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In the previous two chapters, we found that the phenotypic variance of a trait can theoret-
ically be partitioned into a number of genetic and environmental components. However,
the significant practical issue of how these components can be estimated remains. The key
to this matter, first pointed out by Fisher (1918) and Wright (1921b), is the fact that various
genetic and environmental sources of variance contribute differentially to the resemblance
between different types of relatives.

Assuming for the time being an absence of genotype × environment interaction, and
recalling Equation 6.1, let zx = Gx+Ex+ex and zy = Gy+Ey+ey be the phenotypic values
of two members of a particular relationship, such as parent and offspring. As in previous
chapters, G, E, and e denote genotypic values, general environmental effects, and special
environmental effects, respectively. The phenotypic covariance between relatives x and y
thus becomes

σz(x, y) = σ[(Gx + Ex + ex), (Gy + Ey + ey)]
= σG(x, y) + σG,E(x, y) + σG,E(y, x) + σE(x, y) (7.1a)

Because the special environmental effects are random residual deviations, they are uncor-
related among individuals and do not contribute to the resemblance between relatives,
i.e., σe(x, y) = 0. The middle two terms, σG,E(x, y) + σG,E(y, x), refer to the covariance
of the genotypic value of one member of the pair and the general environmental effect of
the other, while the final term, σE(x, y), is the covariance between general environmental
effects. Experiments can often be designed so that all three covariance terms involving E
have expected values equal to zero. For now, we ignore the issue of genotype-environment
covariance, i.e., we assume σG,E(x, y) = σG,E(y, x) = 0. This assumption reduces Equation
7.1a to

σz(x, y) = σG(x, y) + σE(x, y) (7.1b)

The genetic covariance between relatives, σG(x, y), merits special attention. Such co-
variance is a natural consequence of relatives inheriting copies of the same genes. As in the
case of the genetic variance, the genetic covariance between relatives can be partitioned into
components attributable to additive, dominance, and various epistatic effects. Each term
consists of one of the familiar components of genetic variance (Chapter 5) weighted by a
coefficient that describes the number of shared genes in pairs of relatives. These coefficients
are the first focus of our attention. Once they are understood, it is a relatively simple step
to use the results in Chapter 5 to derive a general expression for the genetic covariance
between relatives.

We will first consider the ideal situation in which mating is random and loci are unlinked
and in gametic-phase equilibrium. The complications that are introduced with linkage,
gametic-phase disequilibrium, and assortative mating will then be evaluated. Some of these
complications make for difficult reading, but they are realities that cannot not be ignored.
Next, the environmental causes of the resemblance between relatives will be discussed.
This does not really complete the picture, as still other complications such as sex-linkage,
maternal genetic effects, and inbreeding may be of substantial importance in particular
cases, but we leave most of our discussion of these to later chapters. Finally, we provide
a broad overview of the concept of heritability, a central parameter in many quantitative-
genetic formulations.
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Figure 7.1 The transmittance of genes of two parents to two offspring. All A1 alleles are identical
in state. However, of the two A1 genes carried by the offspring on the left, only the one in the
square is identical by descent with the A1 allele carried by the offspring on the right.

MEASURES OF RELATEDNESS

Many relatedness measures have found their way into the population-genetic and sociobi-
ological literature (Wright 1922; Cotterman 1940; Malécot 1948; Denniston 1974; Jacquard
1974; Orlove and Wood 1978; Michod and Hamilton 1980; Grafen 1985). Not all of these play
a central role in quantitative-genetic formulations, but they all share two essential features.

First, relatedness can only be defined with respect to a specified frame of reference.
Technically speaking, all members of a species or population are related to each other to
some degree for the simple reason that they contain copies of genes that were present in
some remote ancestor in the phylogeny. We avoid this problem by letting the reference
population be the base of an observed pedigree. If, for example, no individuals further
back than the parental generation have been observed, the usual procedure is to treat that
generation as the base and to assume that its members are unrelated. As we detail in Chapter
8, marker information allows this restriction to be significantly relaxed.

Second, all measures of relatedness are based upon the concept of identity by descent
(IBD). Genes that are identical by descent are direct descendents of a specific gene carried in
some ancestral individual (specifically, the two copies trace back to a single ancestral DNA
molecule). The distinction between identity by descent and identity in state (also alike in
state) is critical. Two genes that have identical nucleotide sequences but have descended
from different copies in the reference population are identical in state but not by descent. On
the other hand, genes that are identical by descent are necessarily identical in state, barring
mutation. The distinction between these two types of identity is clarified in Figure 7.1,
where the parental generation is treated as the base population. Although the first offspring
contains two A1 genes, only one of them is identical by descent with the A1 gene in the
second offspring.

Our treatment of relationships is initially based on classical methods for obtaining the
predicted degree of relationship given a known pedigree. The recent ability to score an essen-
tially endless number of molecular markers in just about any species allows for two impor-
tant advances, which are examined in Chapter 8. The first is that a known pedigree is often
not needed, as close, to moderately distant, relationships can be reasonably estimated using
sufficiently dense marker data. Given that “known” pedigrees can still contain errors (e.g.,
incorrectly assigned paternities), marker data also provides a check of pedigree data qual-
ity. The second is the important distinction between the predicted (or expected) value of a
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Figure 7.2 The 15 possible states of identity by descent for a locus in individuals x and y,
condensed into nine classes, denoted as identity states. Alleles that are identical by descent
are connected by lines, with horizontal lines implying that the individual is inbred (states 1–6).

relationship for specific types of relatives, and the actual, or realized, relationship that
occurs for a particular pair of such relatives. A pedigree estimate provides the former, a
marker-based estimate the latter. Hence, even with a known and fully accurate pedigree,
high quality marker data provide additional information on the true values of relationships.

Coefficients of Identity

Consider a single locus in two diploid individuals. For the four genes involved, there are 15
possible configurations of identity by descent due to the fact that identity may exist within
as well as between individuals (Gillois 1964; Figure 7.2). Individuals that contain pairs of al-
leles that are identical by descent are said to be inbred. If we ignore the distinction between
maternally and paternally derived genes, the 15 possible configurations reduce to nine
identity states. These range from state 1 in which the two individuals are inbred and share
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Table 7.1 Summary of the properties of each of the nine identity states given in Figure 7.1. Here, Θi

is the coefficient of coancestry associated with that identity class.

Class Θi x inbred y inbred

1 1 Yes Yes
2 0 Yes Yes
3 1/2 Yes No
4 0 Yes No
5 1/2 No Yes
6 0 No Yes
7 1/2 No No
8 1/4 No No
9 0 No No

a gene that is identical by descent (so that all four genes are identical by descent) to state
9 in which none of the four genes are identical by descent. Many situations exist in which
further simplification can be justified. For example, in large random-mating populations,
the probability of the first six identity states is essentially zero.

Associated with each of the nine identity states are probabilities, ∆1 to ∆9, which
Jacquard (1974) called condensed coefficients of identity (Figure 7.2). These coefficients
provide a complete description of the probability distribution of identity by descent between
single loci of two individuals. The values that they take on depend on the relationship. For
example, suppose that x is a parent and y its offspring, and that neither is inbred. Then,
because an individual inherits one and only one gene from its parent, ∆8 = 1 and all other
∆i = 0. For noninbred full sibs, there is a 0.5 probability of inheriting the same paternal gene
and, independently, a 0.5 probability of inheriting the same maternal gene. Thus, ∆7 = 0.25
(both pairs of genes are identical by descent), ∆8 = 0.50 (one pair of genes is identical by
descent), and ∆9 = 0.25 (there is no identity by descent at the locus), and all other ∆i = 0.

Coefficients of Coancestry (Θ) and Inbreeding (f )

Suppose now that single alleles are drawn randomly from individualsx and y. The probabil-
ity that these two alleles are identical by descent, Θxy , is called the coefficient of coancestry.
(In the literature, Θxy is sometimes referred to as the coefficient of consanguinity, coeffi-
cient of kinship, or coefficient de parente). Table 7.1 gives the Θ values associated with
each of the nine identity states. For example, either allele from x in a state 3 relationship is
IBD one of the alleles in y, but not the other. Hence, Θ = 1/2 for this class. The same logic
holds for state 5, with the roles of x and y reversed. Likewise, a similar argument shows
that Θ also equals 1/2 for state 7. Recalling that ∆i is the probability that a randomly chosen
gene pair from relatives x and y corresponds to the ith identity state, Table 7.1 implies that

Θxy = ∆1 +
1
2

(∆3 + ∆5 + ∆7) +
1
4

∆8 (7.2a)

Here, we have simply weighted each identity state by its associated Θ value.
An important feature of Θxy follows by considering a hypothetical offspring (z) of

x and y. By the above definition, Θxy is the probability that the two alleles at a locus in
individual z are identical by descent, as the two alleles in z are the result of drawing a single
random allele from each of its parents, x and y. The probability that two alleles at a locus in
z are IBD is usually called Wright’s (1922) inbreeding coefficient, fz . Thus, an individual’s
inbreeding coefficient is equivalent to its parents’ coefficient of coancestry,

fz = Θxy (7.2b)

Note that Equation 7.2 dispels a common misunderstanding about inbreeding. If we cross
two fully inbred parents (x and y), the resulting offspring are inbred only when Θxy > 0.
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Figure 7.3 The identity of genes by descent for a parent (mother) and her offspring. Cir-
cles and squares represent, respectively, maternally and paternally derived genes. Left: The
mother (denoted by p in the text) is not inbred and her mate (denoted by q) is not a relative
(so the offspring is not inbred). Center: The mother is inbred (fp > 0) but unrelated to her
mate (Θpq = 0). Right: In addition to the mother being inbred, she is related to her mate, so
that her offspring is also inbred, with f0 = Θpq .

If the two parents are unrelated, then the offspring are outbred even when the parents are
fully inbred.

We now proceed by example to demonstrate how estimates of Θxy are derived. The
first problem to be tackled is the coefficient of coancestry of an individual with itself, Θxx.
This may seem like a nonsensical task. However, we will soon see that Θxx is an essential
element of all coancestry estimates. Denote the two genes carried by individual x asA1 and
A2, and then randomly draw a gene from the locus, replace it, and randomly draw another.
Θxx is the probability that the two genes drawn are identical by descent. There are four
ways, each with probability 1/4, in which the genes can be drawn: A1 both times, A1 first
and A2 second, A2 first and A1 second, and A2 both times. If two A1 genes are drawn, they
must be identical by descent because they are copies of the same gene. The same applies to
a draw of twoA2 genes. Thus, provided that genesA1 andA2 are not identical to each other
by descent, then Θxx is simply (1/4)(1) + (1/4)(1) = 1/2. We should, however, recognize
the possibility that individual x is inbred, in which case the probability that the gene A1 is
identical by descent with the gene A2 is fx. Thus, a general expression for the coefficient of
coancestry of an individual with itself is

Θxx =
1
4

(1 + fx + fx + 1) =
1
2

(1 + fx) (7.3a)

The impact of inbreeding is thus to increase the coefficient of coancestry, which will be a
common theme throughout. We can rearrange Equation 7.3a to yield the useful identity

fx = 2Θxx − 1 (7.3b)

Note that if we self x, the level of inbreeding in its offspring o is fo = Θxx. Hence,
from Equation 7.3a we obtain the recursion equation for the effect of selfing on the level of
inbreeding,

f(t+ 1) =
1
2

[1 + f(t)] (7.3c)

A slightly more complicated situation arises in calculating the coefficient of coancestry
between a parent and its offspring. In order to simplify the discussion, we will call the
parent (p) of interest the mother, but the same results apply to fathers, provided the locus is
autosomal. We first consider the situation in which neither the mother nor her offspring (o)
are inbred, i.e., the mother’s parents are unrelated, and she is unrelated to her mate (who
we denote by q). In that case, of the four ways in which single genes can be drawn from the
mother and the child, only one involves a pair that is identical by descent (Figure 7.3, left).
Therefore, Θpo = 1/4. Suppose, however, that the mother is inbred (Figure 7.3, center), so
that the probability that both of her alleles are identical by descent is fp. This is the same
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Figure 7.4 Path diagrams (Appendix 2) for analyzing the probability that random genes from
two full sibs are identical by descent. The path coefficients along single-headed arrows are
always equal to 1/2. Left: The parents, m and s, are neither related nor inbred. Center: The
parents are unrelated, but inbred. Right: In addition to being inbred, the parents are related
with coefficient of coancestry Θmf , so that the offspring are inbred to level f0 = Θmf .

as the probability that the maternal gene inherited by the offspring is identical by descent
with the maternal gene not inherited. The probability of drawing such a gene combination is
1/4. Therefore, inbreeding in the parent inflates Θpo to (1+fp)/4. With complete inbreeding
(fp = 1), both parental alleles are identical by descent, increasing Θpo to 1/2. Finally, we
allow for the possibility that the parents of o are related, so that the offspring is inbred
with coefficient fo = Θpq (Figure 7.3, right). It is now necessary to consider the implications
of drawing a paternally derived gene from the offspring, the probability of which is 1/2.
Because fo is equivalent to the probability that maternally and paternally derived genes
are identical by descent, the additional parent-offspring identity induced by inbreeding is
fo/2. In summary, the most general expression for the coefficient of coancestry for a parent
and offspring is

Θpo =
1
4

(1 + fp + 2fo) (7.4a)

Again note that the impact of inbreeding is to inflate Θ. Recalling Equations 7.2b and 7.3b,
we can alternatively express Equation 7.4a as

Θpo =
1
4

[1 + (2Θpp − 1) + 2Θpq] =
1
2

(Θpp + Θpq) (7.4b)

This result foreshadows a simple recursion method for obtaining the Θ values over a very
complex pedigree, which will be examined shortly. Often in the literature, Θpo is simply
considered to be 1/4. It should now be clear that this implicitly assumes the absence of
inbreeding, which inflates the value of Θ.

We now move on to the coefficient of coancestry of two individuals that share the same
father and mother (full sibs). We assume a species with separate sexes so that the mother and
father are different individuals, and we again start with the simplest situation, progressively
allowing the parents to be inbred and/or related (Figure 7.4). For the analysis of full sibs, as
well as more complicated relationships, the method of path analysis (Appendix 2) provides
a useful tool. The elements in Figure 7.4 no longer represent gametes (as in Figure 7.3), but
rather individuals.

Let m represent the mother, s the sire (father; we use s in place of f to avoid confusion
with use of the latter for inbreeding), and x and y their two offspring. When the parents are
neither inbred nor related, there are two paths by which the same gene can be passed to
both x and y: x← m→ y and x← s→ y. Because both paths have identical consequences,
we will simply consider the first of them. First, we note that the probability that both x and y
receive the same maternal gene is 1/2. This is the coefficient of coancestry of the (noninbred)
mother with herself, Θmm, and is represented by the double-headed arrow in the figure.
Second, we note that the probability of randomly drawing a maternal gene from individual
x is 1/2, and that the same is true for individual y. Thus, the probability of drawing two
maternal genes, identical by descent, one from x and the other from y, is Θmm(1/2)2 = 1/8.
Adding the same contribution from the paternal path, x← s→ y, we obtain the coefficient
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of coancestry Θxy = 1/4. Path analysis (Appendix 2) provides a simple way to obtain this
result. First, set the path coefficients on all of the single-headed arrows in Figure 7.4 equal
to 1/2. Then, note that the contribution of a path to a correlation between two variables is
equal to the product of the path coefficients and the correlation coefficient associated with
the common factor (in this case, Θmm or Θss = 1/2).

We now allow for the possibility that the parents are inbred with inbreeding coefficients
fm and fs, a condition that inflates the coefficient of coancestry of an individual with itself.
This is the only necessary change for the path diagram in Figure 7.4 (center). There are still
only two paths that lead to genes identical by descent in x and y, and their sum is

Θxy =
1
4

(Θmm + Θss) =
1
4

(
1 + fm

2
+

1 + fs
2

)
=

1
8

(2 + fm + fs) (7.5a)

Finally, we allow for the possibility that m and s are related, such that the probability
of drawing two genes (one from each of them) that are identical by descent is Θms. It is
then necessary to consider two additional paths between x and y: x ← m ↔ s → y and
x ← s ↔ m → y (Figure 7.4, right). Again taking the coefficients on the single-headed
arrows to be 1/2, it can be seen that each of these two new paths makes a contribution
Θms/4 to Θxy , where (Equation 7.2b) Θms is the level of inbreeding in the offspring, fo.
Adding these to our previous result, we obtain a general expression for the coefficient of
coancestry of full sibs,

Θxy =
1
8

(2 + fm + fs + 4fo) (7.5b)

which reduces to Θxy = 1/4 under random mating. Again, we see that inbreeding inflates Θ.
Using Equations 7.2b and 7.3b, we can express Equation 7.5b entirely in terms of coefficients
of coancestry,

Θxy =
1
8

[2 + (2Θmm − 1) + (2Θss − 1) + 4Θms] =
1
4

(Θmm + Θss + Θms) (7.5c)

Up to now, we have assumed an autosomal locus. The rules change when the locus of
interest is sex-linked. Assuming the male is the heterogametic sex, a male cannot receive an
X-linked gene from his father, whereas fathers pass on their X-linked genes to daughters
with probability one. Females have two X chromosomes and pass each one on to sons
or daughters with the usual probability of one-half. Thus, the protocol for obtaining the
coefficient of coancestry for an X-linked locus is similar to that used for autosomal loci
except that path coefficients leading from fathers to daughters are replaced by a 1 and those
leading from fathers to sons are replaced by a 0. For all paths containing two consecutive
males, the probability that X-linked genes are identical by descent is zero.

Pedigree-based Estimates of Θ: Chain-counting

The preceding path technique is readily extended to more distant relationships and more
complicated schemes of relatedness (Wright 1921b). The coefficient of coancestry is always
the sum of a series of two types of paths between x and y. The first type of path leads from
a single common ancestor to the two individuals of interest, while the second type passes
through two remote ancestors that are related to each other. Neither type of path is allowed
to pass through the same ancestor more than once. This procedure is summarized by the
following equation

Θxy =
∑
i

Θii

(
1
2

)ni−1

+
∑
j

∑
j 6=k

Θjk

(
1
2

)njk−2

(7.6)

where ni is the number of individuals (including x and y) in the path leading from common
ancestor i, and njk is the number of individuals (including x and y) on the path leading
from two different but related ancestors, j and k. Formal proof of this equation can be found
in Boucher (1988). Equation 7.6 is often called the method of chain-counting.
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Example 7.1. One of the first pedigrees to which Wright (1922) applied his theory of inbreed-
ing is that of Roan Gauntlet, an English shorthorn bull. In the following figure, rectangles and
ovals refer to bulls and cows, respectively.

Duchess of
Gloster, 9th

Champion of
England

Grand Duke
of Gloster

Roan
Gauntlet

Princess
Royal

Royal Duke
of Gloster

Lord
Raglan

The Czar

Carmine

Mistletoe

Mimulus

We wish to compute the coefficient of coancestry of the Royal Duke of Gloster and Princess
Royal. This is the same as the inbreeding coefficient of their son, Roan Gauntlet. The four
possible paths by which alleles identical by descent can be inherited by the Royal Duke and
Princess Royal are indicated by the coded lines adjacent to the arrows in the pedigree. Two of
these paths (the dotted and the dashed lines) contain four individuals and two (the solid and
the dot-and-dash lines) contain seven. Thus, assuming that the remote ancestors, Lord Raglan
and Champion of England, are not inbred (so that for both, Θii = 1/2) and unrelated, the
coefficient of coancestry of the Royal Duke and Princess Royal is [2(1/2)4+2(1/2)7] = 0.141.
This is a slightly closer relationship than that for half sibs (for which Θ = 0.125). Relative to
the base population, the alleles at 14% of the autosomal loci in the offspring, Roan Gauntlet,
are expected to be identical by descent.

What is the coefficient of coancestry of the Royal Duke of Gloster and Princess Royal
with respect to X-linked loci? Of the four paths between these two individuals, only the one
traced by the dotted line does not contain consecutive males. Champion of England passes
on his X chromosome to each of his daughters, Mimulus and Princess Royal, with probability
1. Mimulus passes that chromosome on to the Royal Duke of Gloster with probability 1/2.
The probability of drawing a specific X chromosome from the Royal Duke is 1 (because he
is a male) and from Princess Royal is 1/2. The coefficient of coancestry for X-linked loci is
therefore 1 ·1/2 ·1 ·1/2 = 1/4. This is substantially greater than the coefficient for autosomal
loci over the same path, which is (1/2)4 = 1/16.

Pedigree-based Estimates of Θ: Tabular Method

Chain-counting (Equation 7.6) is a reasonable approach for computing the coefficient of
coancestry between a specific pair of relatives in a known pedigree. One caveat is that is
easy to miss paths in complex pedigrees, which results in underestimating Θ. Further, using
chain-counting to compute all n[(n− 1]/2 pairwise Θ values in a pedigree of n individuals
is very inefficient. An alternative approach that easily deals with both of these issues is a
simple recursive scheme called the tabular or recursive method (Crudent 1949; Emik and
Terrill 1949). Here one starts with the founding members of a pedigree (individuals with
both parents unknown) and then proceeds down the pedigree (i.e., considering all their
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descendants) in a recursive fashion (Example 7.2). The algorithm is as follows:

(i) Founding individuals of the pedigree are assumed to be unrelated and not inbred
(although this can also be accommodated). These founders are assigned values of
Θii = 1/2.

(ii) Any unknown parent of any future individual is assumed to be unrelated to all
others in the pedigree and not inbred, and they are also assigned a value of Θii =
1/2.

(iii) To compute the self coancestry for individual i, let Si andDi denote their sire and
dam (father and mother). Applying Equations 7.2b and 7.3a yields

Θii = (1 + ΘSiDi)/2

which reduces to 1/2 when ΘSi,Di = 0, namely when the parents are unrelated.

(iv) The coancestry between individuals i and j (who are descendants of the founders)
is computed as

Θij = (Θi Sj + ΘiDj )/2 = (Θj Si + Θj Di)/2

The logic here follows directly from the definition of the coefficient of coancestry.
With probability 1/2, a random allele from j will have come from its sire, and the
probability that this allele is IBD with the random allele from i is just Θi Sj , while
with probability 1/2 the allele from j is from its mother, giving the IBD probability
as ΘiDj . By symmetry, we can reverse the roles and consider a random alleles from
j and the sire or dam of i. Note that Equation 7.4b (the coefficient of coancestry
between a parent p and its offspring o) is just a special case of this expression. Take
i = p (the parent) and j as its offspring, with Sj = p and Dj = q. Substituting
yields Θpo = (Θpp + Θpq)/2.

This recursive approach has been extended by Karigl (1981) to compute all nine condensed
coefficients of identity (Figure 7.2) for arbitrary pedigrees.

Example 7.2. Again consider Wright’s shorthorn pedigree (Example 7.1). Note that Lord
Raglan and Champion of England are founders of the pedigree (both parents are unknown,
as indicated by the lack of any paths to them from ancestors). Likewise, four other individuals
(Mistletoe, Duchess of Gloster, Czar, and Carmine) have an unknown parent (dams in all
cases), indicated by a path to them from only one ancestor. We can compactly express all of
the pedigree relationships in tabular form, starting with the founders, as follows:

Individual Number Sire (Si) Dam (Di)

Lord Raglan 1 unknown unknown
Champion of England 2 unknown unknown
Mistletoe 3 1 unknown
Duchess of Gloster, 9th 4 1 unknown
The Czar 5 1 unknown
Mimulus 6 2 3
Grand Duke of Gloster 7 2 4
Carmine 8 5 unknown
Royal Duke of Gloster 9 7 6
Princess Royal 10 2 8
Roan Gauntlet 11 9 10

Applying the recursive rules, for the founders we have Θ11 = Θ22 = 1/2, and Θ12 = 0. For
Mistletoe (i = 3), S3 = 1 and D3 = ?, giving Θ33 = (1 + Θ1?)/2 = 1/2, where Θ1? between
her sire (1) and (unknown) dam is zero by rule (ii). Likewise,

Θ31 = [Θ1S3 + Θ1D3 ]/2 = (Θ11 + Θ1?)/2 = (1/2)/2 = 1/4
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Θ32 = [Θ2S3 + Θ2D3 ]/2 = (Θ21 + Θ2?)/2 = 0

For Duchess of Gloster (i = 4), S4 =1 and D4 = ?, giving Θ44 = (1 + Θ1?)/2 = 1/2, while

Θ34 = [Θ3S4 + Θ3D4 ]/2 = [Θ3 1 + Θ3 ?]/2 = (1/4 + 0)/2 = 1/8

Proceeding in this fashion down the pedigree, and recalling that Θij = Θji, computes all of the
other Θ values. Note that this algorithm (with the pedigree coded by associating each pedigree
member with the two index numbers for its parents) is easily programmable. Typically, all of
the pairwise coancestries for a pedigree are compactly presented as a matrix (Chapter 8). In
this case, the result is a (symmetric) matrix with 11 rows and columns, with the element in
row i and column j corresponding to Θij . The upper left part of this matrix for the first four
relatives here is

1 2 3 4 · · ·
1 1/2 0 1/4 1/4 · · ·
2 0 1/2 0 0 · · ·
3 1/4 0 1/2 1/8 · · ·
4 1/4 0 1/8 1/2 · · ·
...

...
...

...
...

. . .

Predicted versus Realized Values of Θ

While Equation 7.2a gives the expected value of Θxy for the pair of relatives x and y, there is a
distribution of potential Θ values around this mean. Consider two full sibs from noninbred,
and unrelated, parents. While the expected value of Θxy is 1/4, for any particular locus,
the actual value is either 1/2, 1/4, or 0, corresponding, respectively, to sharing 2, 1, or 0
IBD alleles (identity states 7, 8, and 9) with associated probabilities of 1/4, 1/2, and 1/4.
Hence, random sampling of Θ values over all loci in the sib pair results in a distribution of
values around the expected value of 1/4 (or, equivalently, a distribution around the expected
sharing of 50% IBD alleles). As a result, some full-sib pairs are more similar (Θ > 1/4) and
others are less similar (Θ < 1/4) than the expected pedigree-based value. While this concept
was fully appreciated in the days of pedigree-based estimates (Fisher 1949; Franklin 1977;
Stam 1980), researchers at the time had no ability to actually score the realized amount of
IBD sharing. With dense SNP data, we now have this ability (Figure 7.5). As well will see
in several later chapters, exploitation of this variance in relationships is an important tool
in modern quantitative genetics.

From Table 7.1, the variance (at a single locus) in Θ for a specific pair of relatives is given
by

σ2 (Θxy) =
9∑
i=1

∆i(xy)
(
Θi −Θxy

)2
(7.7a)

where Θxy denotes the value given by Equation 7.2a, Θi is the value for identity state i, and
∆i(xy) is the probability of the relatives x and y being in identity state i. From Table 7.1,
there are only four possible Θi values: 0 for states 2, 4, 6, and 9; 1/4 for state 8; 1/2 for states
3, 5, and 7; and 1 for state 1. Hence,

σ2 (Θxy) =Θ
2

xy (∆2 + ∆4 + ∆6 + ∆9) + (1/4−Θxy)2∆8

+ (1/2−Θxy)2 (∆3 + ∆5 + ∆7) + (1−Θxy)2∆1 (7.7b)

For only outbred relatives (identity states 7–9), this reduces to

σ2 (Θxy) = Θ
2

xy∆9 + (1/4−Θxy)2∆8 + (1/2−Θxy)2∆7 (7.7c)
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Figure 7.5 Empirical distribution of the actual fraction of shared IBD allels for 4400 pairs of
human full sibs. The realized value of Θ is simply half this value. (After Visscher et al. 2006.)

Hence, there is variation in Θxy for any pair of relatives, unless one of the ∆i = 1. This only
occurs for clones (∆1 = 1, Θxy = 1) and, in outbreds, for parent-offspring pairs (∆8 = 1,
Θxy = 1/4). The latter occurs because a parent and its offspring (in the absence of inbreeding)
always share exactly one IBD allele.

An important point is that Equation 7.7b is the variance in Θ associated with a particular
locus. We then average the locus-specific Θ values over the entire genome. If one has n
independently assorting loci, then the genome-wide variance would be σ2 (Θxy) /n. In
reality, the situation is much more complex, as while chromosomes assort independently,
sites within a chromosome are correlated due to linkage. We examine this more fully in
Chapter 8.

Example 7.3. Consider the (single-locus) variance in Θ for noninbred half- and full-sibs. For
noninbred full sibs, ∆7 = 1/4,∆8 = 1/2, ∆9 = 1/4, and Θ = 1/4. Equation 7.7c yields

σ2 (Θxy) = (1/4)2(1/4) + (1/4− 1/4)2(1/2) + (1/2− 1/4)2(1/4)
= 1/32 = 0.03125

for a standard deviation of 0.177 and a coefficient of variation of CV = 0.177/0.25 = 0.707.
Turning to half sibs, ∆8 = 1/2,∆9 = 1/2, Θ = 1/8, and Equation 7.7c yields

σ2 (Θxy) = (1/8)2(1/2) + (1/4− 1/8)2(1/2) = 1/64 = 0.015625

for a standard deviation of 1/8, and a CV of 1. This increase in CV as relatives become more
distant is a general phenomenon (Hill and Weir 2011).

The Coefficient of Fraternity, ∆xy

Up to now we have been considering the identity of single alleles by descent. Another useful
measure is the probability that single-locus genotypes of two individuals are identical by de-
scent. The formulation of such a measure, which we denote as ∆xy , is attributable to Cotter-
man (1954) and was called the coefficient of fraternity by Trustrum (1961). The problem is set
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Θfx fy

Figure 7.6 The analysis of the identity by descent of genotypes of individuals x and y. sx
and sy represent sires (fathers) (which may be the same individual) of x and y, respectively,
whereas mx and my represent their mothers. Double-headed arrows between two parents
represent coefficients of coancestry.

out in Figure 7.6. Here we denote the mothers of individuals x and y as mx and my, and
the fathers (sires) as sx and sy. The coefficients of coancestry Θmxmy , Θmxsy , Θsxmy , and
Θsxsy provide measures of the probability of drawing genes identical by descent from all
four combinations of parents.

There are two ways by which the genotype of x can be identical by descent with that
of y: (1) the gene descending from mx is identical by descent with that descending from
my and that from sx is identical by descent with that from sy , or (2) the gene from mx is
identical by descent with that from sy , and that from sx is identical by descent with that
from my . Thus, the coefficient of fraternity is obtained as

∆xy = ΘmxmyΘsxsy + ΘmxsyΘsxmy (7.8)

In terms of the condensed coefficients of identity, ∆xy = ∆1+∆7, which reduces to ∆7 in the
absence of inbreeding. Ovaskainen et al. (2008) noted that Equation 7.8 is an approximation,
requiring that the four probabilities (i.e., the Θij) determining ∆xy be independent. This is
usually not a serious problem unless the pedigree is highly inbred.

Two examples will suffice to illustrate the use of this equation. First, consider the
situation when x and y are full sibs, in which case the mothers are the same individual
(mx = my = m), as are the fathers (sx = sy = s). Equation 7.8 then reduces to

∆xy = ΘmmΘss + Θ2
ms (7.9a)

If the parents are unrelated, then Θms = 0; and if the parents are not inbred, then Θmm =
Θss = 1/2. Substituting these values into the above expression, we obtain ∆xy = 1/4.
Expressed in terms of parent (fs, fm) and offspring (fo) levels of inbreeding, Equation 7.9a
becomes

∆xy =
1
4

[(1 + fs)(1 + fm)] + f2
o (7.9b)

showing that any amount of inbreeding inflates the value above 1/4.
Now consider the case of paternal half sibs, in which case the fathers are the same

individual (sx = sy = s), but the mothers are different. Now,

∆xy = ΘmxmyΘss + ΘsmxΘsmy (7.9c)

Provided that the parents are unrelated, then Θss = 1/2 and Θmxmy = Θmxs = Θsmy = 0,
which yields ∆xy = 0. The genotypes of two individuals cannot be identical by descent
if their maternally (or paternally) derived genes come from unrelated individuals. The
identity coefficients for several common relationships are summarized in Table 7.2.
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Table 7.2 Identity coefficients for common relationships under the assumption of no inbreeding, in
which case ∆1 to ∆6 = 0.

Relationship ∆7 ∆8 ∆9 Θxy ∆xy

Parent–offspring 0 1 0 1
4 0

Grandparent–grandchild 0 1
2

1
2

1
8 0

Great grandparent–great grandchild 0 1
4

3
4

1
16 0

Half sibs 0 1
2

1
2

1
8 0

Full sibs, dizygotic twins 1
4

1
2

1
4

1
4

1
4

Uncle (aunt)–nephew (niece) 0 1
2

1
2

1
8 0

First cousins 0 1
4

3
4

1
16 0

Double first cousins 1
16

6
16

9
16

1
8

1
16

Second cousins 0 1
16

15
16

1
64 0

Monozygotic twins (clonemates) 1 0 0 1
2 1

Example 7.4. Returning to the figure in Example 7.1, what is ∆xy for x = Royal Duke of
Gloster and y = Princess Royal? Designate the parents as sx = Grand Duke of Gloster, mx =
Mimulus, sy = Champion of England, andmy = Carmine. Noting that Champion of England
is the father of Grand Duke of Gloster and Mimulus, Θsxsy = Θmxsy = (1/4). Counting the
number of individuals in the paths of descent between the remaining two pairs of parents,
Θmxmy = Θsxmy = (1/2)5. Substituting into Equation 7.8, the probability that x and y have
identical genotypes by descent at an arbitrary autosomal locus is

∆xy = (1/4)(1/2)5 + (1/2)5(1/4) = (1/2)6 ' 0.016

or about 6% of the (outbred) full-sib value of 0.25.

THE GENETIC COVARIANCE BETWEEN RELATIVES

The bulk of the credit goes to Fisher (1918) and Wright (1921b) for elucidating the con-
nection between the phenotypic resemblance of relatives and the types of genetic variance
in populations. However, despite the tremendous advances in these papers, a number of
problems remained. Wright did not pursue nonadditive gene action beyond dominance
and even then ran into difficulties. Fisher incorporated epistasis but only of the additive ×
additive type. In 1954, Cockerham and Kempthorne (Cockerham’s major professor at the
time) independently published papers outlining how the earlier results could be general-
ized to include any type of gene action. Both authors arrived at the same result by very
different routes, but Kempthorne’s approach is much simpler and is the one that we will
pursue. Cockerham’s name will appear many times throughout the book in other contexts.

At the outset, it must be emphasized that the simple results that will emerge below
are not obtained without making a number of assumptions: (1) all of the genetic variation
is attributable to diploid, autosomal loci; (2) mating is random; (3) all loci are unlinked
and in gametic-phase equilibrium; (4) there is no genetic variation for maternal effects; (5)
genotype-environment covariance and interaction are unimportant; (6) there is no sexual
dimorphism; and (7) selection is not operating on the population. In due course, we will
relax all of these conditions.
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Our first task is to decompose the total genetic covariance between relatives into fun-
damental components that describe the various types of gene action. We accomplish this
by following the logic used in Chapter 5 to partition the genetic variance. Consider a col-
lection of pairs of individuals all of the same type of relationship, and let x and y represent
the members of a random pair. From Equation 5.5, taking things out only to the two-locus
effects, the genotypic values of the two individuals may be written as

Gijkl..(x) = µG + [αxi + αxj + αxk + αxl + · · ·] + [δxij + δxkl + · · ·]
+ [(αα)xik + (αα)xil + (αα)xjk + (αα)xjl + · · ·]
+ [(αδ)xikl + (αδ)xjkl + (αδ)xkij + (αδ)xlij + · · ·] + (δδ)xijkl + · · ·

Gijkl..(y) = µG + [αyi + αyj + αyk + αyl + · · ·] + [δyij + δykl + · · ·]
+ [(αα)yik + (αα)yil + (αα)yjk + (αα)yjl + · · ·]
+ [(αδ)yikl + (αδ)yjkl + (αδ)ykij + (αδ)ylij + · · ·] + (δδ)yijkl + · · ·

(7.10a)

where i, j and k, l represent alleles at the first and second loci. Fisher (1918) showed that just
as the different types of effects are uncorrelated within individuals, they are also uncorre-
lated between individuals, provided the preceding assumptions are met. Consequently, the
genetic covariance between relatives can be expanded into a series of terms, each describing
the covariance between the same kinds of effects in two individuals:

σG(x, y) = σA(x, y) + σD(x, y) + σAA(x, y) + σAD(x, y) + σDD(x, y) + · · · (7.10b)

Note that if x = y, Equation 7.10b reduces to Equation 5.8, the usual expression for the
genetic variance.

The remaining task is to express the terms in Equation 7.10b in terms of variance
components and coefficients of relationship. We will do this only for the first three terms
and then give the general result. First, we evaluate the additive genetic covariance at locus
1. Because the mean value of the effects is zero by definition (Chapter 5), the covariance
between x and y caused by the additive effects is equal to the expectation of the cross-
product, E[(αxi + αxj )(αyi + αyj )]. Consider one of the four terms in the expansion, E[αxi α

y
i ].

The two genes of interest may be identical by descent, with probability Θxy, in which case
E[αxi α

y
i ] = E[α2

i ], which is half the additive genetic variance attributable to locus 1. If the
two genes are not identical by descent, then they must be distributed independently so that
E[αxi α

y
i ] = [E(αi)] · [E(αi)] = 0. These same arguments can be applied to the remaining

three terms in E[(αxi + αxj )(αyi + αyj )]. Thus, the additive genetic covariance is 4ΘxyE[α2
i ],

which is twice the additive genetic variance at the locus times the probability that randomly
drawn genes from x and y are identical by descent. Noting that this result applies to all loci
and that the distributions of effects at different loci are independent under the assumptions
of the model, the additive genetic covariance, obtained by summing over loci, reduces to

σA(x, y) = 2Θxyσ
2
A = rxyσ

2
A (7.11a)

where r = 2Θ is Wright’s coefficient of relatedness.
We now move on to the dominance genetic covariance, which for locus 1 isE[δxijδ

y
ij ]. If x

and y are identical by descent for both genes at this locus, thenE[δxijδ
y
ij ] = E[δ2

ij ], which is the
dominance genetic variance attributable to locus 1. The probability of such identity is ∆xy .
On the other hand, if x and y do not have identical genotypes by descent, the dominance
effects must be distributed independently, and hence E[δxijδ

y
ij ] = (E[δij ]) · (E[δij ]) = 0.

Again, because these arguments apply to every locus, the dominance genetic covariance,
obtained by summing over all loci, is

σD(x, y) = ∆xyσ
2
D (7.11b)
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Table 7.3 Coefficients for the components of genetic covariance between different types of diploid
relatives under the assumptions of random mating, free recombination, and gametic-phase equilib-
rium. To obtain the covariance expression for a particular type of relationship, multiply each vari-
ance component by its coefficient and sum. For example, the genetic covariance between half sibs is
(σ2
A/4) + (σ2

AA/16). Blanks indicate values of zero.

Relationship σ2
A σ2

D σ2
AA σ2

AD σ2
DD

Parent–offspring 1
2

1
4

Grandparent–grandchild 1
4

1
16

Great grandparent–great grandchild 1
8

1
64

Half sibs 1
4

1
16

Full sibs, dizygotic twins 1
2

1
4

1
4

1
8

1
16

Uncle (aunt)–nephew (niece) 1
4

1
16

First cousins 1
8

1
64

Double first cousins 1
4

1
16

1
16

1
64

1
256

Second cousins 1
32

1
1024

Monozygotic twins (clonemates) 1 1 1 1 1

Finally, we consider the epistatic genetic covariance caused by additive × additive
effects. For any pair of loci, this involves the 16 cross-product terms in the expectation
E[{(αα)xik + (αα)xil + (αα)xjk + (αα)xjl}{(αα)yik + (αα)yil + (αα)yjk + (αα)yjl}]. Because the
results are the same for all terms, it is sufficient to evaluate only one of them. The term
E[(αα)xik(αα)yik] is equivalent to E[(αα)2] provided that two conditions hold: a random
gene drawn from the first locus in x must be identical by descent with one drawn from y,
and the same condition must hold at the second locus. If identity by descent does not arise
simultaneously for gene pairs drawn from both loci,E[(αα)xik(αα)yik] = [E(αα)]2 = 0. Now,
under the assumption of gametic-phase equilibrium, the probability of identity by descent
at locus 1 is independent of that at locus 2. Both probabilities are Θxy . Thus, the probability of
joint identity by descent is Θ2

xy , and the covariance caused by additive × additive epistasis
between loci 1 and 2 is 16 Θ2

xyE[(αα)2]. Noting that E[(αα)2] is one-fourth the additive ×
additive genetic variance for a single pair of loci, and summing over all pairs,

σAA(x, y) = (2Θxy)2σ2
AA = r2

xy σ
2
AA (7.11c)

All three of the evaluated terms from Equation 7.11b reduce to simple functions of
identity coefficients (Θ and ∆) and a component of genetic variance, and the same is true
for all higher-order terms. Due to the independent distributions of genes at different loci
under the assumptions of the model, any covariance due to higher-order epistatic effects is
equal to the product of the identity for each component additive effect, the probability of
identity for each component dominance effect, and the corresponding variance component.
Thus, the covariance attributable to additive × dominance epistasis is

σAD(x, y) = 2Θxy∆xyσ
2
AD (7.11d)

because there is one additive and one dominance effect involved, while that caused by
dominance × dominance epistasis is

σSD(x, y) = ∆2
xyσ

2
DD (7.11e)
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because there are two dominance but no additive effects involved. Letting n be the number
of additive effects and m be the number of dominance effects in a type of gene action, the
expression for the covariance between relatives becomes

σG(x, y) =
∑

(2Θxy)n∆m
xyσ

2
AnDm

= 2Θxyσ
2
A + ∆xyσ

2
D + (2Θxy)2σ2

AA

+ 2Θxy∆xyσ
2
AD + ∆2

xyσ
2
DD + (2Θxy)3σ2

AAA + · · · (7.12)

Drawing from the coefficients Θxy and ∆xy given in Table 7.2, explicit expressions
for the genetic covariances of common types of relatives are given in Table 7.3. Although
these expressions are only expanded to include two-locus epistasis, several things are im-
mediately apparent. First, gene action involving dominance only rarely contributes to the
covariance between diploid relatives. It requires that each parent ofx be related to a different
parent of y (i.e., a nonzero value of ∆xy). Such relationships (full sibs, double first cousins
[the offspring from a pair of brothers married to a pair of sisters], and monozygotic twins)
are said to be collateral. Second, the coefficient for σ2

AA declines more rapidly with the
distance of the relationship than does that for σ2

A. As noted in Chapters 4 and 5, because the
additive genetic variance is a function of all higher-order types of gene action, these results
should not be misconstrued to mean that the resemblance between relatives is influenced
only slightly by dominance and epistatic gene action.

The most useful feature of the expressions in Table 7.3 involves their different coeffi-
cients, which permit the estimation of the different variance components from linear combi-
nations of different observed genetic covariances between relatives. For example, ignoring
higher-order epistasis and environmental sources of covariance, 8 × [parent-offspring co-
variance− (2 × half-sib covariance)] has an expected value of 8[ (σ2

A/2+σ2
AA/4)−2(σ2

A/4+
σ2
AA/16) ] = σ2

AA. Similarly, 2× [(4 × half-sib covariance) − (parent-offspring covariance)]
has an expected value of σ2

A. Subsequent examples in this chapter will illustrate the utility
of these kinds of manipulations. With marker-based estimates of Θ and ∆, an even more
refined analysis is possible. For example, Figure 7.5 showed that pairs of full sibs vary in
their realized Θ value, and one can use this variation to decouple the effects of shared genes
from shared environments in humans (Visscher et al. 2006; Chapter 32.)

THE EFFECTS OF LINKAGE AND GAMETIC-PHASE DISEQUILIBRIUM

In deriving the Kempthorne-Cockerham equation (7.12), we assumed that the constituent
loci are freely recombining and in gametic-phase equilibrium. We now consider the extent
to which the interpretation of observed covariances between relatives needs to be modified
in the face of violations of these assumptions. In most practical situations, we have little if
any information on either linkage or gametic-phase disequilibrium among the (almost al-
ways unknown) loci underlying a particular trait (although we can survey general genomic
patterns of LD using random SNPs; Chapter 5) so the following theoretical results provide
our only guidance as to the potential seriousness of the matter.

The most complete analyses of this problem were developed by Gallais (1974) and Weir
and Cockerham (1977), who allowed for inbreeding as well as linkage and gametic-phase
disequilibrium. Neither study went beyond two-locus relationships, as even then the alge-
braic and notational complexities are enormous. We will take a simpler approach than these
authors, first considering the consequences of linkage under the assumption of gametic-
phase equilibrium and then evaluating some of the consequences of disequilibrium. In both
cases, we will assume that mating is random and that all of the remaining assumptions of
the Kempthorne-Cockerham model are fulfilled.

Linkage

Under the assumption of gametic-phase equilibrium, linkage influences only the epistatic
components of genetic covariance, which depend upon the multilocus gene combinations
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inherited through gametes. Recall that in Equation 7.12, each component of epistatic vari-
ance is weighted by a coefficient of the form (2Θxy)n∆m

xy . The term Θn
xy is the probability

that randomly drawn pairs of genes (one from x and one from y) will be simultaneously
identical by descent at n loci, the 2n coming in because of diploidy. Similarly, ∆m

xy is the
probability that the genotypes of x and y are simultaneously identical by descent at m loci.
These definitions of the joint probability of events at multiple loci as the products of proba-
bilities at individual loci assume that identity by descent is distributed independently among
loci. However, for linked loci, identity by descent is expected to be positively correlated
because the genes at such loci tend to be inherited together, a feature known as identity
disequilibrium. Thus, for linked loci, we can anticipate that the multilocus coefficients
(2Θxy)n∆m

xy must be too low, to a degree depending on the recombination frequency.
A general solution to this problem requires the use of digenic descent coefficients,

which define the probability that two nonalleles (genes from different loci) are copies of
genes that were originally contained in the same gamete. Such a condition is known as
equivalence by descent. The formal theory of digenic descent, developed in great detail by
Cockerham and Weir (1968, 1973, 1977a) and Weir and Cockerham (1968, 1969, 1973, 1974,
1977), is algebraically and notationally complex. We will rely upon an approach that is less
general but more transparent (Schnell 1961, 1963; Van Aarde 1975). There is no easy entry
into this field, but for the adventuresome we suggest the reviews of Weir and Cockerham
(1977, 1989) as a starting point.

For our purposes, it will suffice to examine an arbitrary pair of loci, A andB. Consider
an individual whose two-locus genotype resulted from the fusion of AmBm and AfBf
gametes (m for mother, f for father). If the recombination fraction for the two loci is c, then
this individual will produce gametes in frequencies: p(AmBm) = p(AfBf ) = (1− c)/2 and
p(AmBf ) = p(AfBm) = c/2. Two gametes randomly drawn from this individual can have
four possible identity-by-descent relationships. Identity exists at both loci with probability
p(A,B) = p2(AmBm)+p2(AfBf )+p2(AmBf )+p2(AfBm), at neither locus with probability
p(0, 0) = 2p(AmBm)p(AfBf ) + 2p(AmBf )p(AfBm), at only the A locus with probability
p(A, 0) = 2p(AmBm)p(AmBf )+2p(AfBm)p(AfBf ), and at only theB locus with probability
p(0, B) = 2p(AfBf )p(AmBf ) + 2p(AfBm)p(AmBm). Letting λ = (1 − 2c)2—where λ = 1
for complete linkage—these gametic-identity probabilities simplify to

p(A,B) = p(0, 0) =
1 + λ

4
(7.13a)

p(A, 0) = p(0, B) =
1− λ

4
(7.13b)

all of which reduce to 1/4 with free recombination (c = 0.5).
As a specific application of gametic identity probabilities, we will consider the case

of full sibs, first evaluating the covariance caused by additive × additive epistasis. As
noted previously, for each pair of loci, the genotypic value of each sib contains four (αα)
terms, so there are 16 combinations of these terms between individuals. For each of the 16
combinations, the quantity of interest is the joint probability that randomly drawn A genes
(one from each sib) are identical by descent and that randomly drawn B genes (one from
each sib) are identical by descent. We first draw a random A gene from the two sibs. As
noted earlier, these are identical by descent with probability 1/4. Given that identity by
descent was obtained at the A locus, we now draw the B genes (again, one from each sib).
These genes may be identical by descent through two routes—they may both derive from
the parent from which the A genes were drawn (with probability 1/4) or both from the
opposite parent (with probability 1/4). If they come from the same parent as the A gene,
the B genes will be identical by descent with conditional probability

p(A |B) =
p(A,B)
p(A)

=
p(A,B)

p(A,B) + p(A, 0)
= (1 + λ)/2

If they come from the opposite parent, they are identical by descent with probability 1/2.
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Table 7.4 Coefficients for the components of genetic covariance between (noninbred) relatives mod-
ified to account for linkage (first five columns) and gametic-phase disequilibrium (last two columns).
Here GP represents grandparent, GC represents grandchild, λ = (1 − 2c)2, and t is the generation
number for the common ancestors. Blanks denote values of zero.

Relationship σ2
A σ2

D σ2
AA σ2

AD σ2
DD σA,A(0) σD,D(0)

Parent–offspring 1
2

1
4

(1−c)t
2

GP – GC 1
4

1+λ1/2

16
(1−c)t

4

Great GP – great GC 1
8

(1+λ1/2)2

64
(1−c)t

8

Half sibs 1
4

1+λ
16

(1−c)t
4

Full sibs, dizygotic twins 1
2

1
4

2+λ
8

1+λ
8

(1+λ)2

16
(1−c)t

2
(1−c)2t

4

Uncle (aunt)–nephew (niece) 1
4

1+λ(1+λ1/2)/2
16

(1−c)t
4

First cousins 1
8

1+(1+λ)3

128
(1−c)t

8

Double first cousins 1
4

1
16

3+(1+λ)3

64
1+(1+λ)3

128
(1+λ)4

256
(1−c)t

4
(1−c)2t

16

Second cousins 1
32

1+(1+λ)5

1024
(1−c)t

32

Monozygotic twins 1 1 1 1 1 (1− c)t (1− c)2t

Summing up, the probability of digenic identity by descent for two full sibs is 1/4 ·1/4 · [ (1+
λ)/2 + 1/2 ] = (2 + λ)/32. Given such identity, the contribution to the genetic covariance is
E[(αα)2], which is equivalent to one-fourth of the additive×additive genetic variance. Thus,
after taking account of all 16 pairs of additive× additive effects, the covariance between full
sibs resulting from additive× additive epistasis is 16 · [(2+λ)/32] · [σ2

AA/4] = (2+λ)σ2
AA/8.

With free recombination (λ = 0), this reduces to σ2
AA/4, our previous result (Table 7.3).

Linkage (λ > 0) causes the additive × additive genetic variance to be inflated.
We next consider the additive × dominance covariance between full sibs. Again, from

Equation 7.10a, for any pair of loci, there are 16 combinations of (αδ) terms in the two sibs. If
the two individuals possess an additive× dominance effect that is identical by descent, the
contribution to the genetic covariance will be σ2

AD/4. To evaluate the probability of such an
event, we need to determine the joint probability of drawing single genes that are identical
by descent at one locus and genotypes that are identical by descent at the second locus. Such
identity is only possible in the eight comparisons for which the additive effects involve the
same locus inx and y.As usual with full sibs, the probability of drawing two genes (one from
each sib) that are identical by descent is 1/4. Also as noted above, given that the genes drawn
at one locus are identical by descent, the genes for the second locus that descended from
gametes from the same parent are identical by descent with probability (1 +λ)/2. The other
pair of genes at the second locus are identical by descent with probability 1/2. Summing
up, the additive × dominance covariance becomes 8 · (1/4) · [(1 + λ)/2] · (1/2) · (σ2

AD/4) =
(1 + λ)σ2

AD/8, which reduces to σ2
AD/8 with free recombination.

Finally, we note that covariance between the single (δδ) term for a pair of loci requires
that both sibs inherit maternal gametes that are identical by descent at both loci, and similarly
for the paternal gametes. Each of these events occurs with probability p(A,B). Therefore, the
dominance × dominance covariance between full sibs is p2(A,B)σ2

DD = (1 + λ)2σ2
DD/16.

The coefficients for full sibs and for other common relationships are summarized in Ta-
ble 7.4. The main conclusion to be drawn from these results is that except for parent-offspring
and monozygotic twin relationships, linkage inflates the covariance between relatives, un-
less there are no epistatic sources of genetic variance. Linkage has no influence on the parent-
offspring covariance because the two individuals always have exactly one gene identical
by descent at each locus, and therefore share exactly one of the four additive × additive
effects. For grandparent-grandchild and half-sib relations, relative to the situation with free
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Figure 7.7 Inflation of the additive× additive covariance between relatives caused by link-
age, obtained by use of the coefficients in Table 7.4.

recombination, the additive× additive covariance can be inflated as much as twofold with
completely linked loci (λ = 1), whereas with full sibs the inflation can be no greater than
50% (Figure 7.7). It is of interest to note that whereas the expressions for the covariance of
half sibs and for grandparent-grandchild are identical under free recombination, the latter
is inflated to a greater degree by linkage unless linkage is complete (λ = 1). Thus, at least
in principle, a comparison of these two types of covariance may shed some light on the
presence of linkage for quantitative-trait loci.

Gametic-Phase Disequilibrium

Further complications arise when loci are in gametic-phase disequilibrium because this can
cause a covariance between the effects of genes carried in the same gamete. The problem has
been addressed by Weir et al. (1980), who ignored epistasis and assumed random mating,
as we do below. In Chapter 5 (Equations 5.23a and 5.23b), we saw that in the presence of
gametic-phase disequilibrium, the total genetic variance can be expressed as

σ2
G = σ2

A + σA,A + σ2
D + σD,D (7.14)

where σA,A is the contribution due to covariance of additive effects of nonalleles within ga-
metes (the additive disequilibrium covariance), and σD,D is the contribution of covariance
due to dominance effects of different loci within individuals (the dominance disequilib-
rium covariance).

We now consider the genetic covariance between relatives derived from a base pop-
ulation displaying gametic-phase disequilibrium. The covariance between relatives at-
tributable to equilibrium additive and dominance genetic variance (σ2

A and σ2
D) is the same

as given above, so it is only necessary to consider the additional contributions resulting
from σA,A and σD,D. For situations in which the study population is being maintained in a
steady state of disequilibrium from generation to generation (by processes such as natural
selection, migration, and/or nonrandom mating; WL Chapters 16 and 24), the modifica-
tions to the theory are simple—all of the preceding formulations still apply, except that
(σ2
A + σA,A) replaces σ2

A, and (σ2
D + σD,D) replaces σ2

D.
The more interesting situation arises when a study population, initially in gametic-

phase disequilibrium, is allowed to mate randomly in an environment in which the forces
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maintaining disequilibria are relaxed. In this case, the covariances between relatives change
through time as recombination causes the disequilibrium components of covariance to
decay towards zero. In the following, we will consider only the simple (and most common)
situation in which the ancestors leading to a relationship are all members of the same
generation; more general results can be found in Weir et al. (1980).

We start by considering the additive component of disequilibrium covariance. Return-
ing to Equation 7.10a, we make the distinction that allele i at the first locus and allele k at the
second locus are inherited in one gamete, whereas genes j and l are inherited in the other
gamete. By using the expression for the variance of a sum, Equation 3.11b, the additive
equilibrium genetic variance is defined to be

σ2
A = E[α2

i ] + E[α2
j ] + E[α2

k] + E[α2
l ] (7.15a)

On the other hand, the additive disequilibrium covariance in the base population is

σA,A(0) = 2E[αiαk] + 2E[αjαl] (7.15b)

Note that terms involving cross-gamete expectations, e.g., E[αiαj ] and E[αiαl], do not
appear in this expression because their expected values are zero under the assumption of
random mating (as there is no correlation between gametes). In Chapter 5, we found that in
the absence of restoring forces, gametic-phase disequilibrium (within gamete correlation)
is reduced by a fraction c after each generation of random mating. Thus, the additive
disequilibrium covariance remaining after t generations is

σA,A(t) = (1− c)tσA,A(0) (7.15c)

To obtain the covariance between relatives associated with the additive equilibrium
component of variance, we take expectations of the cross-products of additive effects of
genes in two individuals. A similar procedure is followed in obtaining the covariance due
to σA,A, except that we now focus on pairs of genes at different loci, one in each member of
the relationship,

σA,A(x, y, t) =
(
E[αxi α

y
k] + E[αxi α

y
l ] + E[αxjα

y
k] + E[αxjα

y
l ]

+ E[αxkα
y
i ] + E[αxkα

y
j ] + E[αxl α

y
i ] + E[αxl α

y
j ]
)

(7.15d)

For any of the terms in this equation to be nonzero, the genes in them must be equivalent
by descent. The key to solving Equation 7.15d is the fact that the probability of equivalence
by descent for genes at different loci in different gametes is the same as the probability
of identity by descent for alleles at the same locus. The reason for this equivalence is that
when parents produce a gamete pool, although the two loci (A andB) may be linked, under
random mating the gene at theA locus in one parental gamete is independent of the gene at
the B locus in a second gamete. Thus, the probability of any term in Equation 7.15d being
nonzero is Θxy.

From Equation 7.15b, we see that nonzero terms of the form E[αiαk] initially have ex-
pected values equal to σA,A(0)/4.At time t, however, each of the nonzero terms in Equation
7.15d has expected value σA,A(t)/4. Because there are eight terms, the covariance between
relatives due to additive disequilibrium covariance is 8 Θxy σA,A(t)/4, or from Equation
7.15c,

σA,A(x, y, t) = 2Θxy(1− c)tσA,A(0) (7.16)

where t denotes the number of generations that the common ancestors are removed from
the base population. Thus, for example, the parent-offspring covariance (with Θxy = 1/4)
resulting from additive disequilibrium covariance isσA,A(0)/2 if the parents are members of
the base population (t = 0), (1−c)σA,A(0)/2 if the parents are second-generation individuals
(t = 1), and (1− c)2σA,A(0)/2 if they are third-generation individuals (t = 3).
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Derivation of the covariance between relatives resulting from dominance disequilib-
rium covariance follows the same logic just presented. However, in this case, the dominance
disequilibrium covariance declines each generation to (1 − c)2 of its previous value. This
quadratic decline occurs because dominance disequilibria are only maintained if neither of
the gametes fusing to form a zygote have undergone recombination. Thus, the dominance
disequilibrium covariance is

σD,D(t) = (1− c)2tσD,D(0) (7.17a)

and the covariance between relatives due to this disequilibrium is

σD,D(x, y, t) = ∆xy(1− c)2tσD,D(0) (7.17b)

For example, the covariance between full sibs resulting from dominance disequilibrium
covariance is σD,D(0)/4, (1 − c)2σD,D(0)/4, and (1 − c)4σD,D(0)/4, respectively, when the
parents are members of the base population, second, and third generations.

The general coefficients for the disequilibrium covariances for common types of rela-
tionships, assuming the common ancestor to be a member of generation t (where t = 0
denotes the base population), are given in the last two columns of Table 7.4. Unlike all of
the equilibrium components of genetic variance, which always cause positive phenotypic
covariance between relatives, the components resulting from disequilibrium covariance
may be positive or negative depending upon whether loci are in coupling or repulsion
disequilibrium.

Strictly speaking, the modified coefficients in Table 7.4 apply to a single pair of loci
with recombination frequency c. These expressions could be refined further to account for
the influence of linkage and/or gametic-phase disequilibrium of all loci on the covariance
between relatives by summing terms over all pairs of loci, weighting each locus by its
specific set of variances and covariances. However, without detailed information on the
map structure of the constituent loci for a quantitative trait, such refinements would be of
little practical value. An alternative approximation can be obtained by assuming that the
loci underlying the trait are distributed randomly throughout the genome and using the
average recombination frequency c̄ in place of c (WL Chapter 24). Estimates of c̄ are given
for a number of species in Table 11.2.

It may be argued that linkage is of little consequence for the resemblance between
relatives in organisms with high chromosome numbers because most pairs of loci will lie
on different chromosomes. In this case, λ ' 0, and there is no inflation of the epistatic
components of covariance, regardless of the magnitude of gametic-phase disequilibrium.
However, regardless of the degree of linkage, gametic-phase disequilibrium is of special
concern, as theoretical arguments and some empirical data suggest that it may reach signif-
icant levels for characters under selection (Chapter 5; WL Chapters 16 and 24). In this case,
even with free recombination (c = 0.5), the contribution of disequilibrium covariance to the
resemblance between relatives is nonzero. In the following section, we consider a common
situation in which the build-up of positive σA,A is inevitable, even with unlinked loci.

Example 7.5. There is one case where the probability of equivalence by descent is unequal
to the coefficient of coancestry, which renders Equations 7.17a and 7.17b inappropriate. In
monozygotic twins, both members of the pair are products of the same gametes, so the genes
inherited in one twin are not independent of those inherited in the other twin through the
same parent. Because monozygotic twins have genetic effects at all loci identical by descent,
the covariance between monozygotic twins is equivalent to the expressed genetic variance in
the population in the present generation. For twins whose parents are members of the base
population, the probability that each ancestral gamete contributing to the twin progeny has
not experienced a recombination event (between two loci of interest) is (1− c). Therefore, the
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covariance between monozygotic twins resulting from additive and dominance effects is

σA(MZ) = σ2
A + (1− c)σA,A(0)

σD(MZ) = σ2
D + (1− c)2σD,D(0)

where the disequilibrium covariances refer to the levels in the parental generation. The sum
of these two quantities is the total expressed genetic variance in the population in the twin’s
generation (ignorning epistasis).

ASSORTATIVE MATING

Although we have assumed a randomly mating population throughout this chapter, it is
not unusual for mate choice to be based on aspects of the phenotype. Often, individuals
will choose mates whose phenotypes resemble their own (positive assortative mating, or
homogamy). For example, Shine et al. (2001) found positive assortative mating for size in
a Canadian population of red-sided garter snakes (Thamnophis sirtalis). A meta-analysis by
Jiang et al. (2013) of 360 species-trait combinations spanning five animal phyla found that
positive assortative mating was not uncommon, with a mean correlation between mates of
0.28. They found that negative assortative mating (diassortative mating, or heterogamy),
wherein the phenotype correlation among mates was negative, was rare. In vertebrates,
two notable exceptions involve body color: wolves in Yellowstone national park (Hedrick
et al. 2016) and white-throated sparrows(Tuttle 2003). In plants, assortative mating based
on flowering time is common because individuals often produce viable pollen for only
short periods of time. Likewise, self-incomparability systems could be regarded as a form
of examples of heterogamy. Moura et al. (2021) offered the important caveat that patterns
of assortative mating can change over time and space, and that the pooling of data over
such different settings can easily result in biased estimates of the nature and strength of
assortative mating.

In humans there are significant (and almost always positive) correlations between mates
with respect to a number of traits, both morphological and behavioral, such as height, skin
color, IQ, social status, religion, level of educational attainment, and conditions such as
deafness (Spuhler 1968; Vandenberg 1972; Mare 1995; Schwartz and Mare 2005). Because a
phenotypic correlation could be caused by either shared genes or shared environments, a
subject of some debate among human biologists is the fraction of these associations that are
entirely social (i.e., environmental) in origin. If mate choice is entirely social, there should
be no genetic consequences. Conversely, if mate choice is based on phenotypes, then to the
extent that phenotypes are heritable, there should also be a genetic impact for assortative
mating, which we examine below.

Genomic data has recently provided some clarity on this debate (at least for some
traits). Several studies (e.g., Domingue et al. 2014; Guo et al. 2014; Zou et al. 2015) showed
that couples share an excessive number of anonymous SNP alleles relative to some random
standard. However, as noted by Abdellaoui et al. (2014), population stratification (Chapter
20) can generate such an excess, and several of these studies did not fully account for its
effect. Robinson et al. (2017) further noted that the expected theoretical correlation generated
by assortative mating was sufficiently small that most of these studies were under-powered
and likely detected some other signal (such as stratification) rather than one created by
assortative mating. A more direct test involves using SNPs that are associated with a trait
of interest (GWAS; Chapter 20), such as height. Tenesa et al. (2016) found a correlation
between the SNP-predicted height of an individual with the phenotypic value of its mate.
This was also seen in a more careful analysis by Robinson et al. (2017), who observed
such a correlation for other traits as well, such as BMI (body-mass index) and educational
attainment. Hence, at least for some traits in humans, there is a mate-choice component
entirely based on phenotype.
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Many assortative mating systems are selective, such that some phenotypes of one or
both sexes have a greater ability to attract mates than others. Here, however, we confine
our attention to nonselective assortative mating, i.e., we assume that all individuals have
an equal opportunity to reproduce, the phenotypic distribution of their available mates
being the only limitation. This is the type of assortative mating that Fisher (1918) and
Wright (1921d) had in mind when they first attacked the problem from a quantitative-
genetic perspective. Almost all of the basic results of the theory were produced by these
two pioneers. Fisher’s (1918) elaborate treatment of the subject is notoriously difficult, and
some uncertainty still exists as to exactly what he meant to say (Moran and Smith 1966;
Wilson 1973; Vetta and Smith 1974; Yengo and Visscher 2018).

In some ways, positive assortative mating is like inbreeding, but in other ways it is very
different. A simple way to discriminate between the two is to note that inbreeding is choice
of mates based on similar genotypes, while assortative mating is based on phenotypes. If
there is genetic variance for the characters that are the targets of mate choice, then positive
assortative mating must cause identical alleles to come together more often than in the
case of random mating. This will cause an increase in the homozygosity of the population,
just as inbreeding does. However, while prolonged inbreeding can result in a completely
homozygous population, positive assortative mating will not generally induce such an
extreme genetic structure. It definitely will not if there are many loci underlying the character
upon which mate choice depends, if there is any variation for the trait due to sources other
than additive genetic variance, or if the correlation between mates is less than perfect.

It was shown in Chapter 4 (Equation 4.23c) that inbreeding (in the absence of epistasis)
can inflate the genetic variance of a population up to twofold. Strong positive assortative
mating has the potential to cause an even greater inflation, while disassortative mating
results in a reduction of the genetic variance. The change in variance brought about by
assortative mating is primarily a consequence of a directional build-up of gametic-phase
disequilibria. Positive assortative mating increases the coupling of genes with similar effects,
i.e., induces a positive covariance between allelic effects at different loci, while disassortative
mating leads to the proliferation of repulsion gametes, in which positive effects at one locus
are balanced by negative effects at another. Inbreeding also causes a build-up of gametic-
phase disequilibrium, but there is no tendency for extreme gamete types to be formed at
the expense of balanced ones, or vice versa.

Example 7.6. Direct observation of positive disequilibrium for several human traits show-
ing assortative mating was seen by Yengo et al. (2018). These authors started with informative
SNP markers detected from previous GWAS analyses for the traits of interest (Chapter 20),
and then examined the association between the number of trait-increasing alleles (TIAs) be-
tween even and odd-numbered chromosomes. This was done by computing the correlation,
φ, between even vs. odd-chromosome based trait predictor scores (weighted sums of TIAs)
within an individual. This contrast nicely controls for shared environmental effects, which
should equally impact both the even and odd chromosome sets. The potential of population
stratification was controlled by using the first 20 principal components of the marker matrix
(this approach is examined in Example 8.13). Using a data set of∼400,000 unrelated individ-
uals of European ancestry, φ values of 3.2% and 2.7%, respectively, were found for height and
education attainment. These values are consistent with their predicted values under assorta-
tive mating (based on trait heritability, fraction of variation accounted for by the predictors,
and the phenotypic correlation between mates; see Yengo et al. for details).

A further item of supporting evidence for disequilibrium was seen by comparing the
within-individual correlation (φ) with the correlations between the SNP-based predictors for
a married pair (rm), the latter computed using an independent data set. Yengo et al. showed
that the predicted relationship between these two metrics at assortative mating equilibrium
should be rm ∼ 2φ. The slope of a regression for 32 different traits of rm on φ showed a slope
of 1.8 (with a standard error of 0.2), consistent with this prediction.
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Figure 7.8 Inflation of the additive genetic variance at equilibrium under assortative mating
relative to that in an otherwise identical random-mating population. Solid and dashed lines
refer to 10 and 20 effective loci, respectively.

Theory

We now take a more quantitative look at these matters, starting with the consequences of
assortative mating for the additive genetic variance and heritability (WL Chapters 16 and
24 provide a more detailed development of the theory). We restrict our attention to the
situation in which interactions between loci are additive, because epistasis has not yet been
incorporated into the theory. We define ρz and ρg to be, respectively, the phenotypic and
additive-genetic correlations between mates and assume that the regression of phenotypes
of mates is linear. We also suppose that there are n loci, each contributing equally to the
genetic variance of the trait, and define the parameter γ = 1− [1/(2n)].

Starting from a random-mating base population in gametic-phase equilibrium with
additive genetic variance σ2

A, a single generation of assortative mating will shift the additive
genetic variance to

σ2
A(1) =

(
1 +

ρzh
2

2

)
σ2
A (7.18)

where h2 = σ2
A/σ

2
z is the heritability under random mating (Crow and Kimura 1970). With

continued assortative mating, the variance asymptotically approaches the equilibrium

σ̂2
A =

σ2
A

1− γρ̂g
(7.19a)

where ρ̂g = ρzσ̂
2
A/σ̂

2
z is the equilibrium genetic correlation between mates. This solution was

first obtained by Wright (1921d) for unlinked loci with equivalent effects. Later, Crow and
Felsenstein (1968), Bulmer (1980), and Nagylaki (1982) showed that the same result holds
with linked loci with arbitrary effects, as long as n is replaced by ne, the effective number of
loci. Thus, the general form of Equation 7.19a holds regardless of the map structure of loci.
Gimelfarb (1984) proved that the equilibrium is stable. Equation 7.19a can be rewritten as

σ̂2
A

σ2
A

=
2 +

[√
1− 4γρzh2(1− h2)− 1

]
/h2

2(1− γρz)
(7.19b)
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Figure 7.9 The equilibrium heritability, ĥ2, as a function of the heritability under random
mating (h2) and the strength of the assortative mating (γρz).

which gives the inflation of the additive equilibrium genetic variance relative to that in
the random-mating base population (Figure 7.8). The difference σ̂2

A − σ2
A is the additive

disequilibrium covariance, σA,A, maintained by assortative mating, which is positive under
positive assortative mating and negative under disassortative mating. Upon cessation of
nonrandom mating, σA,A decays to zero, and the additive variance returns to its random-
mating value, σ2

A.
Three points can be gleaned from Figure 7.8. First, there is an asymmetry in the response

to positive and negative assortative mating. Very strong positive assortative mating can in-
flate the additive genetic variance to nearly 2neσ2

A if h2 is also very high. However, negative
assortative mating can depress the variance to no less than σ2

A/2. The little empirical work
that has been done in this area is qualitatively consistent with this expectation (Breese 1956;
McBride and Robertson 1963; Example 7.7). Second, assortative mating must be fairly strong
(ρ2
z ≥ 0.2) and combined with high h2 to induce much change in the variance. Third, the

effective number of loci has a negligible effect unless it is very small.
Finally, consider the equilibrium heritability, ĥ2 = σ̂2

A/σ̂
2
z = σ̂2

A/(σ̂
2
A + σ2

E). Following
Gomez-Raya and Burnside (1990), Equation 7.19b implies that

ĥ2 =
1−

√
1− 4γρzh2(1− h2)

2 γρz (1− h2 )
(7.19c)

Figure 7.9 plots this as a function of the heritability under random mating (h2) and the
strength of the assortative mating (γρz). As expected from their impact on the sign of σA,A
positive assortative mating increased the heritability, while disassortative mating decreases
it. Again, upon return to random mating, the heritability returns to its random-mating
value as σA,A decays to zero. Equation 7.19c implies than an observed heritability seen for a
trait under assortative-mating equilibrium is a biased estimate of its random-mating value.
For example, the observed heritability for human height is around ĥ2 = 0.8. Assuming
a phenotypic correlation of ρz = 0.28 between mates (Example 7.8), one can iteratively
solve for h2 using Equation 7.19c (taking γ ' 1), yielding h2 = 0.76. Hence, the positive
association between the effects of height alleles at different loci accounts for about 4% of
the observed heritability. We show in Example 7.8 that these same parameters give a much
larger change in the additive variation (around 30%). The reason for the smaller change in
the heritability is that any change in the additive variance inflates (or deflates if ρz < 0) both
the numerator and denominator of the ratio that defines the heritability.

Example 7.7. Gimelfarb (1984) performed an experiment in which lines of Drosophila
melanogaster were artificially maintained under an absolute regimen of positive and nega-
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tive assortative mating (ρz ' ±1.0). Each generation, 300 male and 300 female flies from
each line were scored for abdominal bristle number, and the line was then propagated by
performing 300 rank-ordered matings. The change in the phenotypic variance of abdominal
bristle number over an eight generation period is shown in the following figure.
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To what extent can these results be reconciled with the theory? Abdominal bristle number
in D. melanogaster has been the subject of many quantitative-genetic studies. It appears to be
nearly completely lacking in nonadditive genetic variance, and random-mating laboratory
populations generally exhibit heritabilities of approximately h2 = σ2

A/(σ
2
A + σ2

e) = 0.5.
Assuming that the effective number of loci underlying the trait is at least five or so, then
γ ' 1, and Equation 7.19b predicts that complete negative assortative mating should ulti-
mately reduce the additive genetic variance to approximately 70% of the level in the base
population. Thus, scaling the original phenotypic variance to be one so that σ2

A = σ2
e = 0.50,

we expect complete negative assortative mating to depress the additive genetic variance to
approximately σ̂2

A = 0.70 × 0.50 = 0.35. From the figure, it can be seen that the phenotypic
variance declined to approximately 90% of the level in the base population. This is close to
the theoretical expectation that the phenotypic variance should be 85% of the base-population
level, σ̂2

z/σ
2
z = (σ̂2

A + σ2
e)/(σ2

A + σ2
e) = (0.35 + 0.50)/(0.50 + 0.50) = 0.85.

Such an analysis cannot be performed for the line under positive assortative mating be-
cause it is less clear that an equilibrium phenotypic variance had been obtained. Nevertheless,
a simple expectation can be pointed out for an experiment of this type. With absolute positive
assortative mating, ρz = 1.0, and a heritability of 0.5, the expected inflation of the additive
genetic variance predicted by Equation 7.19b is simply (2ne)1/2. Thus, if this experiment had
been carried out to the point at which σ̂2

z had stabilized, an estimate of the effective number
of factors for abdominal bristle number would have been possible.

To this point, we have said nothing about the dominance component of variance. When
only two loci contribute to the trait, σ2

D can change with assortative mating (Reeve 1961).
However, Fisher (1918) argued that if the number of loci is even moderate, the effect will
be negligible, and this was later confirmed by Vetta (1976). Thus, for all practical purposes,
we can assume that the dominance genetic variance is unaltered by assortative mating.

In addition to creating gametic-phase disequilibrium, assortative mating causes the
genotype frequencies for the selected trait to deviate from Hardy-Weinberg expectations.
Positive assortative mating leads to a heterozygote deficit, while negative assorative mating
leads to a heterozygote excess. Wright (1921d) and Nagylaki (1982) showed that if the ef-
fective number of loci is large, Hardy-Weinberg deviations will be minor unless both the
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Table 7.5 Coefficients for the additive and dominance components of the covariance between rel-
atives for an equilibrium population undergoing assortative mating. The equilibrium heritability is
ĥ2 = σ̂2

A/σ̂
2
z . In the absence of assortative mating, ρz = 0, and all coefficients reduce to those in

Table 7.3.

Relationship σ̂2
A σ2

D

Parent–offspring 1
2 (1 + ρz)

Grandparent–grandchild 1
4 (1 + ρz)(1 + ρzĥ

2)

Great grandparent–great grandchild 1
8 (1 + ρz)(1 + ρzĥ

2)2

Half sibs 1
4 (1 + 2ρzĥ2 + ρ2

zĥ
2)

Full sibs, dizygotic twins 1
2 (1 + ρzĥ

2) 1
4

Uncle(aunt)–nephew(niece) 1
4 (1 + ρzĥ

2)2 1
8ρzĥ

2

First cousins 1
8 (1 + ρzĥ

2)3 1
16 (ρzĥ2)2

Double first cousins 1
4 (1 + 3ρzĥ2) 1

16

Second cousins 1
32 (1 + ρzĥ

2)5 1
64 (ρzĥ2)4

Monozygotic twins 1 1

phenotypic correlation between mates and h2 are very large. This implies that the vast
majority of the change in genetic variance induced by assortative mating is a consequence of gametic-
phase disequilibrium rather than Hardy-Weinberg disequilibrium, i.e., of allelic associations
within, rather than between, gametes.

The covariance between relatives in a population undergoing assortative mating has
been considered by Fisher (1918), Crow and Felsenstein (1968), Gimelfarb (1981), and Yengo
and Visscher (2018), with the last authors also considering the impact of assortative mating
on X-chromsome coded traits. Nagylaki (1978) used path analysis to yield a particularly
lucid overview for the case of additive gene action. The coefficients of the additive and
dominance components of covariance are given for common types of relationships in Table
7.5. Positive assortative mating inflates the additive genetic covariance between all types
of relatives, while disassortative mating depresses it. Moreover, for some types of rela-
tionships (uncle-nephew, first and second cousins), assortative mating induces dominance
genetic covariance where there otherwise would be none. We emphasize that the additive
variance appearing in the resemblance between relatives is σ̂2

A, the variance in the current
assortatively mating population, not σ2

A, the variance that would exist in a random-mating
population. The latter can always be obtained by rearranging Equation 7.19a. Assuming
large ne (γ ' 1),

σ2
A =

(
1− ρzσ̂

2
A

σ̂2
z

)
σ̂2
A (7.20)

Example 7.8. As an example of the application of the preceding theory, we consider an early
data set on height in British families (Pearson and Lee 1903). Pearson recruited college students
to obtain data from approximately 1300 families, recording whenever possible the stature of
father, mother, and eldest son and daughter (ignoring offspring less than 18 years of age).
This was a very large data set for the precomputer era, and it took two years to calculate the
statistics by hand. The data are remarkable for their essentially normal distribution and for
the linearity of the regressions between relatives.

In the figure below on the left, the histogram gives the observed data for maternal height,
while the smooth curve is the fitted normal distribution. On the right, the straight line is the
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least-squares regression of sons’ height on paternal height, the data having been pooled into
one-inch size classes for paternal height.

Pearson and Lee do not report the covariances between relatives, but rather the corre-
lations, but this turns out to be quite convenient for the following analysis. The variance of
height tends to be larger for males than for females, and this may be expected to influence
the regressions depending upon which sexes are involved. However, because a correlation
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coefficient is equivalent to the covariance between two standardized variables (each with
unit variance), we can ignore this problem. The data in the following table indicate that
the phenotypic correlations for all four sex-specific parent–offspring combinations are quite
consistent, yielding a pooled value of 0.506 ± 0.011. The three full-sib correlations are also
consistent with each other and give the pooled value of 0.534 ± 0.019. Finally, we note
that there is highly significant assortative mating for height, the estimated value of ρz being
0.280±0.028. As a point of reference, a recent meta-analysis by Stulp et al. (2015) of 154 studies
over a very wide diversity of cultures obtained a value of 0.25 for western populations (and
an overall value of 0.23).

Relationship r SE

Parent–offspring:
Father–son 0.514 0.022
Father–daughter 0.510 0.019
Mother–son 0.494 0.024
Mother–daughter 0.507 0.021

Full sibs:
Brother–brother 0.511 0.042
Brother–sister 0.553 0.019
Sister–sister 0.537 0.033

Husband–wife 0.280 0.028

We first consider the additive genetic variance in the population. Recall that σ̂2
z = 1 on

the scale of analysis. From Table 7.5, we see that the expected covariance between parent and
offspring is (1 +ρz) σ̂2

A/2. Setting this quantity equal to 0.506, substituting 0.280 for ρz , and
rearranging, we obtain an estimate for σ̂2

A of 0.791±0.024 (the standard error being obtained
by the Taylor expansion delta method; Appendix 1). Thus, unless epistasis is very strong (we
have assumed it to be equal to zero), it appears that approximately 80% of the variance in
human height is attributable to additive gene action.

Suppose assortative mating were to be eliminated. What is the expected equilibrium
value of the additive genetic variance? Assuming a large effective number of loci (γ ' 1),
and substituting the estimates of σ̂2

A and ρz into Equation 7.20, we obtain σ2
A ' 0.616. The

additive disequilibrium covariance for height is estimated as 0.791−0.616 = 0.175, showing
that through the creation of gametic-phase disequilibrium, assortative mating has induced an
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approximately 28% increase in the additive genetic variance.
We now consider whether the full-sib data are consistent with an additive genetic model.

Again from Table 7.5, we see that in the absenc e of dominance, the covariance between
full sibs has an expected value of σ̂2

A(1 + ρzĥ
2)/2. Because we are operating on a scale

for which σ̂2
z = 1, this value is also the expected correlation coefficient. Substituting 0.280

for ρz and 0.791 for σ̂2
A, we obtain the expectation 0.483 ± 0.024. The difference between

the observed and expected value (0.534 − 0.483 = 0.051) has a standard error equal to
[(0.024)2 + (0.019)2]1/2 = 0.031 and cannot be considered to be significant. Thus, on the
basis of the existing data, there are no grounds for rejecting the purely additive model.

In a more recent study, Roberts et al. (1978) performed a census of adult heights in families
of a West African population, where assortative mating by height is relatively weak, ρz '
0.10± 0.10. The correlations between parents and offspring, (0.434 ± 0.015), and between
full sibs, (0.378 ± 0.048), are somewhat lower than those observed in the study of Pearson
and Lee. Using the procedures outlined above, these data yield estimates of σ̂2

A ' 0.789 and
σ2
A = 0.727. Thus, the expressed additive genetic variances in the two populations are very

similar, although a smaller fraction is associated with disequilibrium covariance in the West
African population. Roberts et al. also reported a half-sib correlation equal to 0.198± 0.059,
which can be used to provide a further check on the theory. Substituting the estimate of ρz
and ĥ2 = 0.789 into the half-sib expression in Table 7.5, the predicted correlation is 0.229,
which is not significantly different from the observed value.

There is an interesting historical note regarding the data of Pearson and Lee. Fisher’s (1918)
demonstration that the data were quite consistent with a Mendelian hypothesis flew in the face
of Pearson’s notorious non-Mendelian philosophy. Fisher also extended the analyses to other
types of relatives, illustrating their consistency with resemblances between first cousins and
between grandparents and their grandchildren. However, the literature that Fisher cites for the
latter correlations actually involves characters other than height (in one case, eye color)! Thus,
at the time, Fisher apparently believed that there was a universal correlation for all characters
within a species. This is an interesting twist because Pearson had similar feelings, as amply
documented in Pearson and Lee (1903, p. 379): “Thus for most practical purposes we may
assume parental heredity for all species and all characters to be approximately represented by
a correlation of 0.5.” We now know that this is far from the truth.

POLYPLOIDY

Because of the high incidence of polyploidy in plants, some attention needs to be given
to its effects on the covariance between relatives. We will confine our comments to single-
locus effects in a randomly mating tetraploid population and assume that the four alleles at
each locus assort independently during meiosis. The results for this special case were first
worked out by Kempthorne (1953, 1957).

As in the case of diploids, the genotypic values of tetraploids can be partitioned into
several independent effects defined (as was the case for diploids) in a least-squares sense.
However, because four alleles are present at each locus, in addition to additive (single- gene)
and dominance (gene-pair) effects, triallelic and quadra-allelic effects must be considered
(Chapter 5). Thus, the single-locus genotypic value of individual x is written as

Gijkl(x) = µG + [αxi + αxj + αxk + αxl ] + [δxij + δxik + δxil + δxjk + δxjl + δxkl]
+ [γxijk + γxijl + γxikl + γxjkl] + τxijkl (7.21)

As in the case of diploids, the expected value of each of the effects is zero. Thus, the additive
and dominance genetic variances for a locus are defined to beσ2

A = 4E[α2] and σ2
D = 6E[δ2],

while the trigenic and quadragenic variances are σ2
T = 4E[γ2] and σ2

Q = E[τ2].
The covariances between tetraploid relatives are obtained in the same manner as in the

case of diploids. For example, the additive genetic covariance involves 16 cross-products
of additive effects (four in individual x times the four in individual y). Each of these cross-
products has expectation E[α2] if the two genes are identical by descent, the probability of
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Table 7.6 Coefficients for Equation 7.22 for describing the covariance between tetraploid relatives.
(After Kempthorne 1957.)

Relationship Θxy ∆xy ϕxy φxy

Parent–offspring 1
8

1
36 0 0

Grandparent–grandchild 1
16

1
216 0 0

Full sibs, dizygotic twins 1
8

1
27

1
48

1
36

Half sibs 1
16

1
216 0 0

Uncle (aunt)–nephew (neice) 1
16

1
648 0 0

Monozygotic twins 1
4

1
6

1
4 1

which is Θxy , and expectation zero otherwise. Thus, the expected additive genetic covari-
ance between relatives is 16ΘxyE[α2] = 4Θxyσ

2
A. In the case of digenic interaction, there are

36 cross-products to consider, each of which has expectation E[δ2] if both members of the
pair of alleles in x are identical by descent with those in the pair from y (probability ∆xy).
Therefore, the digenic covariance is 36∆xyE[δ2] = 6∆xyσ

2
D. Letting ϕxy be the probability

that all members of random three-gene sets are identical by descent, and φxy be the proba-
bilty that the complete single-locus tetraploid genotypes of x and y are identical by descent,
the trigenic and quadragenic covariances between relatives are 4ϕxyσ2

T and φxyσ
2
Q. Thus,

assuming random mating, and no epistasis, linkage, or gametic-phase disequilibrium, the
covariance between tetraploid relatives can be summarized as

σG(x, y) = 4Θxyσ
2
A + 6∆xyσ

2
D + 4ϕxyσ2

T + φxyσ
2
Q (7.22)

The coefficients for a number of common relationships are given in Table 7.6.
An interesting consequence of polyploidy is that the covariance between noncollateral

relatives (individuals that do not share both parents) can be influenced by dominance. This
effect occurs because parents pass two alleles on to their progeny. Thus, the covariance
between parent and offspring is σ2

A/2 + σ2
D/6, as compared to σ2

A/2 in the case of diploidy.
Trigenic and quadragenic variance components only appear in expressions of resemblance
when collateral relatives are involved.

ENVIRONMENTAL SOURCES OF COVARIANCE BETWEEN RELATIVES

Up to now, we have focused entirely on the genetic causes of resemblance between relatives.
There are, however, many circumstances in which the environmental effects on the phe-
notypes of relatives are correlated. This is an especially pernicious complication in human
genetics. The most obvious situation arises when full sibs are raised in a common familial
environment, but the resemblance between other types of relatives can also be modified by
shared aspects of the environment. For example, in a spatially heterogeneous environment,
the resemblance between parents and offspring may be exaggerated by environmental ef-
fects if the latter do not randomly disperse following birth. In humans, and probably in other
vertebrates, cultural transmission can create a continuity in the behavioral phenotypes of
parents and offspring as well as among more distant relatives. In some circumstances, the
environment may actually deflate the resemblance between relatives. Consider, for exam-
ple, trees with limited seed-dispersal abilities. Parent trees that have grown large due to
fortuitous circumstances, such as germination in a light gap, may tend to create relatively
poor microhabitats for their offspring as a consequence of shading, attraction of herbivores,
and so on.
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In an effort to deal with the complications of cultural transmission, human quantitative
geneticists have gone to great extremes to incorporate various types of environmental co-
variance into expressions for the resemblance between relatives (Rao et al. 1974; Eaves 1976;
Cloninger et al. 1979a, 1979b; Eaves et al. 1988). The result is a family of models that contain
large numbers of parameters. Because the number of observable relationships must equal
or exceed the number of parameters for there to be any hope of estimating the latter, these
models are of little practical utility for most organisms. However, in humans the difficulties
are not insurmountable. Due to the frequency of divorce, adoption, and fostering by rela-
tives, and to the availability of records on parentage, many kinds of familial relationships
are observable.

Here we consider some of the possibilities, under the assumption of additive gene
action, and negligible linkage, gametic-phase disequilibrium, and inbreeding. To illustrate
the major points, we will rely on path analysis (Appendix 2), drawing specifically from
examples given in Rao et al. (1974). The basic feature of path analysis that we will exploit is
its ability to partition the correlation between any two variables into a series of pathways
connecting the two variables through causal components. As noted during our above dis-
cussion of coefficients of coancestry, the proportional contribution of each pathway to the
correlation between relatives is simply equal to the product of various path coefficients and
correlation coefficients along the pathway. We start by providing some general definitions,
and then show, for several types of relationships, how path analysis can yield expressions
for the expected phenotypic correlations in terms of causal genetic and environmental com-
ponents. We then complete our discussion of environmental effects by providing a worked
example involving a large data set on human birth weight.

Before proceeding, we consider how the phenotypic variance can be partitioned in
terms of path coefficients. As usual, we consider an individual’s phenotype (z) to be the
sum of its genotypic value (G), general (shared) environmental effects (E), and special
environmental effects (e). However, we now partitionG into three quantities: the population
mean (µG), the mean genotypic (breeding) value of the parents (Ā), and the deviation of
G from Ā caused by segregation of parental genes (S). Thus, an individual’s phenotypic
value is expressed as

z = µG + Ā+ S + E + e (7.23)

The path coefficients from Ā, S, E, and e to the phenotype are denoted by g, s, c, and
d, respectively (for expected genotypic value, deviation due to segregation, common en-
vironmental effect, and residual deviation). Because S is a random genetic deviation, it is
uncorrelated with the other components of Equation 7.23. However, genotype-environment
correlation may exist between Ā andE when offspring are raised by their own parents, and
we denote it by ρGE .

The phenotypic variance among individuals raised by their biological parents is

σ2
z = σ2

Ā + σ2
S + σ2

E + σ2
e + 2σĀ,E (7.24a)

Dividing all terms by σ2
z provides an expression for the partitioning of the phenotypic

variance of offspring raised by their own parents,

1 = g2 + s2 + c2 + d2 + 2gρGEc (7.24b)

In this expression, g2, s2, c2, andd2, are, respectively, the fractions of the phenotypic variance
attributable to midparent breeding values, segregational, general and special environmental
effects, while 2gρGEc = 2σ(G,E)/σ2

z is the fraction resulting from genotype-environment
covariance.

Equation 7.24b requires modification in the case of progeny raised in adoptive homes.
Under the assumption that there is no correlation between offspring genotype and the en-
vironment provided by an adoptive home, then ρGE = 0, and the phenotypic variance
of adopted children can differ from that of progeny raised by their own parents. For ex-
ample, ifρGE > 0 in intact families, the variance among adopted children will be reduced. To
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Figure 7.10 Path diagrams for the phenotypic correlation between individuals x and y. All
terms are defined in the text.

account for this, Equation 7.24b needs to be modified to ensure that the sum of the various
paths is equal to one. For adopted children, the modification is accomplished by letting

1 = θ2(g2 + s2 + c2 + d2) (7.24c)

where θ2 = 1/(1 − 2gρGEc) is the ratio of the phenotypic variances for the two types of
offspring. Multiplication by θ2 has the effect of dividing each of the causal path contribu-
tions by the phenotypic variance of progeny raised in adoptive homes rather than by the
phenotypic variance of progeny raised by their biological parents.

Finally, we note that it is useful to define

h2 = g2 + s2 (7.25)

as the heritability of the trait, i.e., the fraction of the total phenotypic variance attributable
to additive genetic differences among individuals. With assortative mating,

g = h
√

(1 + ρg)/2 (7.26a)

s = h
√

(1− ρg)/2 (7.26b)
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where, as before, ρg is the addtive-genetic correlation between mates (i.e., the correlation of
their breeding values). Under random mating, g = s = h/

√
2.

To illustrate how these general relationships can be extended to the description of the
expected phenotypic correlation between individuals, we now focus on the path diagrams
for four specific relationships (Figure 7.10). For simplicity, the diagrams only include those
factors that contribute jointly to the phenotypes of both members of a pair of individuals.
Thus, the residual environmental deviation (e) never appears, while S (as a random genetic
deviation) is only relevant in the case of monozygotic twins.

Because they are genetically identical, monozygotic twins (or clonemates) raised by
their natural parents share the same general environmental effects, midparent value, and
segregation deviation. Allowing for genotype-environment covariance, and summing over
all pathways between zx and zy , we obtain the phenotypic correlation,

ρ(MZ) = s2 + g2 + c2 + 2gcρGE = h2 + c2 + 2gcρGE (7.27)

Thus, the correlation between monozygotic twins raised by their biological parents is not
particularly informative, because it is a function of additive genetic variance (h2), variance
due to shared environment (c2), and genotype-environment correlation 2gcρGE .

Now consider the situation in which monozygotic twins are separated at birth, with
each being raised in a different adoptive home. The removal of the common-environment
effect eliminates the path zx ← E → zy (Figure 7.10), and as noted above, the absence of
genotype-environment correlation changes the phenotypic variance in the subpopulation
of such twins. Thus, the expected phenotypic correlation between twins raised by different
foster parents is h2θ2. An estimate of the heritability can be acquired after factoring out
θ2 (the ratio of phenotypic variances, defined above). Expressions for twins living in other
combinations of home environments are given in Table 7.7. (Note that when one member
of a relationship is living with its parents and the other is living in an adoptive home, the
correlation is multiplied by θ, rather than θ2, because only one member of the pair is from
a subpopulation with modified variance.) Chapter 24 treats the issue of twin analysis in
considerable detail.

We next consider the correlation between full sibs. The path diagram in this case is
identical to that for monozygotic twins, except that the sibs, being products of different ga-
metes, do not share the segregational deviation (S). Thus, the expected correlation between
full sibs raised by their biological parents is

ρ(FS) = g2 + c2 + 2gcρGE (7.28)

As in the case of monozygotic twins, this expression is simplified in situations where one or
both sibs are raised in adoptive environments. For example, suppose one sib is raised by its
biological parents, while the other is raised by unrelated foster parents (Figure 7.10). This
eliminates the paths zx ← E → zy and zx ← Ā ↔ E → zy. Moreover, because the second
sib comes from a segment of the population without genotype-environment correlation,
all of the path coefficients leading to it must be multiplied by θ. Summing over the two
paths between x and y, the phenotypic correlation becomes θ(g2 + gcρGE). The issue of sib
analysis will be covered in detail in Chapter 23.

A slight complication arises in the case of half sibs. The correlation ρg between mid-
parent values (Āx and Āy) is no longer one, because there is only one common parent. Rao
et al. (1974) showed it to be φ = (1 + 3ρg)/[2(1 + ρg)], which reduces to 1/2 under random
mating. Summing over all paths between zx and zy (Figure 7.10), the correlation between
half sibs raised by the parent creating the common environmental effect is

ρ(HS) = φg2 + c2 + 2gcρGE (7.29)

Again, various simplifications arise when one or both members of the sib pair are raised
by foster parents (Table 7.7). For example, when each sib is raised in a different adoptive
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Table 7.7 Expected phenotypic correlations between sibs in terms of path coefficients. All coefficients
are defined in the text except b, which is the correlation of environments provided by parents of half
sibs. Completely additive gene action is assumed. (After Rao et al. 1974.)

Relationship Phenotypic correlation

Monozygotic twins:

Reared by own parents h2 + c2 + 2gcρGE
One reared by own parents, one by foster parents (h2 + gcρGE)θ
Raised by different foster parents h2θ2

Reared together by foster parents (h2 + c2)θ2

Full sibs:

Reared by own parents g2 + c2 + 2gcρGE
One reared by own parents, one by foster parents (g2 + gcρGE)θ
Reared by different foster parents g2θ2

Half sibs:

Raised by common parent φg2 + c2 + 2gcρGE
One reared by own parents, one by foster parents (φg2 + gcρGE)θ
Reared by different foster parents φg2θ2

Reared apart by own parents φg2 + c2b+ gcρGE

Unrelated foster sibs:

Reared together by same foster parents c2θ2

Reared together by parents of one of them (c2 + gcρGE)θ

environment, the only path between sib phenotypes is zx ← Āx ↔ Āy → zy , so the
correlation is simply φg2θ2.

Finally, we note that unrelated individuals fostered by the same set of parents can
resemble each other as a consequence of the common environment in the adoptive home.
The expected phenotypic correlation between such individuals depends on whether the
adoptive parents are the biological parents of one of the foster sibs (Figure 7.10, Table 7.7).

Even more complicated scenarios, for additional types of relatives, have been consid-
ered by the authors cited above. However, we assume that the basic principles are clear at
this point, and will not pursue these any further. One very notable aspect of the models out-
lined above is their ability to provide estimates of genotype-environment correlation when
data are available on sibs raised in various types of home environments. For example, when
covariances are observed for monozygotic twins living in the four types of environmental
settings outlined in Table 7.7, joint estimates of h2, c2, and ρGE can be obtained by setting
the observed correlations equal to their expected values and solving. Modifications of all
the expressions in Table 7.7 are necessary, however, in the presence of significant sources of
nonadditive genetic variance. We close this section with an example of a character whose
expression is strongly influenced by shared environmental effects.

Example 7.9. Several large and independent studies have been performed on human birth
weight. As can be seen in the following table, the estimated correlations between relatives
are quite consistent among studies. For example, the five available full-sib correlations have a
narrow range of 0.47 to 0.52. Mi et al. (1986) performed large analyses on several ethnic groups
in Hawaii and found only minor differences among them for the correlations between relatives.
We will therefore pool the independent estimates where they exist. In keeping with the linear
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model just outlined, we will assume that dominance and epistatic sources of variance are of
negligible importance. In the absence of conflicting data, we will also assume that assortative
mating and genotype-environment correlation are negligible, and that general environmental
effects are only transmitted through mothers. Under these assumptions, ρG = 0, g2 = h2/2,
ρGE = 0, and θ = 1.

Relationship Estimated Correlations Prediction

Full sibs2-6 0.50, 0.52, 0.47, 0.48, 0.48 h2

2 + c2 = 0.50

Maternal half sibs3 0.58 h2

4 + c2 = 0.42

Paternal half sibs3 0.10 h2

4 = 0.08

Maternal first cousins2,6 0.14, 0.13 h2

8 + c2G
2 = 0.15

Paternal first cousins2,6 0.02, 0.06 h2

8 = 0.04

Monozygotic twins1 0.67 h2 + c2 = 0.65

Dizygotic twins2,3 0.59, 0.66 h2

2 + c2 = 0.50
Half sibs via monozygotic twin parents:

Maternal5 0.31 h2

4 + c2G = 0.30

Paternal5,7 −0.03, 0.12 h2

4 = 0.08

The superscripts here correspond to the references: 1. Penrose (1954a); 2. Robson (1955); 3.
Morton (1955a); 4. Billewicz (1972); 5. Nance et al. (1983); 6. Mi et al. (1986); 7. Magnus (1984).

We first consider the additive genetic variance. Inferences about this parameter must
be derived from relationships for which shared environmental effects do not influence the
covariance. Paternal half sibs and paternal first cousins satisfy these conditions. The expected
correlations for these types of relatives are h2/4 and h2/8, respectively, where h2 = σ2

A/σ
2
z .

Because the observed correlations are 0.10 and 0.04 , we obtain independent estimates of
h2 of 4 x 0.10 = 0.40 and 8 x 0.04 = 0.32. Also available is an average correlation of 0.05
for the offspring of monozygotic twin brothers. Such individuals are genetically equivalent
to paternal half sibs (the fathers are different individuals, but identical genetically), so this
result yields an additional estimate of h2 = 4 x 0.05 = 0.20. Averaging over all three types of
relationship, h2 ' 0.30, i. e., additive genetic variance appears to account for approximately
30% of the phenotypic variance.

The data make it very clear that aspects of the maternal environment have a substantial
influence on birth weight. For example, the correlation between maternal half sibs is several
times greater than that between paternal half sibs, and the same pattern is seen for maternal
versus paternal first cousins. The total variation caused by the maternal environment can
be obtained from the maternal half-sib correlation, 0.58, whose expectation is (h2/4) + c2.
Subtracting out the additive genetic contribution, c2 = 0.58 - (0.30/4) = 0.50. Pooling this
with an independent estimate of c2 = 0.20 obtained by Magnus (1984), we estimate c2 '
0.35. Thus, aspects of the mother (in excess of the genes that she contributes to her offspring)
account for approximately 35% of the variance in birth weight. We examine the genetics of
maternal effects in detail in Chapter 28.

There are two ways to partition the maternal effects variance into genetic and environ-
mental components, c2 = c2G + c2E . First, monozygotic twin sisters provide the same genetic
environment but different home settings for their progeny, which are genetically equivalent
to maternal half sibs. The expected correlation between half sibs via this route is therefore
(h2/4) + c2G. Subtracting h2/4 from the observed correlation, we obtain an estimate of the
variance caused by genetic maternal effects, c2G = 0.31 -(0.30/4) = 0.23. Second, the covariance
between maternal first cousins is unaffected by common maternal environment, but is influ-
enced by half the genetic maternal variance because the mothers are full sibs; their expected
correlation is therefore (h2/8)+(c2G/2).Again equating observed and expected correlations,
we obtain a second estimate c2G = 2[0.14 − (0.30/8)] = 0.20. Thus, of the maternal effects
variance, approximately two-thirds (0.215/0.35) appears to be caused by the effects of the
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maternal genotype on the uterine environment that an offspring experiences.
The causes of approximately 35% of the variance remain to be identified. Offspring sex,

birth order, and gestation age account for 2, 3, and 4% of the variance, respectively (Penrose
1954a; Morton 1955a; Billewicz 1972; Magnus 1984). Some of these sources of variance presum-
ably fall in the environmental maternal-effects category. Relatively lower weights for first-born
offspring account for another 5% of the variation. Morton (1955a) has argued for the existence
of dominance genetic variance, but the following argument suggests that this source of vari-
ance is negligible. In principle, the correlation between full sibs is (σ2

A/2 + σ2
D/4 + σ2

E)/σ2
z .

However, from the above (σ2
A/2 + σ2

E)/σ2
z ' (0.30/2) + 0.35 = 0.50, which accounts for the

mean observed correlation of 0.49.
The approach that we have taken to analyze these data is not very rigorous from a statis-

tical standpoint, our main objective being to illustrate how correlations derived from several
types of relatives can be used to estimate components of variance. Nevertheless, when the
estimates of h2, c2, and c2G are substituted into the expressions for the expected correlations
between relatives, the overall fit to the data is quite good (last column in the preceding table).
Thus, variation in human birth weight appears to be largely a function of additive gene action,
maternal effects, and special environmental effects, each of which accounts for about a third
of the total variance.

THE HERITABILITY CONCEPT

We have now seen, in theory and by example, that the analysis of a series of relationships
provides the basis for partitioning the phenotypic variance into its elementary components.
In practice, however, we are often confronted with difficulties, aside from the problem of
finite resources, that prevent us from ever obtaining exact estimates of variance components.
Some of the variance, such as that caused by higher-order epistatic interactions, is essentially
beyond reach in a statistical sense. Nevertheless, with appropriate experimental designs,
most of the fundamental sources of variance (additive and dominance genetic variance,
and environmental variance due to common familial environments) can be approximated
to a good degree, and levels of confidence attached to them. Most practical applications
of quantitative genetics have been concerned with only the additive genetic component of
the phenotypic variance, with the remaining components being treated as noise. The ratio
σ2
A/σ

2
z has come to be known as the heritability of a trait (more precisely, the narrow-sense

heritability).
This brings us to an important conceptual issue that has plagued the field of quantitative

genetics almost since its inception (Feldman and Lewontin 1975; Bell 1977; Jacquard 1983).
The preoccupation with the additive component of genetic variance stems from the desire
for a parameter that describes the genetic resemblance between parents and offspring. At
the close of Chapter 3 it was shown that the slope of a regression of offspring phenotype on
average parental phenotype has expected value σ2

A/σ
2
z , provided that gene action is purely

additive and all of the assumptions underlying the Kempthorne-Cockerham model are met.
Moreover, we showed that if selection changes the mean phenotype in the parental gener-
ation by S units, the expected evolutionary advance in the offspring generation (relative to
that of the parents before selection) is Sσ2

A/σ
2
z . Based on this reasoning, many studies have

accepted uncritically the slope of a midparent- offspring regression (bop̄) (or equivalently,
twice the slope of mother-offspring or father-offspring regression, 2bop) as an estimate of
σ2
A/σ

2
z . However, over the last several pages, we have found that the validity of this interpre-

tation requires, among other things, random mating, gametic-phase equilibrium, absence
of additive × additive epistatic genetic variance, and absence of sharded environmental
effects. We cannot expect all of these conditions to be fulfilled in many natural populations.

Jacquard (1983) provided a useful discussion of the problems of interpretation of bop̄
and 2bop and suggested that these statistics simply be labeled biometric heritability without
prejudice regarding the mechanisms causing similarity. However, because of the fundamen-
tal importance of the ratio σ2

A/σ
2
z , particularly in selection theory, we will continue to call
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Table 7.8 Independent estimates of h2, obtained with Equation 7.30, for temperature tolerance in
the marine copepod Eurytemora affinis. (From Bradley 1978.)

Relationship Females Males

Parent–offspring 0.14± 0.44 0.72± 0.26
Full sibs 0.20± 0.05 0.82± 0.04
Paternal half sibs 0.40± 0.18 0.84± 0.35
Maternal half sibs 0 0.73± 0.32

the latter quantity the heritability, denoting it as h2 in keeping with Wright’s original usage
of h as the path coefficient σA/σz (Appendix 2). Providing an explicit definition eliminates
the ambiguity of the usage ofh2 in theoretical contexts, but highlights the practical problems
of estimation.

It should now be clear that heritabilities can often be approximated by reference to sets
of relatives other than parents and offspring. The general logic behind this approach is that
the first term in any genetic covariance expression is 2Θxyσ

2
A. Thus, under the assumption

that the additive genetic variance is the dominant source of phenotypic covariance,

h2 ' Cov(zx, zy)
2ΘxyVar(z)

(7.30)

should provide a good approximation to the heritability. Violations of the assumptions of
the ideal additive model will usually cause Cov(zx, zy)/2Θxy to be an upwardly biased
estimator of σ2

A.
A simple means of evaluating the likelihood of bias in heritability estimates arises when

estimates of the phenotypic covariance are available for more than one type of relative. Such
a test was performed by Clayton et al. (1957) on abdominal bristle number in a laboratory
population of Drosophila melanogaster. The estimates ofh2 derived from four types of relatives
were consistent with each other: mother–daughter (0.54± 0.11), mother–son (0.48± 0.11),
half sibs (0.48± 0.11), and full sibs (0.53± 0.07). For this population, the evidence is strong
that approximately 50% of the total variance for abdominal bristle number is attributable
to additive genetic variance and that the remainder is a function of special environmental
effects.

A second example in which heritability estimates are consistent across relationships
involves a study of the susceptibility of the marine copepod Eurytemora affinis to high tem-
perature shock (Table 7.8). Within each sex, four different relationships give fairly consistent
results, but there is a clear sexual dimorphism—approximately four times as much variance
in males is accounted for by additive genetic variance as in females. The fact that estimates
from full sibs and maternal half sibs are not inflated implies that dominance genetic vari-
ance and maternal-effects variance are of minor significance. Thus, the data are consistent
with the hypothesis that h2 ' 0.2 in females and 0.8 in males with the residual variance
being attributable to special environmental effects.

Such results in which additive genetic variance is the only source of resemblance be-
tween relatives are by no means universal in quantitative-genetic analyses. We have already
encountered a striking exception with human birth weight, and more will appear in the
following chapters. While there is a general tendency for heritability estimates based on
parent-offspring and full-sib analyses to be consistent with each other (Figure 7.11), in any
particular study, it is incumbent upon the investigator to evaluate whether the inconsis-
tencies between different estimates of h2 are significant. High levels of dominance genetic
variance often exist for fitness-related characters (Crnokrak and Roff 1995; WL Chapter 6).

For practical reasons, the components of variance of natural populations are frequently
estimated by assaying a segment of the population in a laboratory setting. Although the
goal of such studies is generally to infer the genetic properties of the wild population,
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Figure 7.11 The relationship between heritability estimated as 2Cov(PO)/Var(z) from
parent-offspring analysis and as 2Cov(FS)/Var(z) from full-sib analysis, for studies in which
both estimates are available. Individual data points are for physiological and morphological
characters for various natural populations of animals. The straight line gives the expected
pattern under a perfect correspondence of the two estimates. (From Mousseau and Roff 1987.)

laboratory settings often impose a rather substantial change in the environment. It is tempt-
ing to speculate that heritability estimates derived from controlled laboratory experiments
will be inflated relative to those expressed in the natural environment, where the environ-
mental component of variance might be expected to be magnified by spatial and temporal
heterogeneity. However, other outcomes are possible. For example, homeostatic mecha-
nisms, such as habitat selection, which are operable in the field may be rendered inoperable
in the laboratory. It is also conceivable that a shift in the environment may induce a change
in the additive genetic variance by altering gene expression. We revisit the estimation of h2

in natural popualtiosn using laboratory data in Chapter 22.
The few attempts that have been made to evaluate the sensitivity of heritability esti-

mates to environmental change have yielded a diversity of results. Contrary to expectations,
Mackay (1981) found that parent-offspring regressions for sternopleural bristle number and
body weight in Drosophila melanogaster were increased by varying the environment tempo-
rally and spatially in the laboratory. For the same species, Coyne and Beecham (1987) found
that the parent-offspring regression for abdominal bristle number was not affected by raising
the parents in the laboratory (as opposed to the field), while that for wing length increased
by 150%. The change was a consequence of a reduction in the environmental component
of variance in the lab-reared parents. Simons and Roff (1994) also observed a general in-
crease in the heritabilities of life-history traits when crickets were raised in the lab due to a
reduction in the environmental component of variance as well as an increase in the genetic
component. In a broad survey of the existing data on a diversity of organisms, Weigens-
berg and Roff (1996) found that there are no systematic differences in heritability estimates
obtained in the laboratory and in the field; if anything, the latter tend to be slightly higher
on average.

In another review, Hoffmann and Parsons (1991) found that heritabilities tend to in-
crease in stressful environments. This observation may be of relevance to the interpretation
of some laboratory analyses, in that the laboratory may constitute a form of stress in some
cases. However, there are many exceptions to the pattern suggested by Hoffmann and
Parsons. In natural populations of birds, for example, heritabilities of bone lengths and
body size tend to decline, sometimes to undetectable levels, under poor growth conditions
(Gebhardt-Henrich and van Noordwijk 1991; Larsson 1993). Thus, no strong generaliza-
tions emerge from existing studies as to how heritabilities are likely to change in laboratory
vs. field situations, benign vs. harsh environments, novel vs. usual conditions, and so forth.
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Figure 7.12 Cumulative frequency distributions for heritability estimates derived from nu-
merous wild animal populations. L = life history, B = behavior, P = physiology, M = morphol-
ogy. These data, from Mousseau and Roff (1987), do not include Drosophila studies, which
yield a similar pattern (Roff and Mousseau 1987).

The best that can be said is that heritabilities do respond to environmental change, and that
substantial care should be taken in extrapolating results beyond the environment in which
they are obtained.

If one’s sole interest in performing a quantitative-genetic analysis is to demonstrate that
the character of interest is heritable, there is probably little point in expending the effort. The
outcome is virtually certain. Almost every character in almost every species that has been
studied intensely exhibits nonzero heritability. This should come as no surprise, because
mutation brings in a small amount of new genetic variation each generation (Chapter 15;
WL Chapter 28). The interesting questions remaining are, How does the magnitude of h2

different among characters and species, and why?
One weak generalization that has emerged is that morphological characters tend to

have higher heritabilities than life-history traits, with behavioral and physiological charac-
ters falling at intermediate levels (Figure 7.12). Although there are numerous exceptions,
these results are consistent with the intuitive concept that natural selection will most effi-
ciently reduce the genetic variation for characters closely related to fitness by rapidly driving
beneficial genes to fixation and eliminating deleterious ones (Robertson 1955; Fisher 1958;
Falconer 1989). However, there are other explanations. As emphasized by Price and Schluter
(1991), the relatively low heritabilities of life-history traits may be as much a consequence
of relatively high levels of environmental variance as of unusually low levels of genetic
variance for such traits. One possible reason for this is that the environmental variance of
life-history traits is a function of the variance of all of the other morphological, physio-
logical, and behavioral characters that influence their expression. Alternatively, characters
closely related to fitness (life-history traits) may be relatively canalized genetically (Stearns
and Kawecki 1994; Chapter 14), such that their expression is relatively insensitive to new
mutations. This would result in low levels of genetic variation maintained under selection-
mutation balance. Finally, while selection may derive the additive variance to lower values,
it may not have a major impact on nonadditive genetic variances (WL Chapters 5 and 6).

Evolvability

In comparing the evolutionary potential of different traits/species, it is clearly desirable to
use a dimensionless parameter, and one such measure is the heritability (which standardizes
the additive variance by comparison to the phenotypic variance). Recall the traditional
expression for the rate of evolution of a trait,

∆µ = h2S (7.31a)
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Table 7.9 Heritabilities and coefficients of additive genetic (CVA) and residual (CVR) variation for
representative traits in Drosophilia melanogaster. Both CVA and CVR values are multiplied by 100.
Here n is the number of studies, and the median estimates are reported. (After Houle 1992.)

Trait n h2 CVA CVR

Sternopleural bristles 21 0.44 8.39 7.97
Wing length 31 0.36 1.56 2.09
Fecundity 12 0.06 11.90 39.02
Longevity 7 0.11 9.89 27.73

This equation neatly separates the forces of selection from the properties of inheritance,
such that h2 can be viewed as the efficiency of the response to selection. The change in the
mean in phenotypic standard deviations provides another useful descriptor of evolutionary
potential, with

∆µ
σz

= h2i (7.31b)

where i = S/σz is the standardized selection differential, i.e., the change in the mean caused
by selection in units of phenotypic standard deviations.

Houle (1992) has suggested that heritability may not be the best measure of the evo-
lutionary potential of a trait, arguing for the use of the coefficient of additive genetic
variation, i.e.,

CVA =
σA
µ

(7.31c)

where σA is the square root of the additive genetic variance and µ is the mean of the trait.
In other words, standardizing the additive variance by the trait mean (mean standardiza-
tion), rather than the trait variance (variance standardization). He termed the CVA metric
(originally suggested by Charlesworth 1984) evolvability. Because it relies on the mean,
this metric is limited to traits that are nonnegative and which have a natural value of zero.
Height and weight are examples of traits that fit these restrictions, but date is not, because
the zero date on a calendar is arbitrary. Using the definition of CVA, Equation 7.31a can be
rearranged to give the proportional response in a trait as

R

µ
=
σ2
A

σ2
z

S

µ
=
(
σ2
A

µσz

)
i =

(
σA
µ

)(
S

σz

)(
σA
σz

)
= CVAih (7.31d)

Example 7.10. As an example of the difference between the proportional response and the
response expressed in standard deviations, consider two traits, both with h2 = 0.5. Trait one
has a mean of 10 and a variance of 4, while trait two has a mean of 50 and also a variance of 4.
Suppose that S = 4, then the change in mean for both traits is h2S = 2, resulting a response
of one standard deviation. Trait one has a new mean of 12, or 120% of its previous mean, while
trait two has a new mean of 52, or 104% of its previous mean. Under the change in standard
deviations framework, both traits show comparable responses, while as a proportion of the
current mean, the change in trait one is much more dramatic.

Houle (1992) and Hansen et al. (2011) observed that h2 is essentially uncorrelated with
evolvability, so that a trait with a lowerh2 could still have high evolvability (i.e., potential for
a significant proportional change in the mean), and vice versa. Strikingly, while life-history
traits tend to have lower hertabilities, they often display higher evolvability values. Table
7.9 shows Houle’s (1992) original analysis. Lower values for h2 for life-history traits appear
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to arise not from smaller additive variances, but rather from larger values of the residual
(environmental plus nonadditive) variance. WL Chapter 6 examines this in more detail.

Finally, consider the special case in which the character is fitness (W ). Recall from
Chapter 3 that the selection differential is equivalent to the phenotypic covariance between
the character and relative fitness (w = W/W ), i.e., S = σ(z, w) = σ(z,W/W ) = σ(z,W )/W,
where W is mean fitness on the absolute scale. If z is fitness (z = W ), then σ(z,W ) =
σ(W,W ) = σ2(W ), hence S = σ2(W )/W, where σ2(W ) is the phenotypic variance of
fitness. Equation 7.31d then reduces to

∆W
W

=
σ2
A(W )

W
2 = σ2

A(w) (7.31d)

where σ2
A(W ) and σ2

A(w) are the additive genetic variances of absolute and relative fitness,
respectively. Thus, the proportional rate of evolution in mean fitness is equal to the squared
coefficient of additive genetic variation of absolute fitness, or equivalently, to the additive
genetic variance of relative fitness. This is Fisher’s (1958) fundamental theorem of natural
selection, which is examined in detail in WL Chapter 6.

These alternative formulations merely serve to illustrate that there are several ways to
measure evolutionary potential, each of which has its own merits in particular contexts. All
of the measures are interchangeable provided that information is available on the pheno-
typic variance, additive genetic variance, and mean phenotype. As emphasized by Houle
(1992), however, many quantitative-genetic studies simply report the heritability of a trait,
with no mention of the mean or variance components. This greatly limits the scope of in-
vestigation that can be performed with published data. The theory of selection response,
including all of the above issues, is discussed in considerable detail in the second volume
of this series, Walsh and Lynch (2018).


