
Appendix 8
Markov Chain Monte Carlo

and Gibbs Sampling

God does not play dice with the universe. Albert Einstein. (Ver. 18 Dec. 22)

A historical impediment to the more widespread use of Bayesian methods was compu-
tational: obtaining the posterior distribution requires the integration of high-dimensional
functions. This can be very difficult, but several analytic approximations short of direct
integration have been proposed (reviewed by Smith 1991; Evans and Swartz 1995; Tan-
ner 1996). Now, however, the widespread development of Markov Chain Monte Carlo
(MCMC) methods has made obtaining very complex posteriors relatively easy from a con-
ceptual standpoint (although they may still be rather computationally demanding). In-
deed, MCMC allows Bayesian approaches to handle much higher-dimensional problems
than other methods. MCMC approaches are so named because one uses the current sample
value to randomly generate the next sample value, thus generating a Markov chain.

The realization in the early 1990s (Gelfand and Smith 1990) that one particular MCMC
method, the Gibbs sampler, is widely applicable to a broad class of Bayesian problems
sparked much of the current expansion in the use of Bayesian analysis. MCMC methods have
their roots in the Metropolis algorithm (Metropolis and Ulam 1949; Metropolis et al. 1953),
an attempt by physicists to compute complex integrals by expressing them as expectations
of a much simpler probability distribution and then estimating this expectation by drawing
samples from that distribution. While the Gibbs sampler had its origins outside of statistics,
it is still somewhat surprising that the powerful machinery of MCMC had essentially no
impact on the field of statistics until rather recently. General reviews of MCMC approaches
can be found in Tanner (1996), Gammerman (1997), Chen et al. (2000), Robert and Casella
(2004), and Brooks et al. (2011). Sorensen and Gianola (2002) review MCMC applications in
quantitative genetics, which are heavily focused on Gibbs samplers for linear mixed-models
(Chapters 10, 31, and 32). The roundtable discussion on practical issues by Kass et al. (1998)
is required reading for anyone contemplating using an MCMC analysis, as is Geyer (2011).
Finally, Robert and Casella (2011) present a nice historical overview of the development of
MCMC methods.

MONTE CARLO INTEGRATION

To better understand the historical roots of MCMC, we digress for a moment to discuss the
original Monte Carlo approach, which used random-number generation to approximate
integrals. Suppose we wish to compute a complex integral,∫ b

a

h(x) dx (A8.1a)

If we can decompose h(x) into the product of a function, f(x), and a probability density
function, p(x), defined over the interval (a, b), then∫ b

a

h(x) dx =
∫ b

a

f(x) p(x) dx = Ep(x)[ f(x) ] (A8.1b)

which means that the integral can be expressed as the expectation of f(x) over the density
p(x). After sampling a large number of random draws, (x1, · · · , xn), from the density p(x),
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we have that ∫ b

a

h(x) dx = Ep(x)[ f(x) ] ' 1
n

n∑
i=1

f(xi) (A8.1c)

This approach is referred to as Monte Carlo integration, and it can be used to approximate
posterior (or marginal posterior) distributions required for a Bayesian analysis.

Consider the integral I(y) =
∫
f(y |x) p(x) dx, which we approximate by

Î(y) =
1
n

n∑
i=1

f(y |xi) (A8.1d)

where again xi are draws from the density p(x). Since we have framed this integral as an
expectation, individual random draws have expected value equal to the integral. The spread
of those values around their mean allows us to estimate a Monte Carlo standard error for
our approximation, with

SE2[ Î(y) ] =
1
n

[
1

n− 1

n∑
i=1

(
f(y |xi)− Î(y)

)2
]

(A8.1e)

where the term in brackets estimates the sampling variance, σ2. Notice from Equation A8.1e
that the standard error scales asσ/

√
n, namely, with the square root of the sample size. Thus,

a ten-fold improvement in precision requires a hundred-fold increase in the sample size.

Importance Sampling

Consider any distribution whose probability density function, p(x), has the same support
as some target density, q(x) (i.e., is nonzero over the same range of x values). Then,∫

f(x) q(x)dx =
∫
f(x)

(
q(x)
p(x)

)
p(x)dx = Ep(x)

[
f(x)

(
q(x)
p(x)

)]
(A8.2a)

This forms the basis for the method of importance sampling, with

∫
f(x) q(x)dx ' 1

n

n∑
i=1

f(xi)
(
q(xi)
p(xi)

)
(A8.2b)

where again the xi values are drawn from the distribution given by p(x). For example,
if we are interested in a marginal density as a function of y, J(y) =

∫
f(y |x) q(x)dx, we

approximate this by

J(y) ' 1
n

n∑
i=1

f(y |xi)
(
q(xi)
p(xi)

)
(A8.3)

where xi are drawn from the approximating density p.
This method is so named in that a judicious choice of p(x) ensures that values for which

f(x) is large (important) are appropriately sampled, which can result in a smaller Monte
Carlo variance, and hence a more accurate estimate of the integral. Further, it can be faster to
carry out in cases where p is more straightforward to sample from than q. Ideally, we would
like p(x) to be large when f(x)q(x) is large, namely, p(x) ∝ f(x)q(x), although assessing
when q(x) is large may be problematic.

Example A8.1. One issue that can arise is when q(x) denotes a posterior distribution whose
integration constant is unknown, and hence q(x), as presented, will not be a formal probability



MCMC AND GIBBS SAMPLING 155

distribution if
∫
q(x) 6= 1. If C−1 =

∫
q(x), then Cq(x) is formally a pdf. Fortunately, a

simple trick allows us to use importance sampling to obtain C . Since C
∫
q(x)dx = 1, then

C−1 =
∫

q(x)dx ' 1
n

n∑
i=1

wi where wi =
q(xi)
p(xi)

(A8.4a)

with the xi drawn from p(x). Hence

C ·
∫
f(x) q(x)dx ' Î =

n∑
i=1

wif(xi)
/ n∑

i=1

wi (A8.4b)

which has an associated Monte Carlo variance of

Var
(
Î
)

=
n∑
i=1

wi

[
f(xi)− Î

]2/ n∑
i=1

wi (A8.4c)

INTRODUCTION TO MARKOV CHAINS

Before introducing two of the most common MCMC methods, the Metropolis-Hastings
algorithm and the Gibbs sampler, a few introductory comments on Markov chains are in
order. Let Xt denote the value of a random variable at time t, and let the state space refer
to the range of possible X values. A random variable is said to follow a Markov process if
the transition probabilities between different values in the state space depend only on the
random variable’s current state,

Pr(Xt+1 = sj |X0 = sk, · · · , Xt = si) = Pr(Xt+1 = sj |Xt = si) (A8.5)

Thus, the only information about the past needed for a Markov random variable to predict
the future is the current state of the random variable. Knowledge of the values of earlier
states does not influence the transition probability. A Markov chain refers to a sequence
of random variables, (X0, · · · , Xn), generated by a Markov process. A particular chain is
defined by its transition probabilities (or transition kernel), P (i, j) = P (i → j), which is
the probability that a process at state space si moves to state sj in a single step

P (i, j) = P (i→ j) = Pr(Xt+1 = sj |Xt = si) (A8.6a)

We use the notation P (i → j) to imply a move from i to j, as some texts define P (i, j) =
P (j → i), so we will use the arrow notation to avoid any potential confusion. Let

πj(t) = Pr(Xt = sj) (A8.6b)

denote the probability that the chain is in state j at time t, and let π(t) denote the row (as
opposed to column) vector of the state space probabilities at step (or time) t. We start the
chain by specifying a starting row vector,π(0). Often all the elements ofπ(0) are zero except
for a single element of 1, which corresponds to the process starting in that particular state.
As the chain progresses, the probability values become more dispersed over the state space.
The probability that the chain has a state value of sj at time (or step) t+ 1 is obtained from
the Chapman-Kolomogrov (CK) equation, which sums over the probability of being in a
particular state at the current step value, t, and the transition probability from that state
into state sj

πj(t+ 1) = Pr(Xt+1 = sj)

=
∑
i

Pr(Xt+1 = sj |Xt = si) · Pr(Xt = si)

=
∑
i

P (i→ j)πi(t) =
∑
i

P (i, j)πi(t) (A3.7c)
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Successive iteration of the CK equations describes the evolution of the chain.
We can more compactly write the CK equations in matrix form as follows: first define

the probability transition matrix, P, as the matrix whose ijth element is P (i, j), the prob-
ability of moving from state i to state j, P (i → j). This implies that the rows of P sum to
one, as when considering the ith row,

∑
j P (i, j) =

∑
j P (i → j) = 1. In matrix form, the

Chapman-Kolomogrov equation becomes

π(t+ 1) = π(t)P (A8.7a)

Hence,
π(t) = π(t− 1)P =

[
π(t− 2)P

]
P = π(t− 2)P2 (A8.7b)

Continuing in this fashion yields the probability distribution in generation t as

π(t) = π(0)Pt (A8.7c)

Next define the n-step transition probability, p(n)
ij , as the probability that the process is in

state j, given that it started in state i some n steps ago, namely,

p
(n)
ij = Pr(Xt+n = sj |Xt = si) (A8.7d)

It immediately follows that p(n)
ij is simply the ijth element of Pn, thenth power of the single-

step transition matrix. The classic example of a Markov chain in genetics is the Wright-Fisher
model of genetic drift (LW Equations 2.1 and 2.2; LW Example 2.1).

Finally, a Markov chain is said to be irreducibile if there exists a positive integer, nij ,
such that p(nij)

ij > 0 for all ij. That is, all states communicate with each other, in that the
process can always move from any one state to any other state (although this may require multiple
steps). Likewise, a chain is said to be aperiodic when the number of steps required to move
between two states (say x and y) is not always some multiple of a specific integer. Put
another way, the chain is not forced into cycles of fixed length between certain states.

Example A8.2. Suppose the state space consists of three possible weather conditions (Rain,
Sunny, Cloudy) and that weather patterns follow a Markov process (of course, they do not!).
Under this assumption, the probability of tomorrow’s weather simply depends on today’s
weather, and not on any other previous days. If this is the case, the observation that it has
rained for three straight days does not alter the probability of tomorrow’s weather compared
to the situation where (say) it rained today but was sunny for the last week. Suppose the
probability transitions given that today is rainy are

P( Rain tomorrow | Rain today ) = 0.5
P( Sunny tomorrow | Rain today ) = 0.25
P( Cloudy tomorrow | Rain today ) = 0.25

This results in the first row of the transition probability matrix (from the current state of rain
to the next set of states) being (0.5, 0.25, 0.25). Now suppose that the full transition matrix is

P =

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5


Note that this Markov chain is irreducible, as all states communicate with each other. Suppose
today is sunny. What is the weather expected to be like two days from now? Seven days?
Here π(0) = ( 0 1 0 ), which yeilds

π(2) = π(0)P2 = ( 0.375 0.25 0.375 )
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and
π(7) = π(0)P7 = ( 0.4 0.2 0.4 )

Conversely, suppose today is rainy, so π(0) = ( 1 0 0 ). The expected future weather
becomes

π(2) = ( 0.4375 0.1875 0.375 ) and π(7) = ( 0.4 0.2 0.4 )

Note that after a sufficient amount of time, the expected weather is independent of the starting
value. In other words, the chain has reached a stationary distribution, where the state space
probability values are independent of the actual starting value.

As the above example illustrates, a Markov chain may reach a stationary distribution,
π∗, where the vector of probabilities of being in a particular state is independent of the initial
starting distribution. The stationary distribution satisfies

π∗ = π∗P (A8.8)

In other words, π∗ is the left eigenvector associated with the eigenvalue λ = 1 of P. (If the
row vector x is a left eigenvector of a square matrix B, then xB = λx. Taking the transpose
of both sides, BTxT = λxT , namely xT is a standard eigenvector of BT . Further, the spectral
decomposition of P (Equation A3.32d) implies that the impact of the initial conditions after
t steps decays as λt2, where λ2 < 1 is the second largest eigenvalue of P. If this eigenvalue
is very close to one, the impact of the initial conditions can persist for a substantial amount
of time. Specifically, if λ2 = 1− δ, then λt2 = (1− δ)t ' exp(−δt). The transmission matrix
from Example A8.3 has λ2 = 1/4, so that the impact of the initial conditions declines by
' exp(−3t/4), which is why the stationary distribution is so quickly reached.

One condition for the existence of a stationary distribution is that the chain must be
irreducible and aperiodic. When a chain is periodic, it can cycle in a deterministic fashion
between states and may never settle down to a stationary distribution (in effect, this cycling
is the stationary distribution for this chain). Equation A3.33d can be used to show that if P
has no eigenvalues equal to −1, it is aperiodic.

A sufficient condition for a unique stationary distribution is that, for all i and j, the
detailed balance equation holds, namely,

P (j → i)π∗j = P (i→ j)π∗i (A8.9)

That is, at equilibrium, the amount of probability flux from state j to stage i is exactly
matched by the probability flux in the opposite direction (for i to j), so a balance is reached,
with no net flow of probability over the states. If Equation A8.9 holds for all values of i
and j, the Markov chain is said to be reversible, and hence Equation A8.9 is also called the
reversibility condition. Note that this condition implies that π∗ = π∗P, as the jth element
of the row vector π∗P is

(π∗P)j =
∑
i

π∗i P (i→ j) =
∑
i

π∗j P (j → i) = π∗j
∑
i

P (j → i) = π∗j

where the key middle step follows from Equation A8.9, while the last step follows because
rows of P sum to one.

The basic idea of a discrete-state Markov chain can be generalized to a continuous-state
Markov process by replacing P with a probability kernel, P (x, y), that satisfies∫

P (x, y) dy = 1
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The continuous extension of the Chapman-Kolomogrov equation becomes

πt(y) =
∫
πt−1(x)P (x, y) dx (A8.10a)

Finally, at equilibrium, the stationary distribution satisfies

π∗(y) =
∫
π∗(x)P (x, y) dx (A8.10b)

THE METROPOLIS-HASTINGS ALGORITHM

The roots of MCMC methods trace back to a problem faced by mathematical physicists in
applying Monte Carlo integration, namely, generating random samples from some complex
distribution in order to apply Equation A8.1. Their solution was the Metropolis-Hastings
algorithm (Metropolis and Ulam 1949; Metropolis et al. 1953; Hastings 1970), which was
reviewed by Chib and Greenberg (1995).

Suppose our goal is to draw samples from some distribution, p(θ) = f(θ)/K, where the
normalizing constant, K, may be very difficult to compute. Note that Bayesian posteriors
are of this form (Equation A7.3b). The Metropolis algorithm (Metropolis and Ulam 1949;
Metropolis et al. 1953), which generates a sequence of draws from this distribution, is as
follows:

1. Start with any initial value, θ0, satisfying f (θ0) > 0.

2. Using the current value of θ, sample a candidate point, θ∗, from some jumping
distribution, q(θ1, θ2) = Pr(θ1 → θ2), which is the probability of returning a value
of θ2 given a previous value of θ1. This distribution is also referred to as the proposal
distribution or candidate-generating distribution. The only restriction on the jump
density in the Metropolis algorithm is that it is symmetric, with q(θ1, θ2) = q(θ2, θ1).

3. Given the candidate point, θ∗, calculate the ratio of the density at the candidate and
current, θt−1, points,

α =
p(θ∗)
p(θt−1)

=
f(θ∗)
f(θt−1)

Notice that because we are considering the ratio of p(x) under two different values,
the normalizing constant, K, cancels out.

4. If the jump increases the density (α > 1), accept the candidate point (set θt = θ∗) and
return to step 2. If the jump decreases the density (α < 1), then with a probability of
α we accept the candidate point, else we reject it and return to step 2. Note that α is
a ratio of two likelihoods, so the probability of accepting a move is the ratio of the
candidate to current likelihoods.

We can summarize Metropolis sampling as first computing

α = min
(
f(θ∗)
f(θt−1)

, 1
)

(A8.11)

and then accepting a candidate value, θ∗, with probability α (the probability of a move).
This generates a Markov chain, (θ0, θ1, · · · , θk, · · ·), as the transition probabilities from θt to
θt+1 depend only on θt and not on (θ0, · · · , θt−1). Following a sufficient burn-in period (of,
say, k steps), the chain approaches its stationary distribution and (as we will demonstrate
shortly) samples from the vector (θk+1, · · · , θk+n) are samples from p(θ).

Hastings (1970) generalized the Metropolis algorithm by using an arbitrary (as opposed
to strictly symmetric) transition probability function, q(θ1, θ2) = Pr(θ1 → θ2), and setting
the acceptance probability for a candidate point as

α = min
(
f(θ∗) q(θ∗, θt−1)
f(θt−1) q(θt−1, θ∗)

, 1
)

(A8.12)
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Figure A8.1 Traces for the samplers discussed in Example A8.3. A: A sample run when
the candidate-generating distribution is a uniform over (0, 100). B: A sample run when the
candidate-generating distribution is a χ2

1.

This is the Metropolis-Hastings algorithm, and Equation A8.12 is the Hastings ratio. When
the proposal distribution is symmetric, q(x, y) = q(y, x), we recover the original Metropolis
algorithm.

Example A8.3. As a toy example, consider the scaled inverse-χ2 distribution (Equation
A7.29a),

p(x) = C · x−(n/2+1) · exp
(
−a
2x

)
We wish to use the Metropolis algorithm to simulate draws from this distribution with n = 3
degrees of freedom and a scaling factor of a = 4. Here

f(x) = x−5/2 exp[−4/(2x) ] = x−2.5 exp[−2/x]

Suppose we take as our candidate-generating distribution a uniform over (0, 100).
Clearly, there is probability mass above 100 for the scaled inverse-χ2, but we assume this
is sufficiently small that we can ignore it. Now let’s run the algorithm. Take θ0 = 1 as our
starting value, and suppose the uniform returns a candidate value of θ∗ = 39.82. Computing
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α,

α = min
(
f(θ∗)
f(θt−1)

, 1
)

= min
(

(39.82)−2.5 · exp(−2/39.82)
(1)−2.5 · exp(−2/2 · 1)

, 1
)

= 0.0007

Since α < 1, the candidate value, θ∗, is accepted with a probability of 0.0007: we randomly
draw U from a uniform (0, 1) distribution and accept θ∗ if U ≤ α = 0.0007. If U > α,
the candidate value is rejected, and we draw another candidate value from the proposal
distribution and continue as above. A sample run resulting from first 500 values of θ is plotted
in Figure A8.1A. Notice that there are long flat periods (corresponding to all candidate values,
θ∗, being rejected). Such a chain is said to be poorly mixing (showing long periods between
jumps) and is numerically inefficient for sampling the entire probability space defined by the
target distribution. Conversely, balancing the poor mixing is the fact that when jumps occur,
they tend to be large, thus exploring the extreme values of this distribution.

In contrast, suppose our proposal distribution is a χ2
1. As this distribution is not sym-

metric, we must employ Metropolis-Hastings (see Example A8.5 for the details). A resulting
Metropolis-Hastings sampling run is shown in Figure A8.1B. Note that the time series looks
like white noise, and the chain is said to be well mixing. However, note that most jumps are
small (< 5), with fewer extreme values sampled than under the uniform proposal distribution.

Example A8.4. This rather technical example shows that the Markov chain generated by
the Metropolis-Hastings algorithm has a stationary distribution which corresponds to p(x).
Hence, draws from the stationary phase of this chain correspond to random draws from the
distribution given by p(x). We do so by showing that, under this chain, p(x) satisfies the
detailed balance equation (A8.9), and hence it must be the stationary distribution for the
Markov chain.

Under Metropolis-Hasting, we sample from q(x, y) = Pr(x → y | q) and then accept
the move with probability α(x, y), so the transition probability kernel is given by

Pr(x→ y) = q(x, y)α(x, y) = q(x, y) ·min
[
p(y) q(y, x)
p(x) q(x, y)

, 1
]

(A8.13a)

If the Metropolis-Hasting kernel satisfies P (x→ y) p(x) = P (y → x) p(y), or

q(x, y)α(x, y) p(x) = q(y, x)α(y, x) p(y) for all x, y (A8.13b)

then the stationary distribution from this kernel corresponds to draws from the target distri-
bution, p(x).

We show that the balance equation is indeed satisfied with this kernel by considering the
three possible cases for any particular (x, y) pair:

1. q(x, y) p(x) = q(y, x) p(y). Here α(x, y) = α(y, x) = 1 implying

P (x→ y) p(x) = q(x, y) p(x) and P (y → x)p(y) = q(y, x) p(y)

Under our assumption that q(x, y) p(x) = q(y, x) p(y), this reduces to
P (x→ y) p(x) = P (y → x) p(y), showing that (for this case), the
detailed balance equation holds.

2. q(x, y) p(x) > q(y, x) p(y), in which case

α(x, y) =
p(y) q(y, x)
p(x) q(x, y)

and α(y, x) = 1

Hence,

P (x→ y) p(x) = q(x, y)α(x, y) p(x)

= q(x, y)
p(y) q(y, x)
p(x) q(x, y)

p(x)

= q(y, x) p(y) = q(y, x)α(y, x) p(y)
= P (y → x) p(y)
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3. q(x, y) p(x) < q(y, x) p(y). Here

α(x, y) = 1 and α(y, x) =
q(x, y) p(x)
q(y, x) p(y)

Following the same logic just used yields

P (y → x) p(y) = q(y, x)α(y, x) p(y)

= q(y, x)
(
q(x, y) p(x)
q(y, x) p(y)

)
p(y)

= q(x, y) p(x) = q(x, y)α(x, y) p(x)
= P (x→ y) p(x)

which concludes the proof.

Burning-in the Sampler

A key issue in the successful implementation of Metropolis-Hastings, or any other MCMC
sampler, is the number of steps (iterations) until the chain approaches stationarity (the
length of the burn-in period), as inital values are somewhat dependent upon the starting
position. Typically the first 1,000 to 50,000 (or more) values of the chain are discarded,
and then various convergence tests (see below) are used to assess whether stationarity has
indeed been reached.

A poor choice of either a proposal distribution or a starting value can greatly increase
the required burn-in time, and an area of current research is whether an optimal starting
point and proposal distribution can be found. One suggestion is to initiate the chain as
close to the center of the distribution as possible, for example, taking a value close to the
distribution’s mode (such as using an approximate MLE as the starting value). Geyer (2011),
however, offered the simple advice that “any point you don’t mind having in a sample is a
good starting point.”

A chain is said to be poorly mixing if it stays in small regions of the parameter space for
long periods of time, as opposed to a well-mixing chain, which seems to happily explore
the entire space (albeit perhaps by very small steps, requiring very many draws to fully
survey the entire space). A poorly mixing chain can arise because the target distribution
is multimodal and our choice of starting values (or the chance steps that were initially
taken) traps the chain near one of the modes (such multimodal posteriors can arise if we
have a strong prior that is in conflict with the observed data). Two approaches have been
suggested for situations where the target distribution may have multiple peaks. The most
straightforward is to use widely dispersed initial values to start several different chains
(Gelman and Rubin 1992). A less obvious approach, which we will discuss shortly, is to use
simulated annealing on a single chain.

Even after an apparently successful burn-in, the real fear for the MCMC practitioner
is that the chain is simply showing pseudo-convergence. It appears to have reached an
equilibrium, when in fact it is simply exploring (albeit perhaps rather fully) some subset of
the entire distribution. If the transition time between different parts of the full distribution
is long relative to the sample size, the MCMC user will happily observe convergence and
believe that the simulation is a fair representation of the true posterior. The unfortunate
feature is that for any MCMC, the skeptic, or a hardened reviewer, can claim (with some
justification) that convergence has not been demonstrated. The problem is akin to large-
sample results in statistics (such as the large-sample features of ML; Appendix 4): the
theory says that for a sufficiently large sample, certain desirable properties hold, but usually
says rather little about how “large” is large. For a complex posterior, the required chain
size might be far, far larger than an investigator envisions. The only real solution is to run
the chain for as long as possible. In such a setting, Geyer (2011) argued, a burn-in is not
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required, and noted that “Burn-in is mostly harmless, which is perhaps why the practice
persists. But everyone should understand that it is unnecessary, and those who do not use
it are not thereby making an error.”

Simulated Annealing

Simulated annealing was developed for finding the maximum of complex functions with
multiple peaks where standard hill-climbing approaches may trap the algorithm on a less
than optimal peak (Kirkpatrick et al. 1983). The idea is that when we initially start sampling
the space, we will accept a reasonable probability of a down-hill move in order to explore the
entire space. As the process proceeds, we decrease the probability of such down-hill moves.
The analogy (and hence the term) is the annealing of a crystal as temperature decreases:
initially there is a lot of movement, which gets smaller and smaller as the temperature cools.
Simulated annealing is very closely related to Metropolis sampling, differing only in that
the probability α of a move is given by

αSA = min

[
1,
(
f(θ∗)
f(θt−1)

)1/T (t)
]

= α1/T (t) (A8.14a)

where the function T (t) is called the cooling schedule (setting T = 1 recovers Metropolis
sampling), and the particular value of T at any point in the chain is called the temperature.
For example, suppose f(θ∗)/f(θt−1) = 0.5. If T = 100, α = 0.93, while for T = 1, α = 0.5,
and for T = 1/10, α = 0.0098. Hence, we start off with a high probability of a jump and then
cool down to a very low jump probability. Replacing α with the Hastings ratio (Equation
A8.12) allows us to apply simulated annealing to Metropolis-Hastings.

A function with geometric decline is typically used for T (t). For example, to start at T0

and cool down to a final temperature of Tf over n steps, we can set

T (t) = T0

(
Tf
T0

)t/n
(A8.14b)

More generally, if we wish to cool off toTf by timen and then keep the temperature constant
at Tf for the rest of the run, we can take

T (t) = max

(
T0

(
Tf
T0

)t/n
, Tf

)
(A8.14c)

In particular, to cool down to Metropolis sampling (by step n), we set Tf = 1 and the cooling
schedule becomes

T (t) = max
(
T

1−t/n
0 , 1

)
(A8.14d)

Choosing a Jumping (Proposal) Distribution

The Metropolis sampler works with any symmetric proposal (or jumping) distribution,
while Metropolis-Hastings allows for more general distributions. So how do we determine
our best option for a proposal distribution? There are two general approaches: random
walks and independent chain sampling. Under a sampler using a proposal distribution
based on a random-walk chain, the new value, y, equals the current value, x, plus a random
variable, namely, z,

y = x+ z

In this case, q(x, y) = g(y − x) = g(z), the density associated with the random variable z.
If g(z) = g(−z), i.e., the density for the random variable z is symmetric (as occurs with a
normal or multivariate normal with a mean of zero, or a uniform centered around zero),
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then we can use Metropolis sampling, as q(x, y)/q(y, x) = g(z)/g(−z) = 1. The variance of
the proposal distribution can be thought of as a tuning parameter that is adjusted to achieve
better mixing.

Under a proposal distribution using an independent chain, the probability of jumping
to point y is independent of the current position (x) of the chain, namely, q(x, y) = g(y).
The candidate value is simply drawn from a proposal distribution, independent of the
current value (see Examples A8.3 and A8.5). Again, any number of standard distributions
can be used for g(y). Note that in this case, except for a uniform, the proposal distribution
is generally not symmetric, as g(x) is generally not equal to g(y) (for x 6= y), and Metropolis-
Hasting sampling must be used.

As mentioned, we can tune the proposal distribution to adjust the mixing, and in par-
ticular the acceptance probability, of the chain. This is generally accomplished by changing
the standard deviation (SD) of the proposal distribution. This can be done by tuning the
variance for a normal or adjusting the eigenvalues of the covariance matrix for a multivari-
ate normal. Likewise, one can increase or decrease the range, (−a, a), if a uniform is used,
or change the degrees of freedom (df) if a χ2 is used (variance increases with the df; Equa-
tion A5.14b). To increase the acceptance probability, one decreases the proposal distribution
SD. There is a tradeoff in that if the SD is too large, jumps are potentially large (which is
good), but are usually not accepted (which is a problem). This leads to high autocorrelation
(see below) and very poor mixing, requiring much longer chains. On the other hand, if
the proposal SD is too small, moves will generally be accepted (there is a high acceptance
probability), but they will also be small, again generating high autocorrelations and poor
mixing.

Example A8.5. Suppose we wish to use a χ2 as our proposal distribution. Recall from
Equation A7.26b, that for x ∼ χ2

n,

g(x) ∝ xn/2−1e−x/2

Thus, q(x, y) = g(y) = C · yn/2−1e−y/2. Note that q(x, y) is not symmetric, as q(y, x) =
g(x) 6= g(y) = q(x, y). Hence, we must use Metropolis-Hastings sampling, with an accep-
tance probability of

α(x, y) = min
[
p(y) q(y, x)
p(x) q(x, y)

, 1
]

= min
[
p(y) g(x)
p(x) g(y)

, 1
]

= min
[
p(y)xn/2−1e−x/2

p(x) yn/2−1e−y/2
, 1
]

If we use the same target distribution as in Example A8.3 (a scaled inverse-χ2), p(x) =
C · x−2.5 e−2/x, the rejection probability becomes

α(x, y) = min
[

( y−2.5 e−2/y ) (xn/2−1e−x/2 )
(x−2.5 e−2/x ) ( yn/2−1e−y/2 )

, 1
]

Results for a run of the sampler under two different proposal distributions (a χ2
2 and a χ2

10)
are plotted in Figure A8.2. The χ2

2 has the smaller variance, and thus a higher acceptance
probability. Further, it seems to explore more of the distribution space than a χ2

10 (compare
the number of values above 4 in both traces).

Autocorrelation and Sample Size Inflation

We often expect adjacent members from an MCMC sequence to be positively correlated, and
we can quantify the nature of this correlation by using an autocorrelation function. Con-
sider a sequence, (θ1, · · · , θn), of lengthn. Correlations can occur between adjacent members,
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Figure A8.2 Trace plots for the two samplers discussed in Example A8.5. A: The proposal
distribution is a χ2

10. B: The proposal distribution is a χ2
2.

ρ(θi, θi+1) 6= 0, and, more generally, between more distant members, ρ(θi, θi+k) 6= 0. The
kth order autocorrelation, ρk, can be estimated by

ρ̂k =
Cov(θt, θt+k)

Var(θt)
=

n−k∑
t=1

(
θt − θ

) (
θt+k − θ

)
n−k∑
t=1

(
θt − θ

)2 , with θ =
1
n

n∑
t=1

θt (A8.15)

An important result from the theory of time series analysis is that if the values of θt are from a
stationary (and correlated) process, correlated draws still provide an unbiased picture of the
distribution provided the sample size is sufficiently large. The reason for this large-sample
stipulation is that, strictly speaking, Equation A8.15 applies only to a stationary process.

Some indication of the required sample size comes from the theory of a first-order
autoregressive process (AR1), where

θt = µ+ α( θt−1 − µ ) + ε (A8.16a)

where |α | < 1 and ε is white noise, namely, ε ∼ N(0, σ2). Here ρ1 = α and the kth order
autocorrelation is given by ρk = ρk1 = αk. Under this process, E( θ ) = µ with a standard
error of

SE
(
θ
)

=
σ√
n

√
1 + ρ

1− ρ (A8.16b)

The first ratio is the standard error for white noise, while the second ratio,
√

(1 + ρ)/(1− ρ),
is the sample size inflation factor (SSIF), which shows how the autocorrelation inflates the
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sampling variance relative to independent samples. For ρ = 0.5, 0.75, 0.9, 0.95, and 0.99, the
associated SSIF values become 3, 7, 19, 39, and 199, respectively. With an autocorrelation
of 0.95 (which is not uncommon in a Metropolis-Hastings sequence), roughly 40 times as
many iterations are required for the same precision as with an uncorrelated sequence.

One historical strategy for reducing autocorrelation is thinning (or subsampling) the
output, which involves storing only every mth point after the burn-in period. Suppose a
Metropolis-Hastings sequence follows anAR1 model, with ρ1 = 0.99. In this case, sampling
every 50, 100, and 500 points gives the correlation between the thinned samples as 0.605 (=
0.9950), 0.366, and 0.007, respectively, returning SSIF values of 2, 1.5, and 1.007. In addition
to reducing autocorrelation, thinning the sequence also saves computer memory. However,
this throws out a huge amount of the data. If computer memory is not an issue, Geyer (1992)
and MacEachern and Berliner (1994) found that it is more efficient (yielding smaller Monte
Carlo variances) to keep the entire chain than to use thinning.

The Monte Carlo Variance of a MCMC-Based Estimate

Suppose we are interested in using a burned-in MCMC sequence, (θ1, · · · , θn), to estimate
some function, h(θ), of the target distribution, such as a mean, variance, or specific quantile
(namely, a specific cumulative probability value). Since we are drawing random variables,
associated with the Monte Carlo estimate, there is a sampling variance of

ĥ =
1
n

n∑
i=1

h(θi) (A8.17)

A similar issue arose with the error in Monte Carlo integration, where we used the sample
variance around ĥ to compute the Monte Carlo variance, dividing this by the number of
iterations to yield a standard error (Equations A8.1e and A8.4c). This strategy exploited the
fact that draws for Monte Carlo integration are independent and therefore uncorrelated. In
stark contrast, we expect draws in an MCMC sequence to be highly dependent. A standard
sample variance estimator ignores these correlations, potentially yielding a highly biased
estimate of the Monte Carlo variance (see Equation A8.16b).

One direct approach is to run several chains (or extract subsamples from a very long
chain) and use the between-chain variance in ĥ as our variance estimate. Specifically, if ĥj
denotes the estimate for chain j (1 ≤ j ≤ c), where each of the c chains has the same length,
then the estimated variance of the Monte Carlo estimate is

Var
(
ĥ
)

=
1

c− 1

c∑
j=1

(
ĥj − ĥ∗

)2

where ĥ∗ =
1
c

c∑
j=1

ĥj (A8.18)

Using only a single chain, an alternative approach is to use results from the theory of
time series to account for the correlations among members in the chain. To start, we estimate
the lag-k autocovariance associated with h by

γ̂(k) =
1

n− 1

n−k∑
i=1

[ (
h(θi)− ĥ

)(
h(θi+k)− ĥ

) ]
(A8.19)

This is natural generalization of the kth order autocorrelation (Equation A8.15) to the ran-
dom variable generated by h(θi). Geyer (1992, 2011) obtained the resulting estimate of the
Monte Carlo variance as

Var
(
ĥ
)

=
1
n

(
γ̂(0) + 2

2δ+1∑
i=1

γ̂(i)

)
(A8.20)

Note that the zero-lag term, γ̂(0), is simply the standard variance estimate when observa-
tions are uncorrelated, while δ is the largest positive integer satisfying γ̂(2δ)+ γ̂(2δ+1) > 0,
(i.e., the higher order, or lag, autocovariances above δ are zero).
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One measure of the effects of autocorrelation between elements in the sampler is the
effective chain size,

n̂ =
γ̂(0)

Var
(
ĥ
) (A8.21)

where γ̂(0) is the standard sample variance for uncorrelated observations. In the absence
of autocorrelation between members, n̂ = n.

CONVERGENCE DIAGNOSTICS

The careful reader will note that we have still not answered the fundamental, and vexing,
question of how to determine whether the sampler has reached its stationary distribution.
Many tests for stationarity have been proposed, and all can indeed show that stationarity
has not yet been reached. However, it is important to stress that negative results from these
tests are not conclusive evidence that the sampler has achieved stationarity. Comments
from various published reviews on the subject stress this point: “all of the methods can fail
to detect the sorts of convergence failure that they were designed to identify”(Cowles and
Carlin 1996); “It is clear that the usefulness of convergence assessment methods are limited
by their potential unreliability”(Brooks and Roberts 1998); “Diagnostics can only reliably
be used to determine a lack of convergence and not detect convergence per se” (Brooks et
al. 2003); and “no method works in every case ”(El Adlouni et al. 2006). Despite this very
serious concern, a variety of methods can certainly show a failure of convergence given the
burn-in period used for a sampler. The greater question about trust is what we say when
convergence diagnostics do not indicate a problem. We consider a few basic approaches here,
while additional diagnostics were reviewed by Gelman and Rubin (1992), Geyer (1992),
Raftery and Lewis (1992b), Cowles and Carlin (1996), Brooks and Roberts (1998), Kass et
al. (1998), Mengerson et al. (1999), Robert and Casella (2004), El Adlouni et al. (2006), and
Peltonen et al. (2009).

An extra level of complications occurs in models using revisable jump MCMC, wherein
the chain actually jumps between difference classes of models. For example, suppose the
number of QTLs, k, is a random variable. While the chain may come to a nearly equilibrium
distribution for the parameters associated with a given value of k fairly quickly, one must
also sample a sufficient number of jumps between models with different values of k to fully
explore the model space. One might incorrectly assume that there appears to be convergence
when the model quickly equilibrates for a given value of k, but jumps very slowly between
different values of k so that only a small sample of the k space has been explored.

Visual Analysis

As shown in Figures A8.1 and A8.2, one should always examine the time series trace, the
plot of the random variable being generated versus the number of iterations. In addition to
showing evidence for poor mixing, such traces can also suggest a minimum burn-in period
for some starting value. For example, suppose the trace moves very slowly away from the
initial value to a rather different value (say after 5000 iterations), after which it appears to
settle down. Clearly, the burn-in period is at least 5000 in this case. It must be cautioned
that the actual burn-in time may be far longer than suggested by the trace. Nevertheless, the
trace often indicates that more burn-in time is needed. A second approach is to run either
several chains or subsample from a much longer chain, and then compare the traces. The
expectation under stationarity is that these samples are drawn from the same distribution.
Even if visual analysis suggests that two (or more) chains appear to be very similar and
are both well-behaved, the concern is that both might be stuck in the same local maximum
region of a complex posterior. In such cases, the impression of stationarity and consistency
is presented, but significantly longer runs for each chain would show a different outcome.

Correlograms, which plot serial autocorrelations as a function of the time lag, are also
very useful in accessing a run from an MCMC sampler. A plot of ρk versus k (the kth order
autocorrelation versus the lag) should show geometric decay if the sampler series closely



MCMC AND GIBBS SAMPLING 167

follows an AR1 model. A plot of the partial autocorrelations as a function of lag is also
useful. The kth partial autocorrelation is the excess correlation not accounted for by a k− 1
order autogressive model (ARk−1). Hence, if the first-order model fully fits the data, the
second-order partial autocorrelation is zero, as the lagged autocorrelations are accounted
for by the AR1 model (i.e., ρk = ρk1 ). Both of these autocorrelation plots can indicate an
underlying correlation structure that may not be obvious from the time series trace.

More Formal Approaches

Gelman and Rubin’s (1992) proposal was to first generate m separate chains at initial loca-
tions that are widely dispersed in the parameter space, with each returning a burned-in and
thinned (such that autocorrelations between estimates are near zero) sequence of length n.
Their approach is essentially an ANOVA (Chapter 23), contrasting the estimated among-
chain variance with its within-chain value. For the univariate case, let

B =
n

m− 1

m∑
i=1

( θi· − θ··)2 (A8.22a)

be the among-chain variance, where θi· is the mean parameter value for chain i, and θ·· is
the grand mean over all chains. Likewise, for the within-chain variance, we define

W =
1
m

 1
n− 1

m∑
i=1

n∑
j=1

( θij − θi·)2

 (A8.22b)

A combined estimate of the variance is

σ̂2 =
n− 1
n

W +
1
n
B (A8.22c)

Gelman and Rubin defined the potential scale reduction factor (PSRF) as

R =
σ̂2

W
= 1 +

1
n

(
B

W
− 1
)

(A8.22d)

with values of R near one being consistent with convergence. A plot of R over time should
converge to a value near one, if the chains are converging.

Because most MCMCs involve many variables, one could either look at the univariate
R trace for each or use the multivariate version suggested by Brooks and Gelman (1998),

R =
n− 1
n

+
(

1 +
1
m

)
λ1 (A8.23)

where λ1 is the leading eigenvalue of the matrix product W−1B/n, and where W and B
are the sample within- and among-covariance matrices for the parameters. Again, a value
near 1 is consistent with convergence.

The Geweke test (Geweke 1992) splits the sample (after removing a burn-in period)
into two parts. If the chain is at stationarity, the means of the two samples should be equal.
A modified z-test can be used to compare the two subsamples, and the resulting test statistic
is often referred to as a Geweke z-score. A value larger than 2 indicates that the mean of
the series is still drifting and a longer burn-in is required before monitoring the chain (to
extract a sampler) can begin.

A more informative approach is the Raftery-Lewis test (Raftery and Lewis 1992a).
Here, one specifies a particular quantile, q, of the distribution of interest (typically testing
both q = 2.5% and 97.5%, to give a 95% confidence interval), an accuracy, ε, of the quantile,
and a power, 1 − β, for achieving this accuracy on the specified quantile. With these three
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parameter values set, the Raftery-Lewis test breaks the chain into a binary (1, 0) sequence,
in which an element in the sequence takes on a value of 1 if θt ≤ q, otherwise it takes on a
value of zero. This generates a two-state Markov chain, and the Raftery-Lewis test uses the
sequence to estimate the transition probabilities between states. With these probabilities in
hand, one can then estimate the number of additional burn-ins (if any) required to approach
stationarity, the thinning ratio (how many points should be discarded for each sampled
point), and the total chain length required to achieve the preset level of accuracy.

Practical MCMC: How Many Chains and How Long Should They Run?

One can either use a single long chain (Geyer 1992; Raftery and Lewis 1992b) or multiple
chains, with each starting from different initial values (Gelman and Rubin 1992). Note
that with parallel processing, using multiple chains may be computationally more efficient
(given a fixed amount of analysis time) than a single long chain. One suggested approach
(Kass et al. 1998) is to use five parallel chains with widely separated starting values, and to
start the jth value for parameter θi at µi + (j − 2)σi, where µi and σ2

i are the prior values
for θi. Alternatively, one could randomly sample j from (−2, 1, 0, 1, 2) for each parameter
to generate the vector of starting values.

Geyer (1992, 2011), however, forcefully argued that using a single long chain is the
best approach. If the chain transition times between different parts of a distribution are
long, then a series of shorter chains may entirely miss this problem, even if their starting
values are widely dispersed. Theory basically tells us that, provided we run a chain for a
long enough time, the results will be accurate. The best way to do so is to run a single,
long chain. Convergent tests (still recognizing their problems mentioned previously) can
be applied to subsections of a long chain as efficiently as they can be applied across shorter,
parallel-running chains.

Given these concerns, what is the answer to the critical queston about how long to run
a chain? Geyer’s dictums (2011) are that (i) “the least one can do is to make an overnight
run. What better way for your computer to spend its time?” and (ii) ideally, “one should
start a run when the paper is submitted and keep running until the referees’ reports arrive.”

THE GIBBS SAMPLER

The Gibbs sampler (introduced in the context of image processing by Geman and Ge-
man 1984), is a special case of Metropolis-Hastings sampling wherein the random value
is always accepted (i.e., α = 1). The key to the Gibbs sampler is that, at any point in the
process, one only considers univariate conditional distributions—the distribution when all
but one of the random variables are assigned fixed values. Such conditional distributions
are far easier to simulate than complex joint distributions and usually have simple forms
(often they are normals, inverse-χ2, or other common prior distributions). An important
use of conjugate priors (Table A7.2) is that they often result in relatively simple forms for
conditional distributions. Thus, one simulates n random variables sequentially from the
n univariate conditionals rather than generating a single n-dimensional vector in a single
pass using the full joint distribution. Given their great efficiency (every value is accepted),
it is often thought that one should strive to generate a Gibbs sampler whenever possible.
However, one should consult Geyer (2011) for a different perspective.

To introduce the Gibbs sampler, consider a bivariate random variable (x, y), and sup-
pose we wish to compute one or both of the marginals, p(x) and p(y). The idea behind the
sampler is that it is far easier to consider a sequence of conditional distributions, p(x | y) and
p(y |x), than it is to obtain the marginal by integration of the joint density p(x, y), namely,
p(x) =

∫
p(x, y)dy. The sampler starts with some initial value, y0, for y and obtains x0 by

generating a random variable from the conditional distribution p(x | y = y0). The sampler
then uses x0 to generate a new value of y1, drawing from the conditional distribution based
on the value of x0, p(y |x = x0). The sampler proceeds as follows:
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xi ∼ p(x | y = yi−1) (A8.24a)

yi ∼ p(y |x = xi) (A8.24b)

Repeating this process k times generates a Gibbs sequence of length k, where a subset
of points (xj , yj) for 1 ≤ j ≤ m < k are taken as our simulated draws from the full joint
distribution. One iteration of all the univariate distributions is often called a scan of the
sampler. To obtain the desired total of m sample values (here each value in the sampler is
a vector of realizations of the two random variables), one samples the chain following a
sufficient burn-in to remove the effects of the initial starting values, potentially thinning the
sequence as well. The Gibbs sequence converges to a stationary (equilibrium) distribution
that is independent of the starting values, and by construction this stationary distribution
is the target distribution we are trying to simulate (Tierney 1994). As with any MCMC, a
guarantee of convergence at some limit is no guarantee that our sample size is sufficiently
large to justify the assumption of stationarity for a burned-in (and potentially thinned)
sampler.

Example A8.6. Consider the following distribution from Casella and George (1992). Suppose
the joint distribution of x = 0, 1, · · · , n and 0 ≤ y ≤ 1 is given by

p(x, y) =
n!

(n− x)!x!
y x+α−1 (1− y)n−x+β−1

Note that x is discrete and y continuous. While the joint density is complex, the conditional
densities are simple distributions. To see this, first recall that a discrete binomial random
variable z has a density (Equation 2.19a) proportional to

p(z | q, n) ∝ qz(1− q)n−z
z!(n− z)! for 0 ≤ z ≤ n

where 0 < q < 1 is the success parameter and n the number of traits, which we denote by
z ∼ B(n, p). Likewise, recall the density for z ∼ Beta(a, b), a beta distribution (Equation
A7.37a) with shape parameters a and b is given by

p(z | a, b) ∝ za−1(1− z)b−1 for 0 ≤ z ≤ 1

Observe that the conditional distribution ofx (treating y as a fixed constant) isx | y ∼ B(n, y),
while y |x ∼ Beta(x+ α, n− x+ β).

The power of the Gibbs sampler is that by computing a sequence of these univariate
conditional random variables (a binomial and then a beta), we can compute any feature of
either marginal distribution. Suppose n = 10 and α = 1, β = 2. We start the sampler with
(say) y0 = 1/2 and then take it through three full iterations.

(i) x0 is obtained by generating a random B(n, y0) = B(10, 1/2) random variable,
returning x0 = 5 in our simulation.

(ii) y1 is obtained from a Beta(x0 +α, n−x0 +β) = Beta(5+1, 10−5+2) random
variable, returning y1 = 0.33.

(iii) x1 is a realization of a B(n, y1) = B(10, 0.33) random variable, returning x1 =
3.

(iv) y2 is obtained from a Beta(x1+α, n−x1+β) = Beta(3+1, 10−3+2)
random variable, returning y2 = 0.56.

(v) x2 is obtained from a B(n, y2) = B(10, 0.56) random variable, returningx2 = 7.

Our particular realization of the Gibbs sequence after three iterations is thus (5, 0.5), (3, 0.33),
(7, 0.56). We can continue this process to generate a chain of the desired length. Obviously,
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the initial values in the chain are dependent upon the value of y0 chosen to start the chain.
This dependence decays as the sequence length increases, so we typically start recording the
sequence only after a sufficient number of burn-in iterations have occurred.

When more than two variables are involved, the sampler is extended in the obvi-
ous fashion. In particular, the value of the kth variable is drawn from the distribution
p(θ(k) |Θ(−k)), where Θ(−k) denotes a vector containing all of the variables but k. Thus,
during the ith iteration of the sample, to obtain the value of θ(k)

i , we draw from the distri-
bution

θ
(k)
i ∼ p(θ(k) | θ(1) = θ

(1)
i , · · · , θ(k−1) = θ

(k−1)
i , θ(k+1) = θ

(k+1)
i−1 , · · · , θ(n) = θ

(n)
i−1)

For example, if there are four variables, (w, x, y, z), the sampler becomes

wi ∼ p(w |x = xi−1, y = yi−1, z = zi−1)
xi ∼ p(x |w = wi, y = yi−1, z = zi−1)
yi ∼ p(y |w = wi, x = xi, z = zi−1)
zi ∼ p(z |w = wi, x = xi, y = yi)

Gelfand and Smith (1990) illustrated the power of the Gibbs sampler to address a wide
variety of statistical issues, while Smith and Roberts (1993) showed the natural marriage of
the Gibbs sampler with Bayesian statistics for obtaining posterior distributions. A nice in-
troduction to the sampler was presented by Casella and George (1992), while further details
can be found in Tanner (1996), Besag et al. (1995), Robert and Casella (2004), and Lee (2013).
Sorensen and Gianola (2002) give an especially detailed treatment of the Gibbs samples
for the mixed linear model, the workhorse framework for much of quantitative genetics.
Note that the Gibbs sampler can be thought of as a stochastic analog to the Expectation-
Maximization (EM) approaches (LW Appendix 4) used to obtain likelihood functions when
missing data are present. In the sampler, random sampling replaces the expectation and
maximization steps.

Using the Gibbs Sampler to Approximate Marginal Distributions

Any feature of interest for the marginals can be computed from the m realizations of the
Gibbs sequence. If θ1, · · · , θm is an appropriately burned-in set of realizations from a Gibbs
sampler, the expectation of any function, f , of the random variable θ is approximated by

E[f(θ)]m =
1
m

m∑
i=1

f(θi) (A8.25a)

This is the Monte-Carlo (MC) estimate of f(x), asE[f(θ)]m → E[f(θ)] asm→∞. Likewise,
the MC estimate for any function of n variables (θ(1), · · · , θ(n)) is calculated by

E[f(θ(1), · · · , θ(n))]m =
1
m

m∑
i=1

f(θ(1)
i , · · · , θ(n)

i ) (A8.25b)

Example A8.7. Although the sequence of length 3 that was computed in Example A8.6 is too
short (and too dependent on the starting value) to be a proper Gibbs sequence, for illustrative
purposes we can use it to compute Monte-Carlo estimates. The MC estimates of the means of
x and y are

x3 =
5 + 3 + 7

3
= 5, y3 =

0.5 + 0.33 + 0.56
3

= 0.46
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Figure A3.3 The approximation of the marginal posterior distribution for x for the distribu-
tion given in Example A3.6 using a Gibbs sequence. The open bars represent the approximation
using a binomial with the Gibbs-sequence mean value of y as the success parameter, while the
solid bars represent the approximation based on a weighted sum of binomials. See Example
A3.8 for details.

We use the subscript 3 throughout to remind the reader of the sample size of this particular
Gibbs sampler. Similarly, (x2 )3 = 27.67, ( y2 )3 = 0.22, and (xy )3 = 2.47, returning the
MC estimates of the variances of x and y as

Var(x)3 = (x2 )3 − (x3)2 = 2.67, Var(y)3 = ( y2 )3 − (y3)2 = 0.25

and their covariance as

Cov(x, y)3 = (xy )3 − x3 · y3 = 2.47− 5 · 0.46 = 0.16

One of the most powerful uses of the sampler is to obtain the distribution of complex
functions of the sampled random variables. For example, while the mean and variances of
f(x, y) = x/y can be approximated using the Delta method (Equations A1.19a and A1.19b),
obtaining its sampling distribution is nontrivial. However, it is trivial to use the chain to sample
values for the distribution of any f(x, y). For our toy sampler (Example A8.6), the first three
draws of x/y are 5/0.5 = 10, 3/0.33 = 9.09, and 7/0.56 = 12.5. Continuing in this fashion
generates an empirical distribution for this function. Obviously, the same strategy works for
any complex function vector-values function of the sampled parameters.

While computing the MC estimate for any moment using the sampler is straightforward,
computing the actual shape of the marginal density is slightly more involved. While one
might use the empirical histogram of the Gibbs sequence as a rough approximation of the
marginal distribution of x, this turns out to be inefficient, especially for obtaining the tails
of the distribution. A better approach is to use the average of the conditional densities
p(x | y = yi), as the function form of the conditional density contains more information
about the shape of the entire distribution than the sequence of individual realizations, xi
(Gelfand and Smith 1990; Liu et al. 1991). Because

p(x) =
∫
p(x | y) p(y) dy = Ey [ p(x | y) ] (A8.26a)

one can approximate the marginal density using

p̂m(x) =
1
m

m∑
i=1

p(x | y = yi) (A8.26b)
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Example A8.8. Returning to the Gibbs sequence generated in Example A8.6, recall that the
distribution of x given y is binomial, with x | y ∼ B(n, y). If we apply Equation A8.26b, the
estimate (based on this sequence) of the marginal distribution of x is the weighted sum of
three binomials with success parameters of 0.5, 0.33, and 0.56, yielding

p3(x) =
10!

x!(10− x)!

[
0.5x(1− 0.5)10−x + 0.33x(1− 0.33)10−x + 0.56x(1− 0.56)10−x

3

]
As Figure A8.3 shows, the resulting distribution (filled bars), although a weighted sum

of binomials, departs substantially from the binomial based on the average (here 0.46) of the
success parameter (open bars).


