 = p(µ) · p(σ2)

POSTERIOR DISTRIBUTIONS UNDER NORMALITY ASSUMPTIONS

To introduce the basic ideas of Bayesian analysis, as well as treating a common assumption
in quantitative genetics, consider the case where data are drawn from a normal (Gaussian)
distribution, giving the likelihood function for the ith observation, xi, as

`(µ, σ2 |xi) =
1√

2πσ2
exp

(
− (xi − µ)2

2σ2

)
(A7.17a)

If we assume independence, the resulting full likelihood for all n data points (with a sample
mean of x ) is

`(µ | x ) =
1√

2πσ2
exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
(A7.17b)

=
1√

2πσ2
exp

[
− 1

2σ2

(
n∑

i=1

x2
i − 2µnx + nµ2

)]
(A7.17c)

The form of the posteriors given these normal likelihoods is a function of the assumed
priors. By using the appropriate conjugate priors, these posteriors follow fairly standard
distributions, and hence are easier to work with, as we now demonstrate.

Gaussian Likelihood With Known Variance and Unknown Mean

As a starting point, assume that the variance, σ2, is known, while the mean, µ, is unknown.
For a Bayesian analysis, it remains to specify the prior for µ, p(µ). Suppose we assume a
Gaussian prior, µ ∼ N(µ0, σ

2
0), with

p(µ) =
1√
2πσ2

0

exp
(
− (µ− µ0)2

2σ2
0

)
(A7.18)

The mean and variance of the prior, µ0 and σ2
0 , are referred to as hyperparameters. Here, µ0

specifies a prior location for the parameter (the unknown mean, µ), while σ2
0 specifies our

uncertainty in this prior location—the larger σ2
0 , the greater is our uncertainty. In the limit

as σ2
0 →∞, p(µ) approaches a flat (and in this case, improper) prior.
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A useful device when calculating the posterior distribution is to ignore terms that are
constants with respect to the unknown parameters. Suppose x denotes the data and Θ1 is a
vector of known model parameters, while Θ2 is a vector of unknown parameters. If we can
write the posterior as

p(Θ2 | x, Θ1) = f(x, Θ1) · g(x, Θ1, Θ2) (A7.19a)

then
p(Θ2 | x, Θ1) ∝ g(x, Θ1, Θ2) (A7.19b)

which follows because f(x, Θ1) is constant with respect to Θ2.
With the prior given by Equation A7.18, we can express the resulting posterior distri-

bution as

p(µ | x) ∝ `(µ | x ) · p(µ)

∝ exp

[
− (µ− µ0)2

2σ2
0

− 1
2σ2

(
n∑

i=1

x2
i − 2µnx + nµ2

)]
(A7.20a)

We can factor out additional terms not involving µ to obtain

p(µ | x) ∝ exp
(
− µ2

2σ2
0

+
µ µ0

σ2
0

+
µnx

σ2
− nµ2

2σ2

)
(A7.20b)

Factoring in terms of µ, the term in the exponential becomes

−µ2

2

(
1
σ2

0

+
n

σ2

)
+ µ

(
µ0

σ2
0

+
nx

σ2

)
= −µ2

σ2
∗

+
2µµ∗
2σ2
∗

(A7.21a)

where

σ2
∗ =

(
1
σ2

0

+
n

σ2

)−1

and µ∗ = σ2
∗

(
µ0

σ2
0

+
nx

σ2

)
(A7.21b)

Finally, by completing the square, we have

p(µ | x) ∝ exp
[
− (µ− µ∗)2

2σ2
∗

+ f(x, µ0, σ
2, σ2

0)
]

(A7.21c)

Recalling Equation A7.19b, we can ignore the second term in the exponential (as it does not
involve µ), and the resulting posterior for µ (given the observed data x) becomes

p(µ | x) ∝ exp
[
− (µ− µ∗)2

2σ2
∗

]
(A7.22a)

demonstrating that the posterior density function for µ is a normal with a mean of µ∗ and
a variance of σ2

∗, namely,
µ | (x, σ2) ∼ N

(
µ∗, σ

2
∗
)

(A7.22b)

Notice that the posterior density is in the same form as the prior. This occurred because
the prior conjugated with the likelihood function—the product of the prior and likelihood
returned a distribution in the same family as the prior (but with different distribution
parameters). The use of such conjugate priors associated with a given family of likelihood
functions is a key concept in Bayesian analysis, and we will explore it more fully below.

We are now in a position to inquire about the relative importance of the prior versus
the data. Under the assumed prior, the mean (and in this case, the mode as well) of the
posterior distribution is

µ∗ = µ0
σ2
∗

σ2
0

+ x
σ2
∗

σ2/n
(A7.23)
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Figure A7.2 The effect of the shape (α) and rate (β = 1/λ, the inverse of the scale) parameters
on the gamma distribution function. For α = 1, the resulting distribution is the simple
monotonically decreasing exponential, while for α > 1, the distribution is unimodal. The
effect of a change in the rate or scale is to keep the general shape but change the scaling with
respect to x.

With a very diffuse prior on µ (i.e., σ2
0 À σ2), σ2

∗ → σ2/n and µ∗ → x. Also note from
Equation A7.21b that as we collect enough data (i.e., achieve a sufficiently large value of
n), σ2

∗ → σ2/n and again µ∗ → x, implying that the data, rather than the prior, will be the
primarily influence on posterior when the value of n is sufficiently large.

Gamma, χ2, Inverse-gamma, and χ−2 Distributions

Before examining the Gaussian likelihood with unknown variance, a brief aside is needed
to develop the inverse chi-square distribution, denoted by χ−2. We do this via the gamma
and inverse-gamma distributions, as both χ2 and χ−2 are special cases of these distributions.

To motivate the gamma distribution, first consider the simple exponential waiting-
time distribution, where β is the rate parameter (the probability of a success in some small
time unit, δt, is given by β δt), then the probability density function (pdf) for the exponential
is

p(x |β) = βe−βx for 0 ≤ x <∞, β > 0

Because the expected waiting time until a success is λ = 1/β, this can be reparameterized
in terms of the scale parameter (waiting time) as

p(x |β) = λ−1e−x/λ

The sum of k exponentials with the same rate (or scale) parameter is called an Erlang
distribution, and it was initially developed for certain problems in telephone queuing
theory. Expressed in terms of the rate parameter, the resulting pdf becomes

p(x | k, β) =
βk

(k − 1)!
xk−1 e−βx for 0 ≤ x <∞

where the integer k is called the shape parameter, with k = 1 recovering the exponential.
The gamma distribution follows by allowing the shape parameter to be any positive

number, α, with x ∼ Gamma(α, β) having its pdf defined by its shape (α) and rate (β)
values,

p(x |α, β) =
βα

Γ(α)
xα−1e−βx for α, β, x > 0 (A7.24a)

Note that the factorial in the Erlang is replaced by the gamma function, Γ(x), which is
defined below (Equation A7.25a). Figure A7.2 shows how changes in these two parameters
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Table A7.1 Summary of the functional forms (in terms of x) of various gamma-related distributions.
See the text for further details.

Distribution α β p(x)/constant

Gamma (α, β) xα−1e−βx

Chi-square, χ2
n n/2 1/2 xn/2−1e−x/2

Inverse-gamma (α, β) x−(α+1)e−β/x

Inverse chi-square, χ−2
n n/2 1/2 x−(n/2+1)e−1/(2x)

Scaled inverse chi-square, χ−2
(n,σ2

0)
n/2 σ2

0/2 x−(n/2+1)e−σ2
0/(2x)

influence the shape of the distribution. Note that, as a function of x,

p(x |α, β) ∝ xα−1e−βx (A7.24b)

When expressed in terms of the scale (λ = 1/β) parameter, the pdf becomes

p(x |α, λ) =
λ−α

Γ(α)
xα−1e−x/λ

which yields
p(x |α, λ) ∝ xα−1e−x/λ (A7.24c)

Because both the rate and scale versions of the gamma distribution are widely used, take
care to know which version your software package is using (for example, the default in R
uses the scale parameter version). We can parameterize a gamma in terms of its mean and
variance by noting that

µx =
α

β
= α λ and σ2

x =
α

β2
= α λ2 (A7.24d)

so that

α =
µ2

x

σ2
x

and β =
µx

σ2
x

(A7.24e)

Γ(α), the gamma function evaluated at α (which normalizes the gamma distribution), is
defined by

Γ(α) =
∫ ∞

0

yα−1e−ydy for α > 0 (A7.25a)

This is the generalization of the factorial function from the integers to any positive number.
If n is an integer, then Γ(n) = (n − 1)! Using integration by parts, one can show that Γ
satisfies the following identities

Γ(α + 1) = αΓ(α), Γ(1) = 1, and Γ(1/2) =
√

π (A7.25b)

The chi-square (χ2) distribution is a special case of the gamma, as a χ2 random variable
with n degrees of freedom follows a gamma distribution with parameters α = n/2 and
β = 1/2 (λ = 2), namely, χ2

n ∼ Gamma(n/2, 1/2), giving the density function as

p(x |n) =
2−n/2

Γ(n/2)
xn/2−1e−x/2 (A7.26a)

Hence for x ∼ χ2
n,

p(x) ∝ xn/2−1e−x/2 (A7.26b)
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The inverse-gamma distribution will prove useful as a conjugate prior for Gaussian
likelihoods with unknown variance. It is defined by the distribution of the random variable
y = x−1, where x ∼ Gamma(α, β). The resulting density function is

p(x |α, β) =
βα

Γ(α)
x−(α+1)e−β/x for α, β, x > 0 (A7.27a)

The mean and variance for this distribution are only defined (i.e., finite) if α is sufficiently
large, with

µx =
β

α− 1
for α > 1 and σ2

x =
β2

(α− 1)2(α− 2)
for α > 2 (A7.27b)

Note for the inverse gamma that

p(x |α, β) ∝ x−(α+1)e−β/x (A7.27c)

If y ∼ χ2
n, then x = 1/y follows an inverse chi-square distribution, which is denoted

by x ∼ χ−2
n . This is a special case of the inverse gamma, with (as for a normal χ2) α = n/2,

β = 1/2. For n > 4 (i.e., α > 2), the resulting density function is

p(x |n) =
2−n/2

Γ(n/2)
x−(n/2+1)e−1/(2x) (A7.28a)

with a mean and variance of

µx =
1

n− 2
and σ2

x =
2

(n− 2)2(n− 4)
(A7.28b)

The scaled inverse chi-square distribution is more typically used in a Bayesian anal-
ysis, where the rate parameter, β (which equals 1/2 under a chi-square), is replaced by
β = σ2

0/2, making the resulting pdf

p(x |n) ∝ x−(n/2+1)e−σ2
0/(2x) (A7.29a)

where the 1/(2x) term in the exponential is replaced by a σ2
0/(2x) term. The scaled inverse

chi-square distribution thus involves two parameters (σ2
0 and n), and is denoted by χ−2

(n,σ2
0)

or SI−χ2(n, σ2
0). Note that if

x ∼ χ−2
(n,σ2

0)
, then σ2

0x ∼ χ−2
n (A7.29b)

which shows that σ2
0 is a scaling factor on a standard (β = 1/2) inverse chi-square.

Gaussian Likelihood With Unknown Variance: Scaled Inverse-χ2 Priors

Suppose data are drawn from a normal distribution with a known mean, µ, but unknown
variance, σ2. The resulting likelihood function can be expressed as

`(σ2 | x, µ) ∝ (σ2)−n/2 exp
(
−nS2

2σ2

)
(A7.30a)

where

S2 =
1
n

n∑
i=1

(xi − µ)2 (A7.30b)

Notice that because we condition on x and µ (i.e., their values are known), S2 is a con-
stant. Further observe that, as a function of the unknown variance, σ2, the likelihood is



INTRODUCTION TO BAYESIAN ANALYSIS 149

proportional to a scaled inverse χ2 distribution (Equation A7.29a). If we take the prior for
the unknown variance also as a scaled inverse χ2 with hyperparameters ν0 and σ2

0 , the
posterior becomes

p(σ2 | x, µ) ∝ (σ2)−n/2 exp
(
−nS2

2σ2

)
(σ2)−ν0/2−1 · exp

(
− σ2

0

2σ2

)
= (σ2)−(n+ν0)/2−1 exp

(
−nS2 + σ2

0

2σ2

)
(A7.31a)

Equation A7.29a shows the resulting posterior is also a scaled inverse χ2 distribution with
parameters νn = (n + ν0) and σ2

n = (nS2 + σ2
0). Hence,

the prior σ2 ∼ χ−2
ν0,σ2

0
yields the posterior σ2 | (x, µ) ∼ χ−2

νn,σ2
n

(A7.31b)

Student’s t Distribution

The final distribution needed for a Bayesian analysis of a Gaussian likelihood is the t (or
Student’s t) distribution. Suppose that xi ∼ N(µ, σ2), so for n independent draws, x ∼
N(µ, σ2/n). This implies that (x − µ)/

√
σ2/n ∼ U , where U ∼ N(0, 1) denotes a unit

normal. Likewise, the sample variance, Var(x), follows a scaled chi-square distribution,
with Var(x) ∼ (n − 1)σ2χ2

n−1 (Equation A5.15a). When the estimated variance, Var(x), is
used in place of the true variance, σ2, the quantity (x−µ)/

√
Var(x)/n follows a t distribution

with n− 1 degrees of freedom, giving rise to the very familiar t-test. Notice that

tn−1 =
(

x− µ

σ/
√

n

) (
1√

Var(x)/σ2

)
=

U√
χ2

n−1/(n− 1)

Thus, a tν random variable follows the distribution of a unit normal divided by the square
root of a chi-square with ν degrees of freedom,

tν =
U√
χ2

ν/ν
(A7.32a)

Note that E(χ2
ν) = ν, so E(χ2

ν/ν) = 1. Relative to a normal, a t distribution is more peaked
and has heavier tails, and this kurtosis becomes more pronounced as ν decreases. Indeed,
the tails fall off sufficiently slowly that a t random variable with two degrees of freedom has
an infinite variance, while a t with four (or fewer) degrees of freedom has an infinite fourth
moment. The coefficient of kurtosis (Equation 2.12a) for a t with ν > 4 degrees of freedom
is k4 = 6/(ν− 4), which approaches the value (zero) for a normal random variable for large
values of ν. For ν > 30, the t essentially becomes a unit normal distribution.

As with a unit normal, one can also add scale and location to a standard tν-distributed
random variable, thus generating a three-parameter family of distributions,

tν(µ, σ) = µ + σ · tν (A7.32b)

The resulting mean and variance this distribution are

E[tν(µ, σ)] = µ and σ2[tν(µ, σ)] = σ2 ν

ν − 2
for ν > 2 (A7.32c)

Hence, the choice of µ and σ control, respectively, the location and scale (uncertainty about
the location), while ν controls the kurtosis, with heavy tails for values of ν that are small
and little kurtosis for ν > 20. The resulting probability density function thus becomes

p(x | ν, µ, σ) =
Γ([ν + 1]/2)
Γ(ν/2)σ

√
π ν

[
1 +

1
ν

(
x− µ

σ

)2
]−(ν+1)/2

(A7.32d)
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The role of the t distribution in Bayesian statistics is twofold. First, it is often used as a
more robust prior, as its heavier tails may better account for outliers. Using a t distribution
with low degrees of freedom (often ν = 5) offers a prior that is similar to a normal but allows
for more frequent extreme values. The second scenario is that the marginal posterior for µ
of a Gaussian likelihood with a normal prior on the mean and an inverse chi-square prior
on the variance is a t distribution. This arises after the joint posterior is integrated over all
possible σ2 values (i.e., over an inverse chi-square).

General Gaussian Likelihood: Unknown Mean and Variance

If we put all these pieces together, the posterior density for draws from a normal with the
mean and variance both unknown is obtained as follows. First, we write the joint prior by
conditioning on the variance,

p(µ, σ2) = p(µ |σ2) · p(σ2) (A7.33a)

As above, we assume a scaled inverse chi-square distribution for the variance and, con-
ditioned on the variance, a Gaussian prior for the mean with hyperparameters of µ0 and
σ2/κ0, namely,

σ2 ∼ χ−2
ν0,σ2

0
and µ |σ2 ∼ N

(
µ0,

σ2

κ0

)
(A7.33b)

We write the variance for the conditional mean prior in this way because σ2 is known (as we
condition on it) and we scale σ2 by the hyperparameter, κ0. The resulting marginal posterior
becomes

σ2 | x ∼ χ−2
νn,σ2

n
and µ | x ∼ tνn

(
µn,

σ2
n

κn

)
(A7.34)

where tn(µ, σ2) denotes a t distribution with n degrees of freedom, mean µ, and scale
parameter σ2, and where

νn = ν0 + n, κn = κ0 + n (A7.35a)

µn = µ0
κ0

κn
+ x

n

κn
= µ0

κ0

κ0 + n
+ x

n

κ0 + n
(A7.35b)

σ2
n =

1
νn

(
ν0σ

2
0 +

n∑
i=1

( xi − x )2 +
κ0n

κn
( x− µ0)

2

)
(A7.35c)

CONJUGATE PRIORS

The above use of prior densities that conjugate the likelihood allowed us to develop ana-
lytic expressions of the posterior density. As we will see in Appendix 8, this is critical in
developing Gibbs samplers for problems of interest. Table A7.2 summarizes the conjugate
priors for several common likelihood functions, with the various families of distributions
discussed below.

The Beta and Dirichlet Distributions

With a binomial, each trial (observation) has two possible outcomes and the likelihood is
a function of the sample size (number of trials), n, and a single success probability, p (as
the two outcomes on any given trial have probabilities of p and 1 − p). The generalization
of this model is the multinomial distribution (Equation 2.20a), where now each trial has
k possible outcomes, which requires k − 1 success probabilities to describe the likelihood.
In particular, for a total of n observations, the probability that n1 are in category 1, n2 in
category 2, · · ·, and nk in category k is

p(n1, · · ·nk) =
n!

n1! n2! · · ·nk!
pn1
1 · · · p

nk

k where
∑

i

ni = n and
∑

i

pi = 1 (A7.36a)
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Table A7.2 Conjugate priors for common likelihood functions. If one uses the distribution family
of the conjugate prior with its paired likelihood function, then the resulting posterior is in the same
distribution family as the prior (albeit, of course, with different parameters).

Likelihood Conjugate prior Equation

Binomial Beta A7.37a
Multinomial Dirichlet A7.36b
Poisson Gamma A7.26a
Normal

µ unknown, σ2 known Normal A7.17a
µ known, σ2 unknown Inverse chi-square A7.29a

Multivariate normal
µ unknown, V known Multivariate normal 9.24
µ known, V unknown Inverse-Wishart A7.40

The conjugate prior for the multinomial likelihood is the Dirichlet distribution. If we let x =
(x1, x2, · · · , xk) denote the k success probabilities, when pdf for x ∼ Dirichlet(α1, · · · , αk) is

p(x1, · · ·xk |α1, · · · , αk) =
Γ(α0)

Γ(α1) · · ·Γ(αk)
xα1−1

1 · · ·xαk−1
k (A7.36b)

where

α0 =
k∑

i=1

αi with αi > 0, and
k∑

i=1

xi = 1 with 0 ≤ xi ≤ 1 (A7.36c)

At first glance, this looks like the multinomial density function (with αi − 1 = ni). The
difference is that the multinomial is calculated over a set of discrete random variables
(ni), thus returning the expected probabilities for any vector of discrete numbers of counts
(successes) in each category. Conversely, the Dirichlet treats an equivalent of the vector of
outcomes (generalized to non-integers) as fixed and returns the continuous distribution for
all possible configurations of the success parameters given this data, which means that the
data (αi) is fixed, and the success parameters (xi) are random. A few key moments of this
distribution are

µxi
=

αi

α0
, σ2(xi) =

αi(α0 − αi)
α2

0(α0 + 1)
, and σ(xi, xj) = − αi αj

α2
0(α0 + 1)

(A7.36d)

An important special case of the Dirichlet (for k = 2 classes) is the beta distribution,
whose pdf is given by

p(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for 0 ≤ x ≤ 1, α, β > 0 (A7.37a)

which has a mean and a variance of

µ =
α

α + β
and σ2 =

αβ

(α + β)2(α + β − 1)
(A7.37b)

As Figure A7.3 illustrates, the beta distribution is extremely flexible, and can be flat, unimodal,
U- , or L-shaped, depending on the choice of α and β.

Wishart and Inverse-Wishart Distributions

The Wishart distribution can be thought of as the multivariate extension of the χ2 dis-
tribution. Suppose x1, · · · , xn are independent and identically distributed vectors, with
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Figure A7.3 For α = β = 1 (long-dashed curve), the beta distribution is simply the uniform
distribution over (0, 1). The pdf for the beta distribution can also be U-shaped (α = β = 0.5;
solid curve), unimodal (α = 2, β = 5; short-dashed curve), or L-shaped (α = 10, β = 1;
dotted curve). Because the beta distribution is symmetric in α and β, switching their parameter
values generates a distribution of the same shape translated about 0.5.

xi ∼ MVNk(0, V). Using these n draws, and assuming that the mean is known to be zero,
the resulting random (k × k symmetric, positive definite) sample covariance matrix, W, is
given by

W =
n∑

i=1

xi xT
i ∼ Wn(V) (A7.38)

This sum is defined as a Wishart distribution with n degrees of freedom and a (matrix)
parameter V. Recalling that the sum of n squared unit normals follows a χ2

n distribution,
the Wishart is the extension to the multivariate normal. Indeed, for k = 1 with V = (1), the
Wishart is simply a χ2

n distribution, as
∑

x2
i ∼ χ2

n, because xi ∼ N(0, 1).
The Wishart is the sampling distribution for covariance matrices (just like the χ2 is

associated with the distribution of a sample variance for data drawn from a normal; Equation
A5.13c). The pdf of the Wishart distribution is

p(W |V) = 2−nk/2π−k(k−1)/k |V |−n/2 |W |(n+k+1)/2 exp
(
− 1

2 tr
[

V−1W
])∏k

i=1 Γ
(

n+1−i
2

) (A7.39)

Recall that the trace (tr) of a matrix is just the sum of its diagonal elements, tr(A) =
∑

Aii

(Chapter 9). Odell and Feiveson (1966) presenteds an algorithm for generating random
draws from the Wishart.

If Z ∼ Wn(V), then Z−1 ∼ W−1
n

(
V−1

)
, where W−1 denotes the inverse-Wishart

distribution. The density function for an inverse-Wishart distributed random matrix, W, is

p(W |V) = 2−nk/2π−k(k−1)/k |V |n/2 |W |−(n+k+1)/2 exp
(
− 1

2 tr
[

VW−1
])∏k

i=1 Γ
(

n+1−i
2

) (A7.40)

which is the distribution of the inverse of the sample covariance matrix.


